• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 6
  • 5
  • 4
  • 1
  • 1
  • Tagged with
  • 38
  • 38
  • 38
  • 11
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Elaboration de matériaux composites transparents à base de nanoparticules hybrides cœur@écorce / Elaboration of transparent composite materials based on hybrid core@shell nanoparticles

Loste, Julien 18 December 2014 (has links)
L’incorporation de particules inorganiques dans une matrice polymère confère de nouvelles propriétés au matériau ou améliore de manière significative les propriétés déjà existantes. Cependant, l’apparence visuelle perçue, telle que la transparence, peut être altérée par des phénomènes de diffusion de la lumière par les particules. Cette diffusion de la lumière est principalement conditionnée par la dimension des particules –ou agrégats de particules- et la différence d’indice de réfraction entre la matrice et les charges. Afin de traiter ces deux problèmes, l’objectif de nos travaux était de contrôler simultanément l’état de dispersion des nanoparticules inorganiques dans la matrice polymère et l’indice de réfraction des nanoparticules de façon à l’ajuster à celui de la matrice. Pour élaborer ce nouveau composite, nous avons synthétisé des nanoparticules hybrides cœur@écorce avec un cœur inorganique qui apporte les nouvelles propriétés et une écorce polymère d’épaisseur contrôlée, obtenue par polymérisation radicalaire contrôlée par voie nitroxyde amorcée à la surface des nanoparticules inorganiques. L’écorce polymère limite l’agrégation des particules et permet de modifier l’indice de réfraction moyen des nanoparticules cœur@écorce. En contrôlant l’épaisseur et la nature chimique de l’écorce polymère, nous cherchons à ajuster l’indice de réfraction des nanoparticules cœur@écorce à celui de la matrice. Les nanoparticules ont ensuite été dispersées dans une matrice de poly(méthacrylate de méthyle). Les propriétés optiques des composites ont été caractérisées par spectrogoniophotométrie, afin d’obtenir des informations sur l’intensité et la distribution angulaire de la lumière transmise par le composite. La transparence des nanocomposites a été fortement améliorée en ajustant l’indice de réfraction des nanoparticules cœur@écorce à celui de la matrice. / The incorporation of inorganic particles into a polymer matrix confers new properties to the material or enhances significantly existing properties. However, the perceived visual appearance, such as loss of transparency, might be modified by the scattering of light by the particles. This light scattering is mainly due to the particle –or aggregates of particles- dimensions and the refractive index difference between matrix and fillers. In order to address both issues, the objective of the present work was to control simultaneously the dispersion state of the inorganic nanoparticles into the polymeric matrix and the refractive index of the nanoparticles to match the one of the matrix. To achieve this new composite, we designed hybrid core@shell nanoparticles with an inorganic core that brings new properties and a polymer shell of controlled thickness, obtained by surface-initiated nitroxide mediated controlled radical polymerization. The polymer shell limits the aggregation of the particles and enables us to tune the average refractive index of the hybrid core@shell particle. By controlling the thickness and the chemical nature of the polymeric shell, we targeted to match the refractive index of the hybrid core@shell particle to the one of the polymeric matrix. The nanoparticles were further dispersed into a poly(methyl methacrylate) matrix. Optical properties of composites were characterized by spectrogoniophotometry which gave us informations about the intensity and the angular distribution of the transmitted light by the nanocomposites. The transparency of the nanocomposites was strongly enhanced for core@shell particles fulfilling the refractive index matching conditions.
32

Etude structurale, distribution cationique et état d'oxydation dans des nanoparticules magnétiques de ferrite du type coeur-coquille / Structural study, cationic distribution and oxidation state in magnetic score-shell nanoparticules based on ferrites

