11 |
Distribution asymptotique du nombre de diviseurs premiers distincts inférieurs ou égaux à mPersechino, Roberto 05 1900 (has links)
Le sujet principal de ce mémoire est l'étude de la distribution asymptotique de la fonction f_m qui compte le nombre de diviseurs premiers distincts parmi les nombres premiers $p_1,...,p_m$.
Au premier chapitre, nous présentons les sept résultats qui seront démontrés au chapitre 4.
Parmi ceux-ci figurent l'analogue du théorème d'Erdos-Kac et un résultat sur les grandes déviations.
Au second chapitre, nous définissons les espaces de probabilités qui serviront à calculer les probabilités asymptotiques des événements considérés, et éventuellement à calculer les densités qui leur correspondent.
Le troisième chapitre est la partie centrale du mémoire. On y définit la promenade aléatoire qui,
une fois normalisée, convergera vers le mouvement brownien. De là, découleront les résultats qui
formeront la base des démonstrations de ceux chapitre 1. / The main topic of this masters thesis is the study of the asymptotic distribution of the fonction
f_m which counts the number of distinct prime divisors among the first $m$ prime numbers, i.e. $p_1,...,p_m$.
The first chapter provides the seven main results which will later on be proved in chapter 4.
Among these we find the analogue of the Erdos-Kac central limit theorem and a result on large deviations.
In the following chapter, we define several probability spaces on which we will calculate asymptotic probabilities of specific events. These will become necessary for calculating their corresponding densities.
The third chapter is the main part of this masters thesis. In it, we introduce a random walk which, when suitably normalized, will converge to the Brownian motion. We will then obtain results which will form the basis of the proofs of those of
chapiter 1.
|
12 |
De la forme des généalogies en phylogénie et en génétique des populationsBlum, Michael G B 21 October 2005 (has links) (PDF)
Dans la majeure partie de cette thèse, nous nous sommes consacrés à l'étude de la forme des arbres phylogénétiques et plus particulièrement à leur déséquilibre. Une phylogénie est dite déséquilibrée, si la plupart des noeuds internes (les ancêtres communs) séparent l'arbre en deux sous-arbres de tailles sensiblement différentes. Les deux modèles de phylogénies aléatoires les plus classiques sont le modèle de Yule qui suppose que toutes les espèces ont la même probabilité de spéciation, et le modèle uniforme qui suppose que toutes les phylogénies de même taille sont équiprobables. Dans ces deux modèles, nous avons pu identifier les distributions limites des mesures de déséquilibre les plus utilisées par les biologistes. Les démonstrations sont inspirées de méthodes apparues récemment dans l'analyse des algorithmes. En génétique des populations, nous avons montré que le déséquilibre des généalogies de gènes est le signal d'un phénomène culturel : l'héritage de la fertilité. Nous avons mis en évidence la présence de ce trait culturel dans les populations de chasseurs-cueilleurs en utilisant le déséquilibre de généalogies reconstruites à partir d'ADN mitochondrial. Dans une dernière partie, la théorie de la coalescence a été appliquée à la génétique spatiale. Trois méthodes d'inférence d'un paramètre de dispersion spatiale ont été proposées. La vitesse de dispersion des ours bruns de Scandinavie a été estimée par une de ces trois méthodes.
