• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 17
  • 8
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 79
  • 79
  • 29
  • 28
  • 27
  • 16
  • 16
  • 15
  • 14
  • 14
  • 13
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Synthesis of Porous Coordination Polymers for Controlled Nitric Oxide Release / 一酸化窒素放出を制御可能な多孔性配位高分子の合成

Kim, Chi Won 25 January 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19408号 / 工博第4124号 / 新制||工||1636(附属図書館) / 32433 / 京都大学大学院工学研究科合成・生物化学 / (主査)教授 北川 進, 教授 松田 建児, 教授 濵地 格 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
32

Studies on Porous Coordination Polymers for Methane Purification / メタン精製用多孔性配位高分子に関する研究

Inubushi, Yasutaka 23 March 2017 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(工学) / 乙第13089号 / 論工博第4150号 / 新制||工||1675(附属図書館) / (主査)教授 北川 進, 教授 杉野目 道紀, 教授 宮原 稔 / 学位規則第4条第2項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
33

Synthesis and Formation Mechanism of Carbon Materials from Porous Coordination Polymers / 多孔性配位高分子を用いた炭素材料の合成とその形成機構の解明

Fujiwara, Yu-ichi 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21125号 / 工博第4489号 / 新制||工||1698(附属図書館) / 京都大学大学院工学研究科合成・生物化学専攻 / (主査)教授 杉野目 道紀, 教授 吉田 潤一, 教授 松田 建児 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
34

Controlled radical polymerization in designed porous materials / デザイン性ナノ空間材料を用いた制御ラジカル重合

Mochizuki, Shuto 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21797号 / 工博第4614号 / 新制||工||1719(附属図書館) / 京都大学大学院工学研究科合成・生物化学専攻 / (主査)教授 杉野目 道紀, 教授 松田 建児, 教授 大内 誠 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
35

Studies on Porous Soft Materials Based on Linked Rhodium-Organic Cuboctahedra / ロジウム含有金属錯体立方八面体の集合体に基づく多孔性ソフトマテリアルに関する研究

WANG, ZAOMING 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23926号 / 工博第5013号 / 新制||工||1782(附属図書館) / 京都大学大学院工学研究科合成・生物化学専攻 / (主査)教授 古川 修平, 教授 生越 友樹, 教授 浜地 格 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
36

Polímeros de coordenação à base de cobalto(II) e N,N'-bis(4-piridil)-1,4,5,8-naftaleno diimida como ligante e suas propriedade estruturais, espectroscópicas e fotoelétricas / Coordination polymers based on cobalt(II) and N,N\'-bis(4-pyridyl)-1,4,5,8-naphthalene diimide as ligand and their structural, spectroscopic and electronic properties