Martins Da Silva, Fernando Henrique 19 April 2016 (has links)
Nous explorons les propriétés structurales de nanoparticules cœur-coquille, avec un cœur de ferrite MFe2O4 (M = Mn et Co) ou de ferrite mixte Mn-Zn. Ces nanoparticules sont obtenues par co-précipitation hydrothermique et sont dispersées en milieu acide par un traitement de surface empirique au nitrate ferrique, protégeant les nanograins contre une dissociation chimique par une fine couche superficielle de maghémite. La fraction volumique du cœur, de la coquille et l’épaisseur de la couche superficielle sont déterminées par dosage chimique. Nous suivons les changements structurels des nanocristaux de MnFe2O4 et CoFe2O4, pendant la durée du traitement de surface, tandis que ceux des nanoparticules de ferrite mixte Mn-Zn sont étudiés en fonction de leur teneur en zinc. Diffraction de rayons-x et de neutrons sont utilisées pour déterminer les paramètres de structure, en particulier la diffusion de cations dans les interstices de la ferrite spinelle. Pour un haut degré de fiabilité, des raffinements de Rietveld sont réalisés. Les distances inter-atomiques, l’état d’oxydation moyen et le degré d’inversion sont déterminés par spectroscopie d’absorption des rayons-x. Morphologie, cristallinité et taille des nanoparticules de ferrite mixte Mn-Zn sont étudiées par TEM/HRTEM et par diffraction des électrons. Dans les nanoparticules MnFe2O4 et de ferrite mixte Mn-Zn, on constate la présence de cations Mn3+ en environnement octaédrique, responsables de déformations anisotropes (effet Jahn-Teller). Le degré d’inversion obtenu ici diffère de celui du bulk en raison de la réduction à l’échelle nanométrique et de l'augmentation du rapport surface/volume pendant le processus de synthèse. / Structural properties of core-shell ferrite nanoparticles MFe2O4 (M = Mn and Co) and Mn-Zn ferrite nanoparticles are here investigated. The nanoparticles are synthesized by hydrothermal co-precipitation and are dispersed in acid medium thanks to an empirical surface treatment by ferric nitrate, which prevents the chemical dissociation by a thin maghemite layer incorporated at the surface of the nano-grains. Chemical titrations allow us to calculate volume fractions of core and shell, as well as the surface-layer thickness. Structural changes induced by the surface treatment are followed as a function of treatment duration in MnFe2O4 and CoFe2O4 nanocrystals. Whereas structural changes in Mn-Zn ferrite nanoparticles are investigated as a function of zinc content. X-ray and Neutron diffractions are used to determine the structural parameters, in particular cationic distribution in the spinel ferrite sites. Precise structural information with high degree of reliability is obtained by Rietveld refinements. To investigate the local structure of these materials, X-ray Absorption Spectroscopy measurements are performed, allowing determining interatomic distances, mean oxidation state and inversion degree. Morphology, crystallinity and size of mixed-ferrite nanoparticles are investigated by TEM/HRTEM and electron diffraction. In Mn-Zn ferrite nanoparticles, the presence of Mn3+ in octahedral environment is responsible for anisotropic distortions, known as Jahn-Teller effect. The inversion degree obtained in this work diverges from the bulk values due to the reduction to nanoscale and to the increase of the surface/volume ratio, associated to the synthesis process.
33

Synthèse et caractérisation des nanoparticules intelligentes / Synthesis and characterization of smart nanoparticles

Jamal Al Dine, Enaam 07 June 2017 (has links)
L’un des enjeux majeurs en nanomédecine est de développer des systèmes capables à la fois de permettre un diagnostic efficace et également de servir de plateforme thérapeutique pour combattre les infections et les neuro-dégénérescences. Dans cette optique, et afin d’améliorer la détection de tumeurs, des agents de contraste ont été développés dans le but d’augmenter le rapport signal sur bruit. Parmi ces agents, les nanoparticules (NPs) d’oxyde de fer superparamagnétiques (SPIOs) et les quantum dots (QDs) sont des candidats idéaux et ont reçu une grande attention depuis une vingtaine d’années. De surcroit, leurs propriétés spécifiques dues à leurs dimensions nanométriques et leurs formes permettent de moduler leur bio-distribution dans l’organisme. L’opportunité de revêtir ces NPs biocompatibles par des couches de polymères devraient permettre d’améliorer la stabilité de ces nanomatériaux dans l’organisme. Et par conséquent, favoriser leur biodistribution et également leur conférer de nouvelles applications en l’occurrence des applications biomédicales. Dans ce travail de thèse, nous avons développé de nouveaux systèmes thermo-répondant basés sur un cœur SPIOs ou QDs qui sont capables, à la fois, de transporter un principe actif anticancéreux, i.e. la doxorubicine (DOX) et de le relarguer dans le milieu physiologique à une température contrôlée. Deux familles de NPs ont été synthétisées. La première concerne des