• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 20
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 54
  • 54
  • 19
  • 15
  • 15
  • 12
  • 11
  • 10
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Performance Evaluation of Epoxy-Coated Reinforcing Steel and Corrosion Inhibitors in a Simulated Concrete Pore Water Solution

Pyc, Wioleta A. 14 February 1998 (has links)
Three epoxy-coated reinforcing steel (ECR) types removed from job sites, one shipped directly from the coater's plant, three commercial corrosion inhibitors, and one ECR plus a corrosion inhibitor were evaluated as reinforcing steel corrosion protection systems against chloride induced corrosion. The three corrosion inhibitors were calcium nitrite, an aqueous mixture of esters and amines, and a mixture of alcohol and amine. The ECR was tested in two groups, 0% and 1% coating damage. Corrosion protection performance was evaluated by the amount of visually observed blister surface area, for the ECR, and corroded surface area, for the tested corrosion inhibitors. Results of the ECR testing demonstrated that coating debondment and corrosion of ECR is directly related to the amount of damage present in the coating, as well as coating thickness. For the bare steel tested with and without corrosion inhibitors, the results showed that corrosion increases with increasing chloride concentrations. Corrosion inhibition characteristics were demonstrated only by the calcium nitrite corrosion inhibitor. A corrosion protection evaluation test was developed for concrete corrosion inhibitor admixtures. The test solution is a simulated concrete pore water. Corrosion is accelerated by evaluating the temperature to field conditions of 40 C. The test consists of a 7 day pretreatment period followed by a 90 day test period. The corrosive sodium chloride is added to the solution containing the bare or epoxy-coated reinforcing steel specimens after the 7 day pretreatment period. In addition, the solution is periodically saturated with oxygen. / Master of Science
22

Avaliação do desempenho de revestimentos híbridos modificados com inibidores no combate à corrosão de ligas de alumínio. / Performance evaluation of modified hybrid coatings with inhibitors to combat corrosion of aluminum alloys.