|
13 |
Détection des ruptures dans les processus causaux: Application aux débits du bassin versant de la Sanaga au CamerounKengne, William Charky 03 May 2012 (has links) (PDF)
Cette thèse porte sur la détection de rupture dans les processus causaux avec application aux débits du bassin versant de la Sanaga. Nous considérons une classe semi-paramétrique de modèles causaux contenant des processus classique tel que l'AR, ARCH, TARCH. Le chapitre 1 est une synthèse des travaux. Il présente le modèle avec des exemples et donne les principaux résultats obtenus aux chapitres 2, 3,4. Le chapitre 2 porte sur la détection off-line de ruptures multiples en utilisant un critère de vraisemblance pénalisée. Le nombre de rupture, les instants de rupture et les paramètres du modèle sur chaque segment sont inconnus. Ils sont estimés par maximisation d'un contraste construit à partir des quasi-vraisemblances et pénalisées par le nombre de ruptures. Nous donnons les choix possibles du paramètre de pénalité et montrons que les estimateurs des paramètres du modèle sont consistants avec des vitesses optimales. Pour des applications pratiques, un estimateur adaptatif du paramètre de pénalité basé sur l'heuristique de la pente est proposé. La programmation dynamique est utilisée pour réduire le coût numérique des opérations, celui-ci est désormais de l'ordre de $\mathcal{O}(n^2)$. Des comparaisons faites avec des résultats existants montrent que notre procédure est plus stable et plus robuste. Le chapitre 3 porte toujours sur la détection off-line de ruptures multiples, mais cette fois en utilisant une procédure de test. Nous avons construit une nouvelle procédure qui, combinée avec un algorithme de type ICSS (Itereted Cumulative Sums of Squares) permet de détecter des ruptures multiples dans des processus causaux. Le test est consistant en puissance et la comparaison avec des procédures existantes montre qu'il est plus puissant. Le chapitre 4 étudie la détection des ruptures on-line dans la classe de modèle considéré aux chapitres 2 et 3. Une procédure basée sur la quasi-vraisemblance des observations a été développée. La procédure est consistante en puissance et le délai de détection est meilleur que celui des procédures existantes. Le chapitre 5 est consacré aux applications aux débits du bassin versant de la Sanaga, les procédures décrites aux chapitres 2 et 3 ont été utilisées en appliquant un modèle ARMA sur les données désaisonnalisées et standardisées. Ces deux procédures ont détecté des ruptures qui sont "proches".
|
14 |
Convergence d’un algorithme de type Metropolis pour une distribution cible bimodaleLalancette, Michaël 07 1900 (has links)
Nous présentons dans ce mémoire un nouvel algorithme de type Metropolis-Hastings dans lequel la distribution instrumentale a été conçue pour l'estimation de distributions cibles bimodales. En fait, cet algorithme peut être vu comme une modification de l'algorithme Metropolis de type marche aléatoire habituel auquel on ajoute quelques incréments de grande envergure à des moments aléatoires à travers la simulation. Le but de ces grands incréments est de quitter le mode de la distribution cible où l'on se trouve et de trouver l'autre mode.
Par la suite, nous présentons puis démontrons un résultat de convergence faible qui nous assure que, lorsque la dimension de la distribution cible croît vers l'infini, la chaîne de Markov engendrée par l'algorithme converge vers un certain processus stochastique qui est continu presque partout. L'idée est similaire à ce qui a été fait par Roberts et al. (1997), mais la technique utilisée pour la démonstration des résultats est basée sur ce qui a été fait par Bédard (2006).
Nous proposons enfin une stratégie pour trouver la paramétrisation optimale de notre nouvel algorithme afin de maximiser la vitesse d'exploration locale des modes d'une distribution cible donnée tout en estimant bien la pondération relative de chaque mode. Tel que dans l'approche traditionnellement utilisée pour ce genre d'analyse, notre stratégie passe par l'optimisation de la vitesse d'exploration du processus limite.
Finalement, nous présentons des exemples numériques d'implémentation de l'algorithme sur certaines distributions cibles, dont une ne respecte pas les conditions du résultat théorique présenté. / In this thesis, we present a new Metropolis-Hastings algorithm whose proposal distribution has been designed to successfully estimate bimodal target distributions. This sampler may be seen as a variant of the usual random walk Metropolis sampler in which we propose large candidate steps at random times. The goal of these large candidate steps is to leave the actual mode of the target distribution in order to find the second one.
We then state and prove a weak convergence result stipulating that if we let the dimension of the target distribution increase to infinity, the Markov chain yielded by the algorithm converges to a certain stochastic process that is almost everywhere continuous. The theoretical result is in the flavour of Roberts et al. (1997), while the method of proof is similar to that found in Bédard (2006).