NPs de Fe3O4 SPIO qui ont été modifiées en surface par un copolymère thermorépondant biocompatible à base de 2-(2-methoxy) méthacrylate d’éthyle (MEO2MA), oligo (éthylène glycol) méthacrylate (OEGMA). La seconde famille, consiste en des NPs de ZnO recouverte du même copolymère. Pour la première fois, le copolymère de type P(MEO2MAX-OEGMA100-X) a été polymérisé par activateur-régénéré par transfert d’électron-polymérisation radicalaire par transfert d’atome (ARGET-ATRP). La polymérisation et copolymérisation ont été initiées à partir de la surface. Les NPs cœur/coquilles ont été caractérisées par microscopie électronique à transmission (TEM), analyse thermogravimétrique (TGA), etc. Nous avons montré que l’efficacité du procédé ARGET-ATRP pour modifier les surfaces des NPs de SiO2, Fe3O4 et de ZnO. L’influence de la configuration de la chaîne de copolymère et des propriétés interfaciales avec le solvant ou le milieu biologique en fonction de la température a été étudiée. Nous avons montré que les propriétés magnétiques des systèmes coeur/coquilles à base de Fe3O4 ne sont influencées que par la quantité de polymère greffée contrairement au QDs qui vient leur propriété optique réduire au-delà de la température de transition. Ce procédé simple et rapide que nous avons développé est efficace pour le greffage de nombreux copolymères à partir de surfaces de chimie différentes. Les expériences de largage et relarguage d’un molécule modèle telle que la DOX ont montré que ces nanosystèmes sont capables de relarguer la DOX à une température bien contrôlée, à la fois dans l’eau que dans des milieux complexes tels que les milieux biologique. De plus, les tests de cytocompatibilité ont montré que les NPs coeur/coquilles ne sont pas cytotoxiques en fonction de leur concentration dans le milieu biologique. A partir de nos résultats, il apparaît que ces nouveaux nanomatériaux pourront être envisagés comme une plateforme prometteuse pour le traitement du cancer / One of the major challenges in nanomedicine is to develop nanoparticulate systems able to serve as efficient diagnostic and/or therapeutic tools against sever diseases, such as infectious or neurodegenerative disorders. To enhance the detection and interpretation contrast agents were developed to increase the signal/noise ratio. Among them, Superparamagnetic Iron Oxide (SPIO) and Quantum Dots (QDs) nanoparticles (NPs) have received a great attention since their development as a liver contrasting agent 20 years ago for the SPIO. Furthermore, their properties, originating from the nanosized dimension and shape, allow different bio-distribution and opportunities beyond the conventional chemical imaging agents. The opportunity to coat those biocompatible NPs by a polymer shell that can ensure a better stability of the materials in the body, enhance their bio-distribution and give them new functionalities. It has appeared then that they are very challenging for medicinal applications. In this work, we have developed new responsive SPIO and QDs based NPs that are able to carry the anticancer drug doxorubicin (DOX) and release it in physiological media and at the physiological temperature. Two families of NPs were synthesized, the first one consist in superparamagnetic Fe3O4 NPs that were functionalized by a biocompatible responsive copolymer based on 2-(2-methoxy) ethyl methacrylate (MEO2MA), oligo (ethylene glycol) methacrylate (OEGMA). The second family consists in the ZnO NPs coated by the same copolymer. For the first time, P(MEO2MAX-OEGMA100-X) was grown by activator regenerated by electron transfer–atom radical polymerization (ARGET-ATRP) from the NPs surfaces by surface-initiated polymerization. The core/shell NPs were fully characterized by the combination of transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and by the physical properties of the nanostructures studied. We demonstrate the efficiency of the ARGET-ATRP process to graft polymers and copolymers at the surface of Fe3O4 and ZnO NPs. The influence of the polymer chain configuration (which leads to the aggregation of the NPs above the collapse temperature of the copolymer (LCST)) was studied. We have demonstrated that the magnetic properties of the core/shell Fe3O4-based nanostructures were only influenced by the amount of the grafted polymer and no influence of the aggregation was evidenced. This simple and fast developed process is efficient for the grafting of various co-polymers from any surfaces and the derived nanostructured materials display the combination of the physical properties of the core and the macromolecular behavior of the shell. The drug release experiments confirmed that DOX was largely released above the co-polymer LCST. Moreover, the cytocompatibility test showed that those developed NPs do not display any cytotoxicity depending on their concentration in physiological media. From the results obtained, it can be concluded that the new nanomaterials developed can be considered for further use as multi-modal cancer therapy tools
34