Oliveira, Elton Inacio de 12 December 2014 (has links)
Tratamentos de metais contra a corrosão usando formulações contendo derivados de cromo hexavalente (Cr6+) tem sido padrão na indústria de tratamento de superfície durante muitas décadas. Esses tratamentos oferecem excelente proteção contra a corrosão, fornecem boa base para pinturas, são baratos e relativamente fáceis de aplicar. Além do mais oferecem proteção ativa ao substrato devido à capacidade de autorregeneração. Porém, restrições ambientais e de saúde, tornadas mais severas a partir das últimas décadas, requerem a substituição destes tratamentos por processos que sejam ambientalmente corretos e não agressivos à saúde humana. Neste contexto, a indústria aeroespacial, amplamente dependente de ligas de alumínio com elevada resistência mecânica para a construção das aeronaves, é uma das mais atingidas, visto que várias das etapas do tratamento superficial e dos processos de proteção contra a corrosão destas ligas utilizam compostos de Cr6+. Dentro dessa nova realidade, a utilização de revestimentos híbridos derivados de silanos, obtidos pelo processo sol-gel, tem se apresentado como uma das alternativas mais investigadas para a substituição dos pré-tratamentos à base de cromato. Estes revestimentos formam uma cadeia polimérica compacta sobre a superfície do metal constituindo uma barreira efetiva contra espécies agressivas, podendo também ser funcionalizados para apresentarem compatibilidade com revestimentos orgânicos. Entretanto os mesmos não exibem proteção ativa contra a corrosão. Nesse trabalho o comportamento anticorrosivo, em solução de NaCl 0,1 M, de um revestimento híbrido produzido pela hidrólise e condensação do 3-glicidóxipropiltrimetóxisilano (GPTMS) e do tetraetil ortosilicato (TEOS) aplicado sobre a liga AA2024-T3 foi investigado por espectroscopia de impedância eletroquímica (EIS) e analisado por SEM/EDX. Com a finalidade de melhorar o desempenho dos revestimentos, as soluções de hidrólise foram modificadas pela introdução de 0,005 M de inibidores de corrosão derivados de triazol (benzotriazol (BTAH) e toliltriazol (TTA)) ou de organofosfonatos (ácido trimetileno fosfônico (ATMP) e ácido 1-hidróxietileno 1,1-difosfônico (HEDP)). Os resultados dos ensaios eletroquímicos mostraram que, apesar de eficientes para a proteção contra a corrosão da liga, o BTAH e o TTA interferem negativamente nas propriedades anticorrosivas do revestimento híbrido. Por sua vez, a modificação do híbrido com o ATMP ou HEDP melhorou a resposta de impedância do revestimento e aumentou sua estabilidade, se mostrando como um enfoque promissor para aumentar o desempenho do revestimento. A espectroscopia por emissão de fotoelétrons (XPS) e a espectroscopia Raman foram utilizadas para caracterizar o híbrido modificado com os organofosfonatos. Através da primeira técnica foi possível evidenciar a interação das moléculas de inibidor com a superfície metálica. Já os resultados de espectroscopia Raman indicaram a incorporação dos inibidores no revestimento, tendo sido mais eficaz para esta finalidade que as análises por XPS. Entretanto, para evidenciar esse processo, foi necessário aumentar a concentração dos inibidores em 10 vezes com relação à quantidade empregada nos ensaios eletroquímicos. / Anticorrosion metals treatments using formulations containing derivatives of hexavalent chromium (Cr6+) have been standard in the surface treatment industry for many decades. These treatments afford excellent corrosion protection, offer good base for paintings, are inexpensive and relatively easy to apply. Besides, they provide active protection to the substrate due to their selfhealing abilities. However, environmental and health restrictions, made more severe from the end of the eighties, require replacement of these treatments by processes that are environmentally friendly and not aggressive to human health. In this context, the aerospace industry, which is strongly dependent on high strength aluminium alloys, is one of the most heavily affected, as (Cr6+) compounds are used in several steps of the surface treatment and corrosion protection processes. Within this new reality, the use of hybrid coatings derived from silanes and obtained by the sol-gel process, has emerged as one of the most investigated alternatives to replace the chromate based pre-treatments. These coatings form a compact polymer network on the metal surface providing an effective barrier against aggressive species, they may also be tailored to present compatibility with organic coatings. However they do not exhibit active corrosion protection. In this study the corrosion behavior, in 0.1 M NaCl, of a hybrid coating produced by hydrolysis and condensation of 3glycidoxypropyltrimethoxysilane (GPTMS) and tetraethyl orthosilicate (TEOS) applied on AA2024-T3 alloy was investigated by means of electrochemical impedance spectroscopy (EIS) and analysed by SEM/EDX. Aiming to improve the coatings performances, the hydrolysis solutions were modified by the addition of 0.005 M of triazoles (benzotriazole (BTAH) and tolyltriazole (TTA)) or organophosphates (trimethylene phosphonic acid (ATMP) and 1hydroxyethylidene-1 1-diphosphonic acid (HEDP)) based corrosion inhibitors. The results of the electrochemical tests showed that, although effective for corrosion protection of the alloy, BTAH and TTA adversely impacted the anticorrosive properties of the hybrid coating. In turn, the modification of the hybrid with ATMP or HEDP improved the impedance response of the coating and increased its stability, proving to be a promising approach to enhance the coating performance. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were used to characterize the hybrid modified with organophosphates. With the first technique it was possible to demonstrate the interaction of the inhibitor molecules with the metal surface. Raman spectroscopy results indicated the incorporation of the inhibitors in the coating, being more effective for this purpose than the XPS analysis. However, to demonstrate this process, it was necessary use the concentration of the inhibitors 10 times more than the amount employed in the electrochemical tests.
23

Caracteriza??o e aplica??o de sistemas micelares e microemulsionados como inibidores de corros?o