Castaldelli, Evandro 05 February 2016 (has links)
Polímeros de coordenação têm atraído a atenção de pesquisadores na última década por conta de sua incrível versatilidade e virtualmente infinito número de possibilidades de combinação de ligantes orgânicos e centros metálicos. Estes compostos normalmente herdam as características magnéticas, eletrônicas e espectroscópicas de seus componentes base. Entretanto, apesar do crescente número de trabalhos na área, ainda são raros os polímeros de coordenação que apresentem condutividade elétrica. Para este fim, utilizou-se a N,N\'-bis(4-piridil)-1,4,5,8-naftaleno diimida, ou NDI-py, que pertence a uma classe de compostos rígidos, planares, quimicamente e termicamente estáveis e que já foram extensamente estudados por suas propriedades fotoeletroquímicas e semicondução do tipo n. O primeiro polímero de coordenação sintetizado, MOF-CoNDI-py-1, indicou ser um polímero linear, de estrutura 1D. O segundo, MOF-CoNDI-py-2, que conta com ácido tereftálico como ligante suporte, é um sólido cristalino com cela unitária monoclínica pertencente ao grupo espacial C2/c, determinado por difração de raios-X de monocristal. A rede apresenta um arranjo trinuclear de íons Co(II) alto spin com coordenados em uma geometria de octaedro distorcido, enquanto os ligantes NDI-py se encontram em um arranjo paralelo na estrutura, em distâncias apropriadas para transferência eletrônica. Com o auxílio de cálculo teóricos a nível de DFT, foi realizado um estudo aprofundado dos espectros eletrônicos e vibracionais, com atribuição das transições observadas, tanto para o MOF-CoNDI-py-2 quanto para o ligante NDI-py livre. A rede de coordenação absorve em toda a região do espectro eletrônico analisada, de 200 nm a 2500 nm, além de apresentar luminescência com característica do ligante. Dispositivos eletrônicos fabricados com um cristal do MOF-CoNDI-py-2 revelaram condutividades da ordem de 7,9 10-3 S cm -1, a maior já observada para um MOF. Além de elevada, a condutividade elétrica dos cristais demonstrou-se altamente anisotrópica, sendo significativamente menos condutor em algumas direções. Os perfis de corrente versus voltagem foram analisados em termos de mecanismos de condutividade, sendo melhores descritos por um mecanismo limitado pelo eletrodo to tipo Space-Charge Limited Current, concordando com a proposta de condutividade através dos planos de NDI-py na rede. A condutividade dos cristais também é fortemente dependente de luz, apresentando fotocondução quando irradiado por um laser vermelho, de 632 nm, enquanto apresenta um comportamento fotorresistivo frente a uma fonte de luz branca. Estes resultados, combinados, trazem um MOF em uma estrutura incomum e com elevada condutividade elétrica, modulada por luz, em medidas diretas de corrente. Não existem exemplos conhecidos de MOFs na literatura com estas características. / Coordination polymers have been a major topic in materials science during the past decade, thanks to their versatility and virtually infinite possible combinations between metal centers and organic ligands. These coordination polymers usually inherit the properties of their components, such as magnetic, spectroscopic and electronic characteristics. However, despite the increasing number of research papers in this topic, it is still hard to find coordination polymers featuring electronic conductivity. To achieve that, we used a naphthalene diimide derivative, N,N\'-bis(4-pyridyl)-1,4,5,8- naphthalene diimide or NDI-py, which belongs to a class of rigid, planar, thermally and chemically stable compounds, extensively studied due to their photoelectrochemical properties and their n-type semiconductivity. The first coordination polymer synthesised, MOF-CoNDI-py-1, was an amorphous linear polymer, with a 1D structure. Based on these observations, MOF-CoNDI-py-2 was synthesised by using terephthalic acid as a supporting ligand, and it is a crystalline solid which its monoclinic unit cell belongs to a C2/c space group, as determined by single crystal X-ray diffraction. This network features a trinuclear high-spin Co(II) unit, and each metal ion sits on a distorted octahedra coordination geometry, while the NDI-py ligands sit in a parallel arrangement, with distances suitable for electronic transfers. A detailed study of their vibrational and electronic spectra, supported by DFT calculations, was performed, as well as a full description and assignment of the observed bands. MOF-CoNDI-py-2 absorbs in the whole studied spectral region, from 200 nm to 2500 nm, while it also features a ligand-centered emission spectrum. Electronic devices built around its crystals revealed electric conductivities of 7.9 10 -3 S cm -1, which is, to the best of our knowledge, the highest for a MOF to this date. This conductivity is also highly anisotropic, being significantly less conductive in certain directions. The current versus voltage profiles were analysed in terms of known conduction mechanisms, with best fits when using an electrode-limited Space-Charge Limited Current mechanism, in agreement with the proposition that this conductivity happens through the NDI-py stacking planes. Additionally, this mechanism is influenced by an external light source, being a photoconductor with a red laser, 632 nm, and a photoresistor with a white light. Combined, these results bring a light-modulated, highly conductive MOF material with an unusual structure. As far as we know, there are no similar MOFs in the literature, which makes MOF-CoNDI-py-2 one of a kind.
37

Continuous synthesis of metal-organic frameworks under high pressure

Li, Yong J. (Yong Jun) 05 March 2012 (has links)
Metal Organic Framework (MOF) materials, consisting of metal ions with organic linkers, have a functional cavity structure which can be utilized in applications such as catalyst, micro sensing, and gas absorption. Due to MOF materials' selective gas adsorption property, interest in MOF materials has intensified in the last few years, particularly for CO, CO₂, N₂, CH₄, and H₂. MOF materials are typically synthesized by reaction under hydrothermal conditions which yields a highly crystalline product. However, reaction under solvothermal condition typically requires long reaction times - from 8 hours up to several days depending upon the particular MOF material and the reaction conditions, such as solvent, temperature, and concentration. Other synthesis methods that have been developed to address these issues include microwave synthesis, sonochemical synthesis, and mechanochemical synthesis. Reaction time can be reduced to minutes under the high energy conditions of a microwave synthesis method. A solvent free synthesis can be achieved using the mechanochemical synthesis. The sonochemical synthesis method provides an environmentally friendly process. However, all of these synthesis methods above are batch processes and meet several difficulties in scalability and controllability. Herein, we introduce a new synthesis method for MOF materials which utilizes a continuous flow reactor process. To reduce the reaction time and solvent usage, and to maintain a high degree of the crystallinity are the goals of this study. Cu-BTC (BTC = Benzene, -1,3,5-Tricarboxylate ) or HKUST-1 Metal Organic Framework material was chosen to demonstrate the continuous flow reactor process since it has a simple MOF structure, consisting of Cu⁺² ions and BTC linkers, and has been widely studied for catalyst applications. The continuous flow synthesis method shows successful results of reduced residence time as low as 5 minutes, high crystal quality obtained, size control, and high yield with recycle solvent cooperation. The particle size control of MOF material has been shown crucial contributions in absorption application and is accomplished by adjusting the system temperature, flow rate, and solvent composition ratio. A water/ethanol mixture as the solvent in Cu-BTC synthesis reaction is environmentally friendly and easy to separate from the MOF product. In addition, the composition of water in solvent is the most influential factor to the crystal growth rate specifically in crystallization rate and nucleation rate. BTC is used in excess to achieve a production yield of about 97% based on Cu ion consumption. Since the Cu-BTC particles have a low solubility in the ethanol/water solution, they can be obtained easily using a dispersion/sonication method. The BTC rich supernatant can be recycled for use in the feed stream to maintain a high production rate, which can be beneficial for quick economic production in laboratory, as well as, commercial scale applications. / Graduation date: 2012
38