Etude des propriétés de surface de nanoparticules à l’interface avec les fluides biologiques et les membranes cellulaires / Study of the nanoparticles surface properties at the interface with biological fluids and cell membranes

Rascol, Estelle 09 December 2016 (has links)
L’objectif principal de ces travaux de thèse était de comprendre l’impact de la chimie de surface de NPs lors de leur interaction avec des interfaces biologiques. Deux sortes de NPs cœurs-coquilles ont été étudiées : des NPs sphériques de silice mésoporeuse Fe3O4@MSN de 100 nm de diamètre, contenant un cœur magnétique et des NPs composées d’analogues de bleu de Prusse (ABP) de formes cubiques (BP), cuboïdes (FeNi), ou polyédriques Au@BP contenant un cœur d’or, de tailles comprises entre 47 et 67 nm. Ces NPs différent par leur taille, leur composition chimique et leur forme. Les NPs de silice mésoporeuse, particulièrement étudiées ces dernières années pour leurs potentielles applications médicales, ont été choisies pour estimer la pertinence du recours à des modèles membranaires supportés pour l’évaluation de la sécurité biologique de nanomatériaux pour la santé. Les NPs Fe3O4@MSN ont été synthétisées de façon homogène et reproductible. Ces NPs ont ensuite été fonctionnalisées, par greffage de groupements PEG sur la silice, ou recouvertes avec une bicouche lipidique. L’influence des propriétés de surface sur la stabilité en suspension de ces NPs a été caractérisée dans différents milieux. Les effets de ces NPs sur la viabilité cellulaire et la cinétique d’internalisation ont été suivis sur une lignée cellulaire d’hépato-carcinome humain HepG2. Afin d’appréhender la relation entre les propriétés de surface des NPs et leurs effets sur les cellules, l’interaction des NPs avec des modèles membranaires a été étudiée. Les interactions des NPs avec des modèles membranaires ont été suivies par microbalance à quartz (QCM-D) et résonance plasmonique de surface (RPS). Les NPs fonctionnalisées sont plus rapidement internalisées que les NPs natives, en particulier les NPs recouvertes de bicouches lipidiques, mais sont moins toxiques pour les cellules HepG2. La présence de protéines de sérum de veau fœtal induit la formation d’une couronne de protéines qui influence l’interaction des NPs natives avec les membranes. Par contre, les groupements PEG ou le recouvrement lipidique forment un encombrement stérique limitant l’adhésion des protéines à la surface, qui n’influencent donc pas l’interaction des NPs avec les membranes. D’autre part, les NPs d’ABP ont été recouvertes avec des bicouches lipidiques. Les NPs polyédrique Au@BP contiennent un cœur d’or pour leur conférer des propriétés plasmoniques. La forme des NPs, sphériques, cubiques, cuboïdes ou polyédriques, n’influence pas le recouvrement lipidique. Ces différentes NPs, agrégées à 150 mM de NaCl, sont stabilisées en suspension par la formation d’une bicouche lipidique supportée en surface. L’influence de la forme sur la sécurité biologique des NPs peut ainsi être étudiée, celles-ci ayant des propriétés de surface communes mais différentes formes. / This work is a part of a multidisciplinary project focused on the safety of nanoparticles (NPs) developed for theranostic applications. The goal of this thesis is to investigate the role of surface chemistry of NPs at the biological interface. Two types of core-shell NPs have been studied: spherical mesoporous silica Fe3O4@MSN, with a diameter of 100 nm and a magnetic core, and cubic, cuboid and polyhedral NPs composed of Prussian blue analogous, presenting sizes comprised between 47 and 67 nm. The polyhedral Prussian blue NPs Au@BP contain a gold core. The NPs present different sizes, shapes and chemical compositions. Mesoporous silica NPs (MSN), particularly studied for their potential medical applications, have been used to evidence the relevance of model membranes to investigate NPs safety. First, Fe3O4@MSN were homogeneously synthesized, in reproducible 100 mg batches. These NPs have been functionalized by PEG grafting and lipid coating. The influence of the surface properties on the NPs stability have been characterized in various media. A human hepatocarcinoma cell line HepG2 have been used to measure the cell viability and observe the uptake kinetics when the cells are incubated with Fe3O4@MSN. To rely the surface properties of the NPs to their cell effects, the interaction of NPs with membrane models have been studied. Quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (RPS) were used to follow NPs-model membrane interactions. Functionalized NPs were uptaken faster than the bare ones, in particular lipid coated NPs, but were less cytotoxic for HepG2 cells. The presence of fetal calf serum proteins reduces the interaction of bare Fe3O4@MSN with model membranes, due to the protein corona that formed around the NPs. However, the presence of proteins doesn’t change NPs-model membranes interactions when NPs are functionalized by PEG grafting or coated with a lipid bilayer. The PEG groups and the lipid bilayers constitute a steric barrier which reduces the protein adhesion at the NPs surfaces. On the other hand, Prussian blue analogous NPs were also coated with lipid bilayers. The golden core of the polyhedral one’s confers localized plasmon properties. The lipid bilayer coating is equally performed on spherical, cubic, cuboid or polyhedral shapes of the various NPs. These different NPs are aggregated in high ionic strength conditions, with 150 mM NaCl, but dispersed when coated by lipid bilayer. The influence of the shape on the safety of the NPs may be compared, using these NPs with common surface coating but various shapes.
35

Functional nanoparticles for biomedical applications / Les nanoparticules fonctionnelles pour des applications biomédicales