Roberto, Erileide Cavalcanti 12 July 2010 (has links)
Made available in DSpace on 2014-12-17T15:41:49Z (GMT). No. of bitstreams: 1 ErileideCR_DISSERT.pdf: 2520187 bytes, checksum: cbaac2eaf2812c34709374f87564cb10 (MD5) Previous issue date: 2010-07-12 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Corrosion is an important phenomenon that frequently occurs in the oil industry, causing surface ablation, such as it happens on the internal surfaces of oil pipes. This work aims to obtain new systems to reduce this specific problem. The surfactants SDS, CTAB, and UNITOL L90 (in micellar and microemulsionated systems) were used as corrosion inhibitors. The systems were obtained using a C/S ratio of 2, butanol as cosorfactant, kerosene as oil phase and, as water phase, NaCl solutions of 0.5M with pH = 2, 4, and 7. Microemulsion regions were found both for direct and inverse micelles. SDS had the higher microemulsion region and the area was not dependent of pH. The study of micellization of these surfactans in the liquid-gas interface was carried out via the determination of CMC from surface tension measurements. Regarding microemulsionated systems, in the case of CTAB, CMC increased when pH was increased, being constant for SDS and UNITOL L90. Concerning micellar systems, increase in pH caused decrease and increase in CMC for SDC and CTAB, respectively. In the case of UNITOL L90, CMC was practically constant, but increased for pH = 4. The microemulsionated systems presented higher CMC values, except for UNITOL L90 L90. The negative values of free energy of micellization indicated that the process of adsorption was spontaneous. The results also indicated that, comparing microemulsionated to systems, adsorption was less spontaneous in the case of SDS and CTAB, while it did not change for UNITOL L90. SAXS experiments indicated that micelle geometry was spherical, existing also as halter and flat micelles, resuting in a better inght on the adsorption at the liquid-solid interface. Efficiency of corrosion inhibition as determined by electrochemical measurements, from corrosion currents calculated from Tafel extrapolation indicuting heat showed surfactants to be efficient even at low concentrations. Equilibrium isotherm data were fitted to the Freundlich model, indicating that surfactant adsorption occurs in the form of multilayers / A corros?o ? um fen?meno presente em diversos seguimentos da ind?stria do petr?leo, causando desgastes em superf?cies de equipamentos met?licas, como exemplo a corros?o interna nos oleodutos. Este trabalho visa obter novos sistemas qu?micos para diminuir tal problema. Os tensoativos utilizados como inibidores de corros?o foram o SDS, CTAB e UNITOL L90 em sistemas micelares e microemulsionados. Para obten??o dos sistemas microemulsionados utilizou-se uma raz?o C/T=2, butanol como cotensoativo, querosene como fase ?leo e como fase aquosa utilizou-se solu??es de NaCl 0,5M nos pH s 2, 4 e 7. As regi?es de microemuls?o encontradas para os tr?s tensoativos s?o formadas por micelas diretas e inversas. A ?rea se mant?m constante com a varia??o do pH, o SDS tem maior regi?o de microemuls?o. O estudo da miceliza??o destes tensoativos na interface l?quido-g?s foi realizado a partir de medidas de tens?o superficial obtendo os valores de c.m.c, os quais foram particamente constantes para os sistemas microemulsionados com os tensoativos SDS e UNITOL L90 L90, e aumentaram para o CTAB quando elevou-se o pH. Os valores de c.m.c para os sistemas micelares com os tensoativos SDS e CTAB diminu?ram e aumentaram, respectivamente, quando aumentou-se o pH. J? o UNITOL L90 apresentou valores praticamente constantes, por?m foi maior em pH 4. Os sistemas microemulsionados apresentaram valores de c.m.c maiores, exceto para o tensoativo UNITOL L90. Os valores negativos de energia livre de miceliza??o indicaram que o porcesso de adsor??o ? espont?neo. Os resultados mostraram que os sistemas microemulsionados para os tensoativos SDS e CTAB foram menos espont?neos comparados ao sistema micelar, enquanto o UNITOL L90 apresentou valores praticamente constantes. Experimentos com SAXS mostraram que as geometrias das micelas foram esf?ricas, existindo ainda na forma de halteres ou de micelas achatadas, o que facilitou a compreens?o do estudo de adsor??o na interface l?quido-s?lido. As efici?ncias de inibi??o ? corros?o foram determinadas mediante medidas eletroqu?micas, a partir das correntes de corros?o encontradas atrav?s da extrapola??o de Tafel. Os tensoativos estudados se mostraram eficientes mesmo em baixas concentra??es. Os dados experimentais de ajustaram ao modelo da isoterma de Freundlich, indicando que a adsor??o dos tensoativos ocorre em multicamadas
24

Avaliação do desempenho de revestimentos híbridos modificados com inibidores no combate à corrosão de ligas de alumínio. / Performance evaluation of modified hybrid coatings with inhibitors to combat corrosion of aluminum alloys.