We propose a strategy for optimally parameterizing our new sampler. This strategy aims at optimizing local exploration of the target modes, while correctly estimating the relative weight of each mode. As is traditionally done in the statistical literature, our approach consists of optimizing the limiting process rather than the finite-dimensional Markov chain.
Finally, we illustrate our method via numerical examples on some target distributions, one of which violates the regularity conditions of the theoretical result.
|
15 |
Estimation of dynamical systems with application in mechanics / Estimation des systèmes dynamiques avec application en mécaniquePapamichail, Chrysanthi 28 June 2016 (has links)
Cette thèse porte sur inférence statistique, les méthodes bootstrap et l’analyse multivariée dans le cadre des processus semi-markoviens. Les applications principales concernent un problème de la mécanique de la rupture. Ce travail a une contribution double. La première partie concerne la modélisation stochastique du phénomène de la propagation de fissure de fatigue. Une équation différentielle stochastique décrit le mécanisme de la dégradation et le caractère aléatoire inné du phénomène est traité par un processus de perturbation. Sous l'hypothèse que ce processus soit un processus markovien (ou semi-markovien) de saut, la fiabilité du modèle est étudiée en faisant usage de la théorie du renouvellement markovien et une nouvelle méthode, plus rapide, de calcul de fiabilité est proposée avec l'algorithme correspondant. La méthode et le modèle pour le processus markovien de perturbation sont validés sur des données expérimentales. Ensuite, la consistance forte des estimateurs des moindres carrés des paramètres du modèle est obtenue en supposant que les résidus du modèle stochastique de régression, dans lequel le modèle initial est transformé, soient des différences de martingales. Dans la deuxième partie de la thèse, nous avons abordé le problème difficile de l'approximation de la distribution limite de certains estimateurs non paramétriques des noyaux semi-markoviens ou certaines fonctionnelles via la méthode bootstrap pondérée dans un cadre général. Des applications de ces résultats sur des problèmes statistiques sont données pour la construction de bandes de confiance, les tests statistiques, le calcul de la valeur p du test et pour l’estimation des inverses généralisés. / The present dissertation is devoted to the statistical inference, bootstrap methods and multivariate analysis in the framework of semi-Markov processes. The main applications concern a mechanical problem from fracture mechanics. This work has a two-fold contribution. The first part concerns in general the stochastic modeling of the fatigue crack propagation phenomenon. A stochastic differential equation describes the degradation mechanism and the innate randomness of the phenomenon is handled by a perturbation process. Under the assumption that this process is a jump Markov (or semi-Markov) process, the reliability of the model is studied by means of Markov renewal theory and a new, faster, reliability calculus method is proposed with the respective algorithm. The method and the model for the Markov perturbation process are validated on experimental fatigue data. Next, the strong consistency of the least squares estimates of the model parameters is obtained by assuming that the residuals of the stochastic regression model are martingale differences into which the initial model function is transformed. In the second part of the manuscript, we have tackled the difficult problem of approximating the limiting distribution of certain non-parametric estimators of semi-Markov kernels or some functionals of them via the weighted bootstrap methodology in a general framework. Applications of these results on statistical problems such as the construction of confidence bands, the statistical tests, the computation of the p-value of the test are provided and the estimation of the generalized inverses.
