111 |
Regulation of Mesenchymal Differentiation Potentials in the avian Neural Crest / Régulation du potentiel de différenciation mésenchymateux dans la crête neurale aviaireDe Faria Da Fonseca, Bárbara 03 July 2017 (has links)
La crête neurale (CN) est une structure multipotente transitoire de l'embryon de vertébrés. La CN céphalique (CNC), mais pas la CN troncale (CNT), fournit des tissus mésenchymateux (squelette, derme et tissus adipeux de la face). Cette capacité de la CNC est liée à l'absence d'expression des gènes de type Hox. Cependant, les cellules de la CNT possèdent des potentialités mésenchymateuses à l'état dormant, qui peuvent s'exprimer en culture. Les mécanismes moléculaires qui régulent les potentialités mésenchymateuses de la CN le long de l'axe antéro-postérieur restent incompris. Chez l'embryon d'oiseau, nous avons étudié l'influence des facteurs de transcription Hox et Six sur la formation du mésenchyme par la CN. D'une part, nos analyses in vivo et in vitro montrent que Six1 est présent dans des cellules mésenchymateuses de la CN et du mésoderme, suggérant un rôle dans le développement musculo-squelettique de la tête. D'autre part, nous avons testé l'hypothèse d'un rôle inhibiteur des facteurs Hox. Nos résultats montrent que l'expression ectopique de Hoxa2 dans les cellules de CNC en culture inhibe la production d'ostéoblastes, sans affecter celle des cellules nerveuses et mélanocytaires. Dans la CNT, nous avons trouvé que la différentiation osseuse, cartilagineuse et adipocytaire, est fortement réduite après la surexpression de Hoxa2, sans effet sur les autres phénotypes dérivés de la CN. Ces résultats suggèrent que les potentialités mésenchymateuses de la CN sont régulées, au moins en partie, par un mécanisme commun aux cellules de CNC et CNT, mettant en jeu une inhibition de l'activité du gène Hoxa2. / The neural crest (NC) is a transitory multipotent structure of the vertebrate embryo. The cephalic NC (CNC), not the trunk NC (TNC), gives rise to mesenchymal cell types (contributing to craniofacial skeleton, dermis and adipose tissue). This capacity of the CNC has been linked to the absence of Hox gene expression in the most rostral region of the embryo. However, TNC cells do have mesenchymal potentialities, although in a dormant state in vivo, but which can be disclosed after NC in vitro culture. The molecular mechanisms that regulate mesenchymal potentials of the NC cells along the rostral-caudal axis are still elusive. Here, we have used the avian embryo model to investigate the possible influence on NC mesenchymal fate, of Hox and Six transcription factor genes. On the one hand, in vivo and in vitro culture analyses show that Six1 gene is expressed in mesenchymal cell populations derived from both cranial NC and mesoderm, suggesting a role for Six1 in muscle-skeletal development in the head. On the other hand, we have tested the hypothesis of an inhibitory action of Hox genes on NC cell mesenchymal differentiation using NC in vitro cultures. In CNC cells, we found that ectopic expression of Hoxa2 strongly reduces the production of osteoblasts, while neural and melanocytic phenotypes are unaffected. In the cultured CNT cells, overexpression of Hoxa2 results in largely impaired differentiation into bone cells, chondrocytes and adipocytes, whereas other NC derivatives are unchanged. These results suggest that mesenchymal potentials of the CNC and TNC are controlled, at least in part, via a common mechanism that involves inhibition of Hoxa2 gene activity.
|
112 |
Elucidating the pathomechanism behind the neurocristopathy CHARGE syndromeFreese, Luisa 26 June 2017 (has links)
No description available.