Elton Inacio de Oliveira 12 December 2014 (has links)
Tratamentos de metais contra a corrosão usando formulações contendo derivados de cromo hexavalente (Cr6+) tem sido padrão na indústria de tratamento de superfície durante muitas décadas. Esses tratamentos oferecem excelente proteção contra a corrosão, fornecem boa base para pinturas, são baratos e relativamente fáceis de aplicar. Além do mais oferecem proteção ativa ao substrato devido à capacidade de autorregeneração. Porém, restrições ambientais e de saúde, tornadas mais severas a partir das últimas décadas, requerem a substituição destes tratamentos por processos que sejam ambientalmente corretos e não agressivos à saúde humana. Neste contexto, a indústria aeroespacial, amplamente dependente de ligas de alumínio com elevada resistência mecânica para a construção das aeronaves, é uma das mais atingidas, visto que várias das etapas do tratamento superficial e dos processos de proteção contra a corrosão destas ligas utilizam compostos de Cr6+. Dentro dessa nova realidade, a utilização de revestimentos híbridos derivados de silanos, obtidos pelo processo sol-gel, tem se apresentado como uma das alternativas mais investigadas para a substituição dos pré-tratamentos à base de cromato. Estes revestimentos formam uma cadeia polimérica compacta sobre a superfície do metal constituindo uma barreira efetiva contra espécies agressivas, podendo também ser funcionalizados para apresentarem compatibilidade com revestimentos orgânicos. Entretanto os mesmos não exibem proteção ativa contra a corrosão. Nesse trabalho o comportamento anticorrosivo, em solução de NaCl 0,1 M, de um revestimento híbrido produzido pela hidrólise e condensação do 3-glicidóxipropiltrimetóxisilano (GPTMS) e do tetraetil ortosilicato (TEOS) aplicado sobre a liga AA2024-T3 foi investigado por espectroscopia de impedância eletroquímica (EIS) e analisado por SEM/EDX. Com a finalidade de melhorar o desempenho dos revestimentos, as soluções de hidrólise foram modificadas pela introdução de 0,005 M de inibidores de corrosão derivados de triazol (benzotriazol (BTAH) e toliltriazol (TTA)) ou de organofosfonatos (ácido trimetileno fosfônico (ATMP) e ácido 1-hidróxietileno 1,1-difosfônico (HEDP)). Os resultados dos ensaios eletroquímicos mostraram que, apesar de eficientes para a proteção contra a corrosão da liga, o BTAH e o TTA interferem negativamente nas propriedades anticorrosivas do revestimento híbrido. Por sua vez, a modificação do híbrido com o ATMP ou HEDP melhorou a resposta de impedância do revestimento e aumentou sua estabilidade, se mostrando como um enfoque promissor para aumentar o desempenho do revestimento. A espectroscopia por emissão de fotoelétrons (XPS) e a espectroscopia Raman foram utilizadas para caracterizar o híbrido modificado com os organofosfonatos. Através da primeira técnica foi possível evidenciar a interação das moléculas de inibidor com a superfície metálica. Já os resultados de espectroscopia Raman indicaram a incorporação dos inibidores no revestimento, tendo sido mais eficaz para esta finalidade que as análises por XPS. Entretanto, para evidenciar esse processo, foi necessário aumentar a concentração dos inibidores em 10 vezes com relação à quantidade empregada nos ensaios eletroquímicos. / Anticorrosion metals treatments using formulations containing derivatives of hexavalent chromium (Cr6+) have been standard in the surface treatment industry for many decades. These treatments afford excellent corrosion protection, offer good base for paintings, are inexpensive and relatively easy to apply. Besides, they provide active protection to the substrate due to their selfhealing abilities. However, environmental and health restrictions, made more severe from the end of the eighties, require replacement of these treatments by processes that are environmentally friendly and not aggressive to human health. In this context, the aerospace industry, which is strongly dependent on high strength aluminium alloys, is one of the most heavily affected, as (Cr6+) compounds are used in several steps of the surface treatment and corrosion protection processes. Within this new reality, the use of hybrid coatings derived from silanes and obtained by the sol-gel process, has emerged as one of the most investigated alternatives to replace the chromate based pre-treatments. These coatings form a compact polymer network on the metal surface providing an effective barrier against aggressive species, they may also be tailored to present compatibility with organic coatings. However they do not exhibit active corrosion protection. In this study the corrosion behavior, in 0.1 M NaCl, of a hybrid coating produced by hydrolysis and condensation of 3glycidoxypropyltrimethoxysilane (GPTMS) and tetraethyl orthosilicate (TEOS) applied on AA2024-T3 alloy was investigated by means of electrochemical impedance spectroscopy (EIS) and analysed by SEM/EDX. Aiming to improve the coatings performances, the hydrolysis solutions were modified by the addition of 0.005 M of triazoles (benzotriazole (BTAH) and tolyltriazole (TTA)) or organophosphates (trimethylene phosphonic acid (ATMP) and 1hydroxyethylidene-1 1-diphosphonic acid (HEDP)) based corrosion inhibitors. The results of the electrochemical tests showed that, although effective for corrosion protection of the alloy, BTAH and TTA adversely impacted the anticorrosive properties of the hybrid coating. In turn, the modification of the hybrid with ATMP or HEDP improved the impedance response of the coating and increased its stability, proving to be a promising approach to enhance the coating performance. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were used to characterize the hybrid modified with organophosphates. With the first technique it was possible to demonstrate the interaction of the inhibitor molecules with the metal surface. Raman spectroscopy results indicated the incorporation of the inhibitors in the coating, being more effective for this purpose than the XPS analysis. However, to demonstrate this process, it was necessary use the concentration of the inhibitors 10 times more than the amount employed in the electrochemical tests.
25

Étude de l'effet des alcaloïdes de deux espèces d'arbres guyanaises (Xylopia) sur la corrosion de l'acier C38 en milieu hydrochlorydrique 1M : études électrochimiques et phytochimiques / Study of the effect of alkaloids of two Guyanese tree species (Xylopia) on corrosion of C38 steel in 1M hydrochloric medium : Electrochemical and phytochemical studies