|
16 |
Semimartingales et Problématiques Récentes en Finance QuantitativeKchia, Younes 30 September 2011 (has links) (PDF)
Dans cette thèse, nous étudions différentes problématiques d'actualité en finance quantitative. Le premier chapitre est dédié à la stabilité de la propriété de semimartingale après grossissement de la filtration de base. Nous étudions d'abord le grossissement progressif d'une filtration avec des temps aléatoires et montrons comment la décomposition de la semimartingale dans la filtration grossie est obtenue en utilisant un lien naturel entre la filtration grossie initiallement et celle grossie progressivement. Intuitivement, ce lien se résume au fait que ces deux filtrations coincident après le temps aléatoire. Nous précisons cette idée et l'utilisons pour établir des résultats connus pour certains et nouveaux pour d'autres dans le cas d'un grossissement de filtrations avec un seul temps aléatoire. Les méthodes sont alors étendues au cas de plusieurs temps aléatoires, sans aucune restriction sur l'ordre de ces temps. Nous étudions ensuite ces filtrations grossies du point de vue des rétrécissements des filtrations. Nous nous intéressons enfin au grossissement progressif de filtrations avec des processus. En utilisant des résultats de la convergence faible de tribus, nous établissons d'abord un théorème de convergence de semimartingales, que l'on appliquera dans un contexte de grossissement de filtrations avec un processus pour obtenir des conditions suffisantes pour qu'une semimartingale de la filtration de base reste une semimartingale dans la filtration grossie. Nous obtenons des premiers résultats basés sur un critère de type Jacod pour les incréments du processus utilisé pour grossir la filtration. Nous nous proposons d'appliquer ces résultats au cas d'un grossissement d'une filtration Brownienne avec une diffusion retournée en temps et nous retrouvons et généralisons quelques examples disponibles dans la littérature. Enfin, nous concentrons nos efforts sur le grossissement de filtrations avec un processus continu et obtenons deux nouveaux résultats. Le premier est fondé sur un critère de Jacod pour les temps d'atteinte successifs de certains niveaux et le second est fondé sur l'hypothèse que ces temps sont honnêtes. Nous donnons des examples et montrons comment cela peut constituer un premier pas vers des modèles dynamiques de traders initiés donnant naissance à des opportunités d'arbitrage nocives. Dans la filtration grossie, le terme à variation finie du processus de prix peut devenir singulier et des opportunités d'arbitrage (au sens de FLVR) apparaissent clairement dans ces modèles. Dans le deuxième chapitre, nous réconcilions les modèles structuraux et les modèles à forme réduite en risque de crédit, du point de vue de la contagion de crédit induite par le niveau d'information disponible à l'investisseur. Autrement dit, étant données de multiples firmes, nous nous intéressons au comportement de l'intensité de défaut (par rapport à une filtration de base) d'une firme donnée aux temps de défaut des autres firmes. Nous étudions d'abord cet effet sous des spécifications différentes de modèles structuraux et sous différents niveaux d'information, et tirons, par l'exemple, des conclusions positives sur la présence d'une contagion de crédit. Néanmoins, comme plusieurs exemples pratiques ont un coup calculatoire élevé, nous travaillons ensuite avec l'hypothèse simplificatrice que les temps de défaut admettent une densité conditionnelle par rapport à la filtration de base. Nous étendons alors des résultats classiques de la théorie de grossissement de filtrations avec des temps aléatoires aux temps aléatoires non-ordonnés admettant une densité conditionnelle et pouvons ainsi étendre l'approche classique de la modélisation à forme réduite du risque de crédit à ce cas général. Les intensités de défaut sont calculées et les formules de pricing établies, dévoilant comment la contagion de crédit apparaît naturellement dans ces modèles. Nous analysons ensuite l'impact d'ordonner les temps de défaut avant de grossir la filtration de base. Si cela n'a aucune importance pour le calcul des prix, l'effet est significatif dans le contexte du management de risque et devient encore plus prononcé pour les défauts très corrélés et asymétriquement distribués. Nous proposons aussi un schéma général pour la construction et la simulation des temps de défaut, étant donné qu'un modèle pour les densités conditionnelles a été choisi. Finalement, nous étudions des modèles de densités conditionnelles particuliers et la contagion de crédit induite par le niveau d'information disponible au sein de ces modèles. Dans le troisième chapitre, nous proposons une méthodologie pour la détection en temps réel des bulles financières. Après la crise de crédit de 2007, les bulles financières ont à nouveau émergé comme un sujet d'intéret pour différents acteurs du marché et plus particulièrement pour les