Beyazit, Selim 12 December 2014 (has links)
Cette thèse décrit le développement de nouvelles méthodes pour obtenir des nanoparticules fonctionnelles polyvalentes qui peuvent potentiellement être utilisées pour des applications biomédicales telles que la vectorisation de médicaments, des essais biologiques et la bio-imagerie. Les nanomatériaux sont des outils polyvalents qui ont trouvé des applications comme vecteurs de médicaments, la bio-imagerie ou les biocapteurs. En particulier, les nanoparticules de type core-shell ont attiré beaucoup d'attention en raison de leur petite taille, une relation surface/volume élevée, et une biocompatibilité. Dans ce contexte, nous proposons dans la première partie de la thèse (Chapitre 2), une nouvelle méthode pour obtenir des nanoparticules core-shell via la polymérisation radicalaire en émulsion et vivante combinées. Des particules cœurs de polystyrène de 30 à 40 nm, avec une distribution de taille étroite et portant à la surface des groupements iniferter ont été utilisés pour amorcer la polymérisation supplémentaire d'une couche de polymère. Des nanoparticules core-shell ont été préparées de cette façon. Différents types d’enveloppes : anionique, zwitterioniques, à empreintes moléculaires, thermosensibles, ont ainsi été greffées. Notre méthode est une plate-forme polyvalente permettant d'ajouter des fonctionnalités multiples soit dans le noyau et/ou l'enveloppe pour les études d'interaction cellulaire et de toxicité, ainsi que des matériaux récepteurs pour l'imagerie cellulaire. Dans la deuxième partie de la thèse (Chapitre 3), nous décrivons un procédé nouveau et polyvalent pour la modification de surface des nanoparticules de conversion ascendante (UCP). Ce sont des nanocristaux fluorescents dopés de lanthanides qui ont récemment attiré beaucoup d'attention. Leur fluorescence est excitée dans le proche infrarouge, ce qui les rend idéales comme marqueurs dans des applications biomédicales telles que les tests biologiques et la bio-imagerie, l'auto-fluorescence étant réduite par rapport à des colorants organiques et les quantum dots. Cependant, les UCP sont hydrophobes et non-compatible avec les milieux aqueux, donc une modification de leur surface est essentielle. La stratégie que nous proposons utilise l'émission UV ou visible après excitation en proche infrarouge des UCP, comme source de lumière secondaire pour la photopolymérisation localisée de couches minces hydrophiles autour les UCP. Notre méthode offre de grands avantages comme la facilité d'application et la fonctionnalisation de surface rapide pour fixer divers ligands, et fournit une plateforme pour préparer des UCP encapsulée de polymères pour des différentes applications. Des hydrogels stimuli-sensibles sont des matériaux qui changent leurs propriétés physicochimiques en réponse à des stimuli externes tels que la température, le pH ou la lumière. Ces matériaux intelligents jouent un rôle critique dans des applications biomédicales telles que la vectorisation de médicaments ou l'ingénierie tissulaire. La troisième partie de cette thèse (Chapitre 4) propose un nouveau procédé de préparation d'hydrogels photo et pH sensible. Deux composantes, l'un photosensible à base dl'acide 4-[(4-méthacryloyloxy) phénylazo] benzoïque et l'autre cationic contenant des unités 2-(diéthylamino)éthyl méthacrylate, ont été synthétisés. Leur association donne des particules monodispersées de 100 nm photo et pH sensibles. Ces nanoparticules peuvent être potentiellement utilisées pour la vectorisation de médicaments, en particulier de biomolécules telles que protéines ou siARN. En conclusion, nous avons conçu plusieurs nouvelles méthodes efficaces, polyvalentes, génériques et facilement applicables pour obtenir des nanoparticules et nanocomposites de polymères fonctionnels qui peuvent être appliqués dans de différents domaines biomédicaux comme la vectorisation de médicaments, les biocapteurs, les tests biologiques et la bio-imagerie. / This thesis describes the development of novel methods to obtain versatile, functional nanoparticles that can potentially be used for biomedical applications such as drug delivery, bioassays and bioimaging. Nanomaterials are versatile tools that have found applications as drug carriers, bioimaging or biosensing. In particular, core-shell type nanoparticles have attracted much attention due to their small size, high surface to volume ratio and biocompatibility. In this regard, we propose in the first part of the thesis (Chapter 2), a novel method to obtain core-shell nanoparticles via combined radical emulsion and living polymerizations. Polystyrene core seeds of 30-40 nm, with a narrow size distribution and surface-bound iniferter moieties were used to further initiate polymerization of a polymer shell. Core-shell nanoparticles were prepared in this way. Different types of shells : anionic, zwitterionic, thermoresponsive or molecularly imprinted shells, were thus grafted. Our method is a versatile platform with the ability to add multi-functionalities in either the core for optical sensing or/and the shell for cell interaction and toxicity studies, as well as receptor materials for cell imaging. In the second part of the thesis (Chapter 3), we describe a novel and versatile method for surface modification of upconverting nanoparticles (UCPs). UCPs are lanthanide-doped fluorescent nanocrystals that have recently attracted much attention. Their fluorescence is excitated in the near infrared, which makes them ideal as labels in biomedical applications such as bioimaging and bioassays, since the autofluorescence background is minimized compared to organic dyes and quantum dots. However, UCPs are hydrophobic and non-compatible with aqueous media, therefore prior surface modification is essential. The strategy that we propose makes use oft he UV or Vis emission light of near-infrared photoexcited upconverting nanoparticles, as secondary light source for the localized photopolymerization of thin hydrophilic shells around the UCPs. Our method offers great advantages like ease of application and rapid surface functionalization for attaching various ligands and therefore can provide a platform to prepare polymeric-encapsulated UCPs for applications in bioassays, optical imaging and drug delivery. Stimuli responsive hydrogels are materials that can change their physico-chemical properties in response to external stimuli such as temperature, pH or light. These smart materials play critical roles in biomedical applications such as drug delivery or tissue engineering. The third part of the thesis (Chapter 4) proposes a novel method for obtaining photo and pH-responsive supramolecularly crosslinked hydrogels. Two building blocks, one containing photoresponsive 4-[(4-methacryloyloxy)phenylazo] benzoic acid and the other, consisting of cationic 2-(diethylamino)ethyl methacrylate units, were first synthesized. Combining the two building blocks yielded photo and pH responsive monodisperse 100-nm particles. These nanoparticles can be eventually utilized for drug delivery, especially delivery of biomolecules such as siRNAs or proteins. In conclusion, we have designed several new efficient, versatile, generic and easily applicable methods to obtain functionalized polymer nanoparticles and nanocomposites that can be applied in various biomedical domains like drug delivery, biosensing, bioassays and bioimaging.
36

Determination of the actual morphology of core-shell nanoparticles by advanced X-ray analytical techniques: A necessity for targeted and safe nanotechnology