Chevalier, Maxime 17 December 2015 (has links)
De nos jours, dans le domaine de l’inhibition de la corrosion, la recherche et le développement de molécules plus environnementales est de plus en plus importante. C’est dans cet optique que le laboratoire L3MA poursuit ses travaux sur la recherche de molécules naturelles capable d’agir en tant qu’inhibiteur de corrosion.Ce travail de thèse porte sur l’inhibition de la corrosion de l’acier C38 en milieu acide HCl 1M par les extraits alcaloïdiques de deux plantes : Xylopia frutescens et Xylopia cayennensis. Ces molécules considérées comme respectueuses de l’environnement peuvent être utilisées en tant qu’inhibiteur de corrosion temporaire de l’acier C38 avec des taux d’inhibition supérieurs à 90%. Pour chaque plante, les travaux sont consacrés premièrement à l’étude de son extrait alcaloïdique total en tant qu’inhibiteur de corrosion à l’aide de techniques telles que les courbes de polarisation et la spectroscopie d’impédance. Dans un second temps, le fractionnement de cet extrait alcaloïdique total et l’isolement de certains composés actifs permettront de déterminer les structures de certains alcaloïdes actifs en tant qu’inhibiteur de corrosion, et d’en comprendre le mode d’action et les types d’adsorptions. / Today, the research and development of ecofriendly biosourced inhibitor have gained a great interest. The laboratory L3MA is involved in the research and characterization of alkaloids isolated from plants growing wild in Guyana as corrosion inhibitor.The present work continues to focus on the broadening application of plant extracts for metallic corrosion control and reports on the inhibiting effect of alkaloidic extract from two plants: Xylopia frutescens and Xylopia cayennensis. The molecules used are considered like ecofriendly and can be used as corrosion inhibitor of C38 steel. More than 90% of efficiency was obtained. The same workflow was used for each plant: firstly the study of the total alkaloidic extract with polarization curves and electrochemical impedance spectroscopy. In second time, the alkaloidic extract is chromatographied and the main composants are isolated and identified. These main components are tested as corrosion inhibitor, to determine the mode of action and the adsorptions’ forms. XPS and SEM studies confirmed that the plants alkaloidics extracts and the main composants are strongly adsorbed onto the steel surface.
26

Étude de l'effet des alcaloïdes sur la corrosoion de l'acier C38 en milieu acide chlorhydrique 1M : application à Aspidosperma album et Geissospermum laeve (Apocynacées) / Corrosion studies of C38 steel by alkaloids extracts in 1M hydrocloric acid medium : apply to aspidosperma album and geissospermum laeve (Apocynaceae)

Faustin, Milcard 18 January 2013 (has links)
Ce travail porte sur l'inhibition de l'acier C38 en milieu acide HC1 1M par les extraits alcaloïdes issus de 2 plantes : aspidosperma album et geissospermum laeve. Biodégradables et respectueux de l'environnement, les alcaloïdes pourraient être utilisés temporairement pour prévenir la corrosion de l'acier C39 avec des taux d'inhibition supérieurs à ceux décrits dans la littérature. Dans la première partie du travail, l'influence de la concentration, du temps d'immersion et de la température sur le processus de corrosion de l'acier C38 en milieu HC1 1M en absence de polarisation et spectroscopie d'impédance électrochimique. Les analyses de surface effectuées par microscopie électronique a balayage montrent la présence d'une couche constituée d'un mélange d'oxyde de fer incorporant les alcaloïdes et qui conduit à la diminution de la vitesse de corrosion. La deuxième partie de ce travail a été consacrée à l'isolement des alcaloïdes des deux extraits afin de déterminer le ou les alcaloïdes responsables de l'activité inhibitrice et ainsi remonter aux mécanismes d’adsorption. Il a été montré que l'alcaloïde majoritaire des extraits est responsable de l'inhibition / This work is devoted to the corrosion inhibition of C38 steel in 1M HCL acid medium by alkaloids extracts from two plants : aspidosperma album and geissospermum laeve. Biodegradable and environmentally friendly, alkaloids could be used temporarily to prevent the corrosion of C38 steel with inhibition rates higher than those described in the literature. The first part of this work studies the influence of concentration, immersion time and temperature on the corrosion inhibitor by electrochemical measurements : polarization curves and electrochemical impedance spectroscopy. The surface analyses conducted by scanning electron microscopy showed the presence of a layer composed of an iron oxide mixture incorporating alkaloids extracts and which leads to the decrease of the corrosion rate. The second part of this work was devoted to the isolation of alkaloids of two extracts in order to determine the alkaloids responsible of the inhibitory activity and thus to determine the adsorption mechanisms. It was showed that the major alkaloids of two extracts is responsible of the inhibition activity
27