régulateurs. Un problème ouvert est celui de déterminer si un actif est en période de bulle. Grâce à des progrès récents dans la caractérisation des bulles d'actifs en utilisant la théorie de pricing sous probabilité risque-neutre qui caractérise les processus de prix d'actifs en bulles comme étant des martingales locales strictes, nous apportons une première réponse fondée sur la volatilité du processus de prix de l'actif. Nous nous limitons au cas particulier où l'actif risqué est modélisé par une équation différentielle stochastique gouvernée par un mouvement Brownien. Ces modèles sont omniprésents dans la littérature académique et en pratique. Nos méthodes utilisent des techniques d'estimation non paramétrique de la fonction de volatilité, combinées aux méthodes d'extrapolation issues de la théorie des reproducing kernel Hilbert spaces. Nous illustrons ces techniques en utilisant différents actifs de la bulle internet (dot-com bubble)de la période 1998 - 2001, où les bulles sont largement acceptées comme ayant eu lieu. Nos résultats confirment cette assertion. Durant le mois de Mai 2011, la presse financière a spéculé sur l'existence d'une bulle d'actif après l'OPA sur LinkedIn. Nous analysons les prix de cet actif en nous basant sur les données tick des prix et confirmons que LinkedIn a connu une bulle pendant cette période. Le dernier chapitre traite des variances swaps échantillonnés en temps discret. Ces produits financiers sont des produits dérivés de volatilité qui tradent activement dans les marchés OTC. Pour déterminer les prix de ces swaps, une approximation en temps continu est souvent utilisée pour simplifier les calculs. L'intérêt de ce chapitre est d'étudier les conditions garantissant que cette approximation soit valable. Les premiers théorèmes caractérisent les conditions sous lesquelles les valeurs des variances swaps échantillonnés en temps discret sont finies, étant donné que les valeurs de l'approximation en temps continu sont finies. De manière étonnante, les valeurs des variances swaps échantillonnés en temps discret peuvent etre infinies pour des modèles de prix raisonnables, ce qui rend la pratique de marché d'utiliser l'approximation en temps continu invalide. Des examples sont fournis. En supposant ensuite que le payoff en temps discret et son approximation en temps continu ont des prix finis, nous proposons des conditions suffisantes pour qu'il y ait convergence de la version discrète vers la version continue. Comme le modèle à volatilité stochastique 3/2 est de plus en plus populaire, nous lui appliquons nos résultats. Bien que nous pouvons démontrer que les deux valeurs des variances swaps sont finies, nous ne pouvons démontrer la convergence de l'approximation que pour certaines valeurs des paramètres du modèle.
|
17 |
Transport optimal de mesures positives : modèles, méthodes numériques, applications / Unbalanced Optimal Transport : Models, Numerical Methods, ApplicationsChizat, Lénaïc 10 November 2017 (has links)
L'objet de cette thèse est d'étendre le cadre théorique et les méthodes numériques du transport optimal à des objets plus généraux que des mesures de probabilité. En premier lieu, nous définissons des modèles de transport optimal entre mesures positives suivant deux approches, interpolation et couplage de mesures, dont nous montrons l'équivalence. De ces modèles découle une généralisation des métriques de Wasserstein. Dans une seconde partie, nous développons des méthodes numériques pour résoudre les deux formulations et étudions en particulier une nouvelle famille d'algorithmes de "scaling", s'appliquant à une grande variété de problèmes. La troisième partie contient des illustrations ainsi que l'étude théorique et numérique, d'un flot de gradient de type Hele-Shaw dans l'espace des mesures. Pour les mesures à valeurs matricielles, nous proposons aussi un modèle de transport optimal qui permet un bon arbitrage entre fidélité géométrique et efficacité algorithmique. / This thesis generalizes optimal transport beyond the classical "balanced" setting of probability distributions. We define unbalanced optimal transport models between nonnegative measures, based either on the notion of interpolation or the notion of coupling of measures. We show relationships between these approaches. One of the outcomes of this framework is a generalization of the p-Wasserstein metrics. Secondly, we build numerical methods to solve interpolation and coupling-based models. We study, in particular, a new family of scaling algorithms that generalize Sinkhorn's algorithm. The third part deals with applications. It contains a theoretical and numerical study of a Hele-Shaw type gradient flow in the space of nonnegative measures. It also adresses the case of measures taking values in the cone of positive semi-definite matrices, for which we introduce a model that achieves a balance between geometrical accuracy and algorithmic efficiency.
|
Page generated in 0.0567 seconds