Müller, Anja 07 April 2022 (has links)
Obwohl wir sie oft nicht bewusst wahrnehmen, sind Nanopartikel heutzutage in den meisten Bereichen unseres Alltags präsent, unter anderem in Lebensmitteln und ihren Verpackungen, Medizin, Medikamenten, Kosmetik, Pigmenten und in elektronischen Geräten wie Computermonitoren. Ein Großteil dieser Partikel weist, beabsichtigt oder unbeabsichtigt, eine Kern-Schale Morphologie auf. Einfachheitshalber wird diese Morphologie eines Kern-Schale-Nanopartikels (CSNP) oft als ideal angenommen, d.h. als ein sphärischer Kern, der komplett von einer Schale homogener Dicke bedeckt ist, mit einer scharfen Grenzfläche zwischen Kern- und Schalenmaterial. Außerdem wird vielfach auch davon ausgegangen, alle Partikel der Probe hätten gleiche Schalendicken. Tatsächlich weichen die meisten realen CSNPs in verschiedenster Weise von diesem Idealmodell ab, mit oft drastischen Auswirkungen darauf, wie gut sie ihre Aufgabe in einer bestimmten Anwendung erfüllen. Das Thema dieser kumulativen Doktorarbeit ist die exakte Charakterisierung der wirklichen Morphologie von CSNPs mit modernen Röntgen-basierten Methoden, konkret Röntgen-Photoelektronen-Spektroskopie (XPS) und Raster-Transmissions-Röntgen-Mikroskopie (STXM). Der Fokus liegt insbesondere auf CSNPs, die von einer idealen Kern-Schale-Morphologie abweichen. Aufgrund der enormen Vielfalt an CSNPs, die sich in Material, Zusammensetzung und Form unterscheiden, kann eine Messmethode nicht völlig unverändert von einer Probe auf eine andere übertragen werden. Nichtsdestotrotz, da die als Teil dieser Doktorarbeit präsentierten Artikel eine deutlich ausführlichere Beschreibung der Experimente enthalten als vergleichbare Publikationen, stellen sie eine wichtige Anleitung für andere Wissenschaftler dafür dar, wie aussagekräftige Informationen über CSNPs durch Oberflächenanalytik erhalten werden können. / Even though we often do not knowingly recognize them, nanoparticles are present these days in most areas of our daily life, including food and its packaging, medicine, pharmaceuticals, cosmetics, pigments as well as electronic products, such as computer screens. The majority of these particles exhibits a core-shell morphology either intendedly or unintendedly. For the purpose of practicability, this core-shell nanoparticle (CSNP) morphology is often assumed to be ideal, namely a spherical core fully encapsulated by a shell of homogeneous thickness with a sharp interface between core and shell material. It is furthermore widely presumed that all nanoparticles in the sample possess the same shell thickness. As a matter of fact, most real CSNPs deviate in several ways from this ideal model with quite often severe impact on how efficiently they perform in a specific application. The topic of this cumulative PhD thesis is the accurate characterization of the actual morphology of CSNPs by advanced X-ray analytical techniques, namely X-ray photoelectron spectroscopy (XPS) and scanning transmission X-ray microscopy (STXM). A special focus is on CSNPs which deviate from an ideal core-shell morphology. Due to the vast diversity of nanoparticles differing in material, composition and shape, a measurement procedure cannot unalteredly be transferred from one sample to another. Nevertheless, because the articles in this thesis present a greater depth of reporting on the experiments than comparable publications, they constitute an important guidance for other scientists on how to obtain meaningful information about CSNPs from surface analysis.
37

Formation of Porous Metallic Nanostructures Electrocatalytic Studies on Self-Assembled Au@Pt Nanoparticulate Films, and SERS Activity of Inkjet Printed Silver Substrates