Metal-Organic Materials: From Design Principles to Practical Applications

Alkordi, Mohamed H. 19 March 2010 (has links)
The modular nature of metal−organic materials allows for tuning their properties to meet a specific application through careful design of the molecular precursors, i.e. information encoding at the molecular level. Research in this area is highly interdisciplinary where synthetic organic chemistry, in silico modeling, and various analytical techniques merge together to afford better understanding of the basic science involved and eventually to result in enhanced control over the properties of targeted materials.
39

Solid-State Synthesis of Imide Ligands for the Self-Assembly of Metal-Organic Materials

Perman, Jason Alexander 01 January 2011 (has links)
In this research project, reduction or complete elimination of organic solvents is explored in the synthesis of cyclic imides using a technique that brings reagents into favorable position to react. Cocrystal Controlled Solid-State Synthesis (C3Sy3), takes advantage of supramolecular interactions such as hydrogen bonding and π-π stacking to form a cocrystal which can sequential be heated to complete the condensation reaction and produce a desirable product. Twenty-five successful condensation reactions result in high and clean yield. C3Sy3 of cyclic imides with auxiliary hydrogen bonding moieties like carboxylic acid, carboxylate or pyridyl groups are amenable to form additional solid-state materials. These moieties are useful in forming coordinate covalent bonds with metal cations. Using these C3Sy3 synthesized molecules as ligands, various Metal-Organic Materials (MOMs) are self-assembled. These MOMs offer unique qualities owing to the properties of the cyclic imides. With the addition of accessible carbonyl groups, they may participate as hydrogen bond acceptors or hydrophilic groups. Various degrees of rotation of N-phenyl substituents around the imide plane allow for structural flexibility as a route to supramolecular isomers in MOMs. The ease in imide synthesis may allow the fast scale-up of these ligands for industrial application. Similar ligands are generally synthesized by cross-coupling or substitution reactions that require expensive catalyst and various organic solvents. Metal-organic materials are a class of compounds amenable to crystal engineering owing to the directional coordinate covalent bonds between metal or metal clusters and organic ligands. They are characterized by X-ray diffraction, spectroscopy, volumetric and gravimetric analysis. The C3Sy3 imides were used to construct various MOMs, from discrete nanostructures to extended 3-periodic frameworks that possess viable internal space for applications pertaining to porous materials. Structural characterization by single crystal X-ray diffraction and structure-function relations are addressed. Gas sorption experiments show that many of these materials are structurally robust and retain crystallinity after evacuation. Ion exchange and guest uptake experiments using the synthesized materials demonstrate their potential as agents for sequestration. The bottom-up synthesis of metal-organics materials is leading the field of crystal engineering with built-in properties, showing promise by combining attributes from both inorganic and organic components.
40

Design of metal-organic framework materials based upon inorganic clusters and polycarboxylates

Wang, Zhenqiang 01 June 2006 (has links)
Network structures based upon metal-organic backbones represent a new class of functional materials that can be rationally constructed by employing the concepts of supramolecular chemistry and crystal engineering. The modularity of design strategies, the diversity of prototypal structures, and the dynamic features of networks have afforded great advantages over traditional materials syntheses. The research presented in this dissertation is primarily concerned with developing an in-depth understanding of the basic principles that govern the supramolecular behaviors of metal-organic frameworks and gaining an experimental control over the structure and function of these new classes of hybrid materials. The use of rigid and angular organic ligands along with transition metal clusters gives rise to a wide variety of novel metal-organic architectures ranging from zero-dimensional nanostructures to three-dimensional frameworks. Gas sorption experiments suggest some of these compounds are potentially useful as porous materials. Conformational analysis of these structural models reveals geometrical foundations for the existence of superstructural diversity. Controlled crystallization experiments further indicate synthetic factors that might determine the formation of supramolecular isomers. On the other hand, careful selection of more labile organic components leads to flexible metal-organic frameworks exhibiting dynamic characteristics that have not been observed in their rigid counterparts. The guest-dependent switch-on/off of cavities and the ease of fine-tuning their chemical environments demonstrate the effectiveness of such a strategy in the context of generating tailored functional materials. Discovery and recognition of novel three-periodic metal-organic nets remains a nontrivial exercise. In this context, rigorous topological analysis assists the understanding of complicated nets and application of geometrical principles facilitates desing of new metal-organic structures. Finally, scaled-up metal-organic frameworks are potentially accessible with the aid of existing prototypal structures and a systematic study on ligand design.

Page generated in 0.1493 seconds