Progresivní bednící systém s protikorozní ochrannou funkcí / Progressive cladding system with corrosion protection function

Marek, Martin January 2020 (has links)
Corrosion of reinforcement in reinforced concrete is a huge problem. Corrosion of reinforcement has a great effect on the service life of reinforced concrete structures. The subject of this work is to verify the inhibitors properties and their efficiency using physical and electrochemical methods. The aim of this work is the design of formwork panels with corrosion protection. The formwork panels are on different material basis. Corrosion protection is ensured by the use of migration corrosion inhibitors.
28

In-plant And Distribution System Corrosion Control For Reverse Osmosis, Nanofiltration, And Anion Exchange Process Blends

Jeffery, Samantha 01 January 2013 (has links)
The integration of advanced technologies into existing water treatment facilities (WTFs) can improve and enhance water quality; however, these same modifications or improvements may adversely affect finished water provided to the consumer by public water systems (PWSs) that embrace these advanced technologies. Process modification or improvements may unintentionally impact compliance with the provisions of the United States Environmental Protection Agency’s (USEPA’s) Safe Drinking Water Act (SDWA). This is especially true with respect to corrosion control, since minor changes in water quality can affect metal release. Changes in metal release can have a direct impact on a water purveyor’s compliance with the SDWA’s Lead and Copper Rule (LCR). In 2010, the Town of Jupiter (Town) decommissioned its ageing lime softening (LS) plant and integrated a nanofiltration (NF) plant into their WTF. The removal of the LS process subsequently decreased the pH in the existing reverse osmosis (RO) clearwell, leaving only RO permeate and anion exchange (AX) effluent to blend. The Town believed that the RO-AX blend was corrosive in nature and that blending with NF permeate would alleviate their concern. Consequently, a portion of the NF permeate stream was to be split between the existing RO-AX clearwell and a newly constructed NF primary clearwell. The Town requested that the University of Central Florida (UCF) conduct research evaluating how to mitigate negative impacts that may result from changing water quality, should the Town place its AX into ready-reserve. iv The research presented in this document was focused on the evaluation of corrosion control alternatives for the Town, and was segmented into two major components: 1. The first component of the research studied internal corrosion within the existing RO clearwell and appurtenances of the Town’s WTF, should the Town place the AX process on standby. Research related to WTF in-plant corrosion control focused on blending NF and RO permeate, forming a new intermediate blend, and pH-adjusting the resulting mixture to reduce corrosion in the RO clearwell. 2. The second component was implemented with respect to the Town’s potable water distribution system. The distribution system corrosion control research evaluated various phosphate-based corrosion inhibitors to determine their effectiveness in reducing mild steel, lead and copper release in order to maintain the Town’s continual compliance with the LCR. The primary objective of the in-plant corrosion control research was to determine the appropriate ratio of RO to NF permeate and the pH necessary to reduce corrosion in the RO clearwell. In this research, the Langelier saturation index (LSI) was the corrosion index used to evaluate the stability of RO:NF blends. Results indicated that a pH-adjusted blend consisting of 70% RO and 30% NF permeate at 8.8-8.9 pH units would produce an LSI of +0.1, theoretically protecting the RO clearwell from corrosion. The primary objective of the distribution system corrosion control component of the research was to identify a corrosion control inhibitor that would further reduce lead and v copper metal release observed in the Town’s distribution system to below their respective action limits (ALs) as defined in the LCR. Six alternative inhibitors composed of various orthophosphate and polyphosphate (ortho:poly) ratios were evaluated sequentially using a corrosion control test apparatus. The apparatus was designed to house mild steel, lead and copper coupons used for weight loss analysis, as well as mild steel, lead solder and copper electrodes used for linear polarization analysis. One side of the apparatus, referred to as the “control condition,” was fed potable water that did not contain the corrosion inhibitor, while the other side of the corrosion apparatus, termed the “test condition,” was fed potable water that had been dosed with a corrosion inhibitor. Corrosion rate measurements were taken twice per weekday, and water quality was measured twice per week. Inhibitor evaluations were conducted over a span of 55 to 56 days, varying with each inhibitor. Coupons and electrodes were pre-corroded to simulate existing distribution system conditions. Water flow to the apparatus was controlled with an on/off timer to represent variations in the system and homes. Inhibitor comparisons were made based on their effectiveness at reducing lead and copper release after chemical addition. Based on the results obtained from the assessment of corrosion inhibitors for distribution system corrosion control, it appears that Inhibitors 1 and 3 were more successful in reducing lead corrosion rates, and each of these inhibitors reduced copper corrosion rates. Also, it is recommended that consideration be given to use of a redundant single-loop duplicate test apparatus in lieu of a double rack corrosion control test apparatus in experiments where pre-corrosion phases are vi implemented. This recommendation is offered because statistically, the control versus test double loop may not provide relevance in data analysis. The use of the Wilcoxon signed ranks test comparing the initial pre-corroding phase to the inhibitor effectiveness phase has proven to be a more useful analytical method for corrosion studies.
29