Banerjee, Ipshita January 2013 (has links) (PDF)
Porous, conductive metallic nanostructures are required in several fields, such as energy conversion, low-cost sensors etc. This thesis reports on the development of an electrocatalytically active and conductive membrane for use in Polymer Electrolyte Membrane Fuel Cells (PEMFCs) and fabrication of low-cost substrates for Surface Enhanced Raman Spectroscopy (SERS). One of the main challenges facing large-scale deployment of PEMFCs currently is to fabricate a catalyst layer that minimizes platinum loading, maximizes eletrocatalytically active area, and maximizes tolerance to CO in the feed stream. Modeling the kinetics of platinum catalyzed half cell reactions occurring in a PEMFC using the kinetic theory of gases and incorporating appropriate sticking coefficients provides a revealing insight that there is scope for an order of magnitude increase in maximum current density achievable from PEMFCs. To accomplish this, losses due to concentration polarization in gas diffusion layers, which occur at high current densities, need to be eliminated. A novel catalyst design, based on a porous metallic nanostructure, which aims to overcome the limitations of concentration polarization as well as minimize the amount of platinum loading in PEMFCs is proposed. Fabrication steps involving controlled in-plane fusion of self-assembled arrays of core-shell gold-platinum nanoparticles (Au@Pt) is envisioned. The key steps involved being the development of a facile synthesis route to form Au@Pt nanoparticles with tunable platinum shell thicknesses in the 5 nm size range, the formation of large-scale 2D arrays of Au@Pt nanoparticles using guided self-assembly, and optimization of an RF plasma process to promote in-plane fusion of the nanoparticles to form porous, electrocatalytically active and electrically conductive membranes. This thesis consists of seven chapters. The first chapter provides an introduction into the topic of PEMFCs, some perspective on the current status of research and development of PEMFCs, and an outline of the thesis. The second chapter provides an overview on the methods used, characterization techniques employed and protocols followed for sample preparation. The third chapter describes the modelling of a PEMFC using the Kinetic theory of gases to arrive at an estimate of the maximum feasible current density, based on the kinetics of the electrocatalytic reactions. The fourth chapter presents the development of a simple protocol for synthesizing Au@Pt nanoparticles with control over platinum shell thicknesses from the sub monolayer coverage onwards. The results of spectroscopic and microscopic characterization establish the uniformity of coating and the absence of secondary nucleation. Chapter five describes the formation of a nanoporous, electrocatalytically active membrane by self-assembly to form bilayers of 2D arrays of Au@Pt nanoparticles and subsequent fusion using an RF plasma based process. The evolution of the electrocatalytic activity and electrical conductivity as a function of the duration of RF plasma treatment is monitored for Au@Pt nanoparticles with various extent of platinum coating. Spectroscopic, microscopic, electrical and cyclic voltammetry characterization of the samples at various stages were used to understand the structural evolution with RF plasma treatment duration and discussed. Next durability studies were carried out on the nanoporous, Au@Pt bilayer nanoparticle array with an optimum composition of Pt/Au atomic ratio of 0.88 treated to 16 minutes of argon plasma exposure. After this the novel catalyst membrane design of PEM fuel cell is revisited. Two different techniques are proposed so that the thin, nanoporous, metallic catalyst membrane achieves horizontal electronic resistance equivalent to that of the conventional gas diffusion layer with catalyst layer. The first technique proposes the introduction of gold coated polymeric mesh in between the thin, nanoporous, metallic catalyst membrane and bipolar plate and discusses the advantages. Later the gold coated polymeric mesh is introduced in a conventional membrane electrode assembly and efficiency of the polarization curves probed with and without the introduction of gold coated polymeric mesh. The second technique describes the results of fabrication of a nanoporous metallic membrane using multiple layers of 2D Au@Pt nanoparticle arrays at an optimum composition of Pt/Au atomic ratio of 0.88 to reduce the horizontal electronic resistance. Preliminary studies on the permeability of water through such membranes supported on a porous polycarbonate filter membrane are also presented. In chapter six, a simple reactive inkjet printing process for fabricating SERS active silver nanostructures on paper is presented. The process adapts a simple room temperature protocol, using tannic acid as the reducing agent, developed earlier in our group to fabricate porous silver nanostructures on paper using a commercial office inkjet printer. The results of SERS characterization, spectroscopic and microscopic characterizations of the samples and the comparison of the substrate’s long-term performance with respect to a substrate fabricated using sodium borohydride as the reducing agent is discussed. Preliminary findings on attempts to fabricate a conductive silver network using RF plasma induced fusion area also presented. Chapter seven provides a summary of the results, draws conclusions and a perspective on work required to accomplish the goals of incorporating the porous metallic nanostructures into PEMFCs.
38

Modulation of Nanostructures in the Solid and Solution States and under an Electron Beam