|
113 |
Isolation et caractérisation des cellules souches gingivales : étude de leur potentiel multipotent / Isolation and characterization of gingival stem cells : study of their multipotent potentialFerré, François 19 December 2013 (has links)
Les capacités de cicatrisation de la gencive en font un modèle de régénération tissulaire naturelle. Ces capacités sont liées en grande partie à l’activité des fibroblastes. Composante cellulaire principale du tissu conjonctif gingival, ils sont au cœur de la régulation des réponses inflammatoires et des processus de cicatrisation. Nous avons supposé que ce tissu pouvait contenir des cellules souches, pouvant expliquer en partie, ces capacités de réparation. Au cours de cette thèse, nous avons pu mettre en évidence la présence de cellules souches mésenchymateuses aux propriétés communes avec les cellules souches adultes dérivées des crêtes neurales. Ces cellules expriment des marqueurs spécifiques des cellules souches et des crêtes neurales. Par ailleurs, elles présentent des capacités d’auto-renouvellement et de multipotence. Elles sont, en effet, capables de se différencier en adipocytes, ostéocytes et chondrocytes. Nous nous sommes plus particulièrement intéressés à la différenciation chondro/endochondrale. La culture des cellules, sous forme de sphères en suspension, a permis de mettre en évidence leurs capacités de différenciation en tissus cartilagineux et articulaires. Elles s’organisent spontanément en plusieurs types cellulaires différents, générant notamment des chondrocytes hypertrophiques et des synoviocytes selon leur localisation au sein des sphères et du milieu de culture utilisé. Le comportement de ces cellules soumises à ces conditions a permis de montrer leurs facultés à reproduire, in vitro, des processus proches de ceux retrouvés au cours du développement. Ces résultats permettent une meilleure compréhension des phénomènes de différenciation des cellules souches adultes, ouvrant ainsi de nouvelles perspectives pour des applications en thérapie cellulaire articulaire et osseuse. / The healing capacity of the gingiva makes it a model of natural tissue regeneration. These capabilities are largely related to the fibroblast activity. They are the main cellular component of the gingival connective tissue and they regulate inflammatory responses and healing process. We hypothesized that this tissue could contain stem cells, which could explain, in part, these repair capabilities. In this thesis, we were able to demonstrate the presence of mesenchymal stem cells with properties shared with the neural crest-derived adult stem cells. These cells express specific markers of stem cells and neural crest. Moreover, they do have the capacity to self-renew and multipotency. They are, indeed, able to differentiate into adipocytes, chondrocytes and osteocytes. We have particularly focused on the chondro / endochondral differentiation. When cultivated as micromasses cultures in suspension, cells were able to differentiate into cartilage and joint tissues. They organize themselves spontaneously into several different cell types, including hypertrophic chondrocytes and synoviocytes depending on their location within the micromasses and the culture medium used. The behavior of these cells under these conditions has shown their ability to replicate in vitro, close to those found during the development process. These results allow a better understanding of adult stem cells differentiation, opening new perspectives for applications in joint and bone cell therapy.
|
114 |
Caractérisation des nouveaux mécanismes au cour du développement normal et pathologique de la Crête Neurale : interaction entre SOX10 et p54NRB et rôle d'editing / Characterization of New Molecular Mechanisms Underlying Neural Crest Development and Pathologies : Interplay Between SOX10 and p54NRB and Role of EditingKavo, Anthula 30 November 2015 (has links)
Résumé non transmis / SOX10 is a transcription factor with well-known functions in neural crest and oligodendrocyte development. Mutations in SOX10 were first associated with Waardenburg-Hirschsprung disease (WS4; deafness, pigmentation defects and intestinal aganglionosis). However, variable phenotypes that extend beyond the WS4 definition are now reported. The neurological phenotypes associated with some truncating mutations are suggested to be the result of escape from the nonsense-mediated mRNA decay pathway; but, to date, no mechanism has been suggested for missense mutations, of which approximately 20 have now been reported, and about half of which are redistributed in vitro to nuclear bodies of undetermined nature and function. Here, we reported that the paraspeckle protein p54NRB, which plays a crucial role in the regulation of gene expression during many cellular processes including differentiation, and is a member of the Drosophila behavior Human Splicing (DBHS) protein family, interacts and acts synergistically with SOX10 to regulate several target genes. Interestingly, this multifunctional protein, as well as two other members of the DBHS protein family, co-localized with SOX10 mutants in nuclear bodies, suggesting the possible paraspeckle nature of these foci or re-localization of the DBHS members to other subnuclear compartments. Remarkably, the co-transfection of wild-type and mutant SOX10 constructs led to the sequestration of wild-type SOX10 in mutant-induced foci. However, only foci forming mutants exclusively found in the nucleus altered synergistