• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Problèmes arithmétiques relatifs à certaines familles de courbes sur les corps finis

Ritzenthaler, Christophe 25 June 2003 (has links) (PDF)
Cette thèse comporte trois parties. La première traite du groupe des automorphismes des courbes modulaires X(N), N premier, sur F_p, p différent de N. On y démontre que, pour p>3 et X(N) ordinaire, ce groupe est exactement PSL_2(Z/NZ). On traite également complètement les cas N=7,11,13. La deuxième partie concerne les courbes optimales. On y montre que N_3(5)=13 et on étudie les propriétés géométriques (groupe d'automorphismes et revêtements) d'une courbe atteignant cette borne. La dernière partie est une extension de la méthode AGM pour le calcul du nombre de points en caractéristique 2 sur une courbe de genre 3 ordinaire et non hyperelliptique. On y démontre la formule reliant les rapports de thêta constantes au produit des valeurs propres du Frobenius unités 2-adiques. On donne un algorithme pour le calcul algébrique des rapports initiaux, un bon modèle de calcul (i.e tel que les calculs s'effectuent dans une extension non ramifiée fixe de Q_2) et on montre comment retrouver le polynôme caractéristique grâce à LLL.
2

Diviseurs sur les courbes réelles

Bardet, Alexandre 05 June 2013 (has links) (PDF)
Dans un article sur les sommes de carrés, SCHEIDERER a prouvé que pour toute courbe algébrique, réelle, projective, irréductible, lisse, ayant des points réels, il existait un entier N tel que tout diviseur de degré plus grand que N soit linéairement équivalent à un diviseur dont le support est totalement réel. Ensuite HUISMAN et MONNIER ont montré que dans le cas des courbes avec beaucoup de composantes connexes, ie. celle en ayant au moins autant que le genre g, ici supposé strictement positif, de la courbe, on pouvait prendre N égal à 2g − 1. MONNIER a également abordé la question pour les cas des courbes singulières : il en a exhibé pour lesquelles un tel entier n'existait pas et d'autres pour lesquelles il existait. Dans cette thèse on étend la classe des courbes singulières pour lesquelles un tel entier existe, essentiellement des courbes avec des noeuds ou des cusps, et on arrive dans certains cas a contrôlé explicitement cet entier en fonction du genre de la courbe et du nombre de ces singularités. Pour y parvenir on utilise d'une part une " singularisation successive " et d'autre part une variante de l'invariant où l'on demande qu'en plus les points du support soient deux-à-deux distincts. Pour ce nouvel invariant, on étend tel quel les résultats sur les courbes ayant beaucoup de composantes et on traite celui des courbes de genre 2 ayant une seule composante, le " premier " cas jusqu'alors inconnu : dans ce cas la borne 3 est impossible en général, mais par contre 5 convient.
3

Nombre de points rationnels des courbes singulières sur les corps finis / Number of rational points on singular curves over finite fields

Iezzi, Annamaria 06 July 2016 (has links)
On s'intéresse, dans cette thèse, à des questions concernant le nombre maximum de points rationnels d'une courbe singulière définie sur un corps fini, sujet qui, depuis Weil, a été amplement abordé dans le cas lisse. Cette étude se déroule en deux temps. Tout d'abord on présente une construction de courbes singulières de genres et corps de base donnés, possédant un grand nombre de points rationnels : cette construction, qui repose sur des notions et outils de géométrie algébrique et d'algèbre commutative, permet de construire, en partant d'une courbe lisse X, une courbe à singularités X', de telle sorte que X soit la normalisée de X', et que les singularités ajoutées soient rationnelles sur le corps de base et de degré de singularité prescrit. Ensuite, en utilisant une approche euclidienne, on prouve une nouvelle borne sur le nombre de points fermés de degré deux d'une courbe lisse définie sur un corps fini.La combinaison de ces résultats, à priori indépendants, permet notamment d'étudier le problème de savoir quand la borne d'Aubry-Perret, analogue de la borne de Weil dans le cas singulier, est atteinte. Cela nous amène de façon naturelle à l'étude des propriétés des courbes maximales et, lorsque la cardinalité du corps de base est un carré, à l'analyse du spectre des genres de ces dernières. / In this PhD thesis, we focus on some issues about the maximum number of rational points on a singular curve defined over a finite field. This topic has been extensively discussed in the smooth case since Weil's works. We have split our study into two stages. First, we provide a construction of singular curves of prescribed genera and base field and with many rational points: such a construction, based on some notions and tools from algebraic geometry and commutative algebra, yields a method for constructing, given a smooth curve X, another curve X' with singularities, such that X is the normalization of X', and the added singularities are rational on the base field and with the prescribed singularity degree. Then, using a Euclidian approach, we prove a new bound for the number of closed points of degree two on a smooth curve defined over a finite field.Combining these two a priori independent results, we can study the following question: when is the Aubry-Perret bound (the analogue of the Weil bound in the singular case) reached? This leads naturally to the study of the properties of maximal curves and, when the cardinality of the base field is a square, to the analysis of the spectrum of their genera.

Page generated in 0.0818 seconds