Sanyal, Udishnu January 2013 (has links) (PDF)
Among various nanomaterials, metal nanoparticles are the widely studied ones because of their pronounced distinct properties arising in the nanometer size regime, which can be tailored easily by tuning predominantly their size and shape. During the past few decades, scientists are engaged in developing new synthetic methodologies for the synthesis of metal nanoparticles which can be divided into two broad categories: i) top-down approach, utilizing physical methods and ii) bottom-up approach, employing chemical methods. As the chemical methods offer better control over particle size, numerous chemical methods have been developed to obtain metal nanoparticles with narrow size distribution. However, these two approaches have their own merits and demerits; they are not complementary to each other and also not sustainable for real time applications. Recent focus on the synthesis of metal nanoparticles is towards the development of green and sustainable synthetic methodologies. A solid state route is an exciting prospect in this direction because it eliminates usage of organic solvents thus, makes the overall process green and at the same time leads to the realization of large quantity of the materials, which is required for many applications. However, the major obstacle associated with the development of a solid state synthetic route is the lack of fundamental understanding regarding the formation mechanism of the nanoparticles in the solid state. Additionally, due to the heterogeneity present in the solid mixture, it is very difficult to ensure the proximity between the capping agent and nuclei which plays the most decisive role in the growth process. Recently, employment of amine–borane compounds as reducing agents emerged as a better prospect towards the development of sustainable synthetic routes for metal nanoparticles because they offer a variety of advantages over the traditional borohydrides. Being soluble in organic medium, amine– borane allows the reaction to be carried out in a single phase and due to its mild reducing ability a much better control over the nucleation and growth processes is realized. However, the most exciting feature of these compounds is that their reducing ability is not only limited to the solution state, they can also bring out the reduction of metal ions in the solid state. With the availability of a variety of amine–boranes of varying reducing ability, it opens up a possibility to modulate the nanostructure in both solid and solution states by a judicious choice of reducing agent. Although our current understanding regarding the growth behavior of nanoparticles has advanced remarkably, however, most often it is some classical model which is invoked to understand these processes. With the recent developments in in situ transmission electron microscopy techniques, it is now possible to unravel more complex growth trajectories of nanoparticles. These studies not only expand the scope of the present knowledge but also opens up possibilities for many future developments. Objectives • To develop an atom economy solid state synthetic methodology for the synthesis of metal nanoparticles employing amine–boranes as reducing agents. • To gain a mechanistic insight into the formation mechanisms of nanoparticles in the solid state by using amine–boranes with differing reducing ability. • Synthesis of bimetallic nanoparticles as well as supported metal nanoparticles in the solid state using ammonia borane as the reducing agent. • To develop a new in situ seeding growth methodology for the synthesis of core@shell nanoparticles composed of noble metals by employing a very weak reducing agent, trimethylamine borane and their transformation to their thermodynamically stable alloy counterparts. • Synthesis of highly monodisperse ultra-small colloidal calcium nanoparticles with different capping agents such as hexadecylamine, octadecylamine, poly(vinylpyrrolidone) and a combination of hexadecylamine/poly(vinylpyrrolidone) using the solvated metal atom dispersion (SMAD) method. To study the coalescence behavior of a pair of calcium nanoparticles under an electron beam by employing in situ TEM technique. Significant results An atom economy solid state synthetic route has been developed for the synthesis of metal nanoparticles from simple metal salts using amine–boranes as reducing agents. Amine–borane plays a dual role here: acts as a reducing agent thus brings out the reduction of metal ions and decomposes simultaneously to generate B-N based compounds which acts as a capping agent to stabilize the particles in the nanosize regime. This essentially minimizes the number of reagents used and hence simplifying and eliminating the purification procedures and thus, brings out an atom economy to the overall process. Additionally, as the reactions were carried out in the solid state, it eliminates use of organic solvents which have many adverse effects on the environment, thus makes the synthetic route, green. The particle size and the size distribution were tuned by employing amine–boranes with differing reducing abilities. Three different amine–boranes have been employed: ammonia borane (AB), dimethylamine borane (DMAB), and trimethylamine borane (TMAB) whose reducing ability varies as AB > DMAB >> TMAB. It was found that in case of AB, it is the polyborazylene or BNHx polymer whereas, in case of DMAB and TMAB, the complexing amines act as the stabilizing agents. Several controlled studies also showed that the rate of addition of metal salt to AB is the crucial step and has a profound effect on the particle size as well as the size distribution. It was also found that an optimum ratio of amine–borane to metal salt is important to realize the smallest possible size with narrowest size distribution. Whereas, use of AB and TMAB resulted in the smallest sized particles with best size distribution, usage of DMAB provided larger particles that are also polydisperse in nature. Based on several experiments along with available data, the formation mechanism of metal nanoparticles in the solid state has been proposed. Highly monodisperse Cu, Ag, Au, Pd, and Ir nanoparticles were realized using the solid state route described herein. The solid state route was extended to the synthesis of bimetallic nanoparticles as well as supported metal nanoparticles. Employment of metal nitrate as the metal precursor and ammonia borane as the reducing agent resulted in highly exothermic reaction. The heat evolved in this reaction was exploited successfully towards mixing of the constituent elements thus allowing the alloy formation to occur at much lower temperature (60 oC) compared to the traditional solid state metallurgical methods (temperature used in these cases are > 1000 oC). Synthesis of highly monodisperse 2-3 nm Cu/Au and 5-8 nm Cu/Ag nanoparticles were demonstrated herein. Alumina and silica supported Pt and Pd nanoparticles have also been prepared. Use of ammonia borane as the reducing agent in the solid state brought out the reduction of metal ions to metal nanoparticles and the simultaneous generation of BNHx polymer which encapsulates the metal (Pt and Pd) nanoparticles supported on support materials. Treatment of these materials with methanol resulted in the solvolysis of BNHx polymer and its complete removal to finally provide metal nanoparticles on the support materials. An in situ seeding growth methodology for the synthesis of bimetallic nanoparticles with core@shell architecture composed of noble metals has been developed using trimethylamine borane (TMAB) as the reducing agent. The key idea of this synthetic procedure is that, TMAB being a weak reducing agent is able to differentiate the smallest possible window of reduction potential and hence reduces the metal ions sequentially. A dramatic solvent effect was noted in the preparation of Ag nanoparticles: Ag nanoparticles were obtained at room temperature when dry THF was used as the solvent whereas, reflux condition was required to realize the same using wet THF as the solvent. However, no such behavior was noted in the preparation of Au and Pd nanoparticles wherein Au and Pd nanoparticles were obtained at room temperature and reflux conditions, respectively. This difference in reduction behavior was successfully exploited to synthesize Au@Ag, Ag@Au, and Ag@Pd nanoparticles. All these core@shell nanoparticles were further transformed to their alloy counterparts under very mild conditions reported to date. Highly monodisperse, ultrasmall, colloidal Ca nanoparticles with a size regime of 2-4 nm were synthesized using solvated metal atom dispersion (SMAD) method and digestive ripening technique. Hexadecylamine (HDA) was used as the stabilizing agent in this case. Employment of capping agent with a longer chain length, octadecylamine afforded even smaller sized particles. However, when poly(vinylpyrrolidone) (PVP), a branched chain polymer was used as the capping agent, agglomerated particles were realized together with small particles of 3-6 nm. Use of a combination of PVP and HDA resulted in spherical particles of 2-3 nm size with narrow size distribution. Growth of Ca nanoparticles via colaesence mechanism was observed under an electron beam. Employing in situ transmission electron microscopy technique, real time coalescence between a pair of Ca nanoparticles were detected and details of coalescence steps were analyzed.

Page generated in 0.1041 seconds