Impact Of Zinc Orthophosphate Inhibitor On Distribution System Water Quality

Guan, Xiaotao 01 January 2007 (has links)
This dissertation consists of four papers concerning impacts of zinc orthophosphate (ZOP) inhibitor on iron, copper and lead release in a changing water quality environment. The mechanism of zinc orthophosphate corrosion inhibition in drinking water municipal and home distribution systems and the role of zinc were investigated. Fourteen pilot distribution systems (PDSs) which were identical and consisted of increments of PVC, lined cast iron, unlined cast iron and galvanized steel pipes were used in this study. Changing quarterly blends of finished ground, surface and desalinated waters were fed into the pilot distribution systems over a one year period. Zinc orthophosphate inhibitor at three different doses was applied to three PDSs. Water quality and iron, copper and lead scale formation was monitored for the one year study duration. The first article describes the effects of zinc orthophosphate (ZOP) corrosion inhibitor on surface characteristics of iron corrosion products in a changing water quality environment. Surface compositions of iron surface scales for iron and galvanized steel coupons incubated in different blended waters in the presence of ZOP inhibitor were investigated using X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM) / Energy Dispersive X-ray Spectroscopy (EDS). Based on surface characterization, predictive equilibrium models were developed to describe the controlling solid phase and mechanism of ZOP inhibition and the role of zinc for iron release. The second article describes the effects of zinc orthophosphate (ZOP) corrosion inhibitor on total iron release in a changing water quality environment. Development of empirical models as a function of water quality and ZOP inhibitor dose for total iron release and mass balances analysis for total zinc and total phosphorus data provided insight into the mechanism of ZOP corrosion inhibition regarding iron release in drinking water distribution systems. The third article describes the effects of zinc orthophosphate (ZOP) corrosion inhibitor on total copper release in a changing water quality environment. Empirical model development was undertaken for prediction of total copper release as a function of water quality and inhibitor dose. Thermodynamic models for dissolved copper based on surface characterization of scale that were generated on copper coupons exposed to ZOP inhibitor were also developed. Surface composition was determined by X-ray Photoelectron Spectroscopy (XPS). The fourth article describes the effects of zinc orthophosphate (ZOP) corrosion inhibitor on total lead release in a changing water quality environment. Surface characterization of lead scale on coupons exposed to ZOP inhibitor by X-ray Photoelectron Spectroscopy (XPS) was utilized to identify scale composition. Development of thermodynamic model for lead release based on surface analysis results provided insight into the mechanism of ZOP inhibition and the role of zinc.
30

Effects Of Source Water Blending Following Treatment With Sodium Silicate As A Corrosion Inhibitor On Metal Release Within A Wat

Lintereur, Phillip 01 January 2008 (has links)
A study was conducted to investigate and quantify the effects of corrosion inhibitors on metal release within a pilot distribution system while varying the source water. The pilot distribution system consisted of pre-existing facilities from Taylor et al (2005). Iron, copper, and lead release data were collected during four separate phases of operation. Each phase was characterized by the particular blend ratios used during the study. A blended source water represented a water that had been derived from a consistent proportion of three different source waters. These source waters included (1) surface water treated through enhanced coagulation/sedimentation/filtration, (2) conventionally treated groundwater, and (3) finished surface water treated using reverse osmosis membranes. The corrosion inhibitors used during the study were blended orthophosphate (BOP), orthophosphate (OP), zinc orthophosphate (ZOP), and sodium silicate (Si). This document was intended to cite the findings from the study associated with corrosion treatment using various doses of sodium silicate. The doses were maintained to 3, 6, and 12 mg/L as SiO2 above the blend-dependent background silica concentration. Sources of iron release within the pilot distribution system consisted of, in the following order of entry, (1) lined cast iron, (2) un-lined cast iron, and (3) galvanized steel. Iron release data from these materials was not collected for each individual iron source. Instead, iron release data represented the measurement of iron upon exposure to the pilot distribution system in general. There was little evidence to suggest that iron release was affected by sodium silicate. Statistical modeling of iron release suggested that iron release could be described by the water quality parameters of alkalinity, chlorides, and pH. The R2 statistic implied that the model could account for only 36% of the total variation within the iron release data set (i.e. R2 = 0.36). The model implies that increases in alkalinity and pH would be expected to decrease iron release on average, while an increase in chlorides would increase iron release. The surface composition of cast iron and galvanized steel coupons were analyzed using X-ray photoelectron spectroscopy (XPS). The surface analysis located binding energies consistent with Fe2O3, Fe3O4, and FeOOH for both cast iron and galvanized steel. Elemental scans detected the presence of silicon as amorphous silica; however, there was no significant difference between scans of coupons treated with sodium silicate and coupons simply exposed to the blended source water. The predominant form of zinc found on the galvanized steel coupons was ZnO. Thermodynamic modeling of the galvanized steel system suggested that zinc release was more appropriately described by Zn5(CO3)2(OH)6. The analysis of the copper release data set suggested that treatment with sodium silicate decreased copper release during the study. On average the low, medium, and high doses decreased copper release, when compared to the original blend source water prior to sodium silicate addition, by approximately 20%, 30%, and 50%, respectively. Statistical modeling found that alkalinity, chlorides, pH, and sodium silicate dose were significant variables (R2 = 0.68). The coefficients of the model implied that increases in pH and sodium silicate dose decreased copper release, while increases in alkalinity and chlorides increased copper release. XPS for copper coupons suggested that the scale composition consisted of Cu2O, CuO, and Cu(OH)2 for both the coupons treated with sodium silicate and those exposed to the blended source water. Analysis of the silicon elemental scan detected amorphous silica on 3/5 copper coupons exposed to sodium silicate. Silicon was not detected on any of the 8 control coupons. This suggested that sodium silicate inhibitor varied the surface composition of the copper scale. The XPS results seemed to be validated by the visual differences of the copper coupons exposed to sodium silicate. Copper coupons treated with sodium silicate developed a blue-green scale, while control coupons were reddish-brown. Thermodynamic modeling was unsuccessful in identifying a controlling solid that consisted of a silicate-based cupric solid. Lead release was generally decreased when treated with sodium silicate. Many of the observations were recorded below the detection limit (1 ppb as Pb) of the instrument used to measure the lead concentration of the samples during the study. The frequency of observations below the detection limit tended to increase as the dose of sodium silicate increased. An accurate quantification of the effect of sodium silicate was complicated by the observations recorded below detection limit. If the lead concentration of a sample was below detection limit, then the observation was recorded as 1 ppb. Statistical modeling suggested that temperature, alkalinity, chlorides, pH, and sodium silicate dose were important variables associated with lead release (R2 = 0.60). The exponents of the non-linear model implied that an increase in temperature, alkalinity, and chlorides increased lead release, while an increase in pH and sodium silicate dose were associated with a decrease in lead release. XPS surface characterization of lead coupons indicated the presence of PbO, PbO2, PbCO3, and Pb3(OH)2(CO3)2. XPS also found evidence of silicate scale formation. Thermodynamic modeling did not support the possibility of a silicate-based lead controlling solid. A solubility model assuming Pb3(OH)2(CO3)2 as the controlling solid was used to evaluate lead release data from samples in which lead coupons were incubated for long stagnation times. This thermodynamic model seemed to similarly describe the lead release of samples treated with sodium silicate and samples exposed to the blended source water. The pH of each sample was similar, thus sodium silicate, rather than the corresponding increase in pH, would appear to be responsible if a difference had been observed. During the overall study, the effects of BOP, OP, ZOP, and Si corrosion inhibitors were described by empirical models. Statistically, the model represented the expected value, or mean average, function. If these models are to be used to predict a dose for copper release, then the relationship between the expected value function and the 90th percentile must be approximated. The USEPA Lead and Copper Rule (LCR) regulates total copper release at an action level of 1.3 mg/L. This action level represents a 90th percentile rather than a mean average. Evaluation of the complete copper release data set suggested that the standard deviation was proportional to the mean average of a particular treatment. This relationship was estimated using a linear model. It was found that most of the copper data sub-sets (represented by a given phase, inhibitor, and dose) could be described by a normal distribution. The information obtained from the standard deviation analysis and the normality assumption validated the use of a z-score to relate the empirical models to the estimated 90th percentile observations. Since an analysis of the normality and variance (essentially contains the same information as the standard deviation) are required to assess the assumptions associated with an ANOVA, an ANOVA was performed to directly compare the effects of the inhibitors and corresponding doses. The findings suggested that phosphate-based inhibitors were consistently more effective than sodium silicate when comparing the same treatment levels (i.e. doses). Among the phosphate-based inhibitors, the effectiveness of each respective treatment level was inconsistent (i.e. there was no clear indication that any one phosphate-based inhibitor was more effective than the other). As the doses increased for each inhibitor, the results generally suggested that there was a corresponding tendency for copper release to decrease.

Page generated in 0.4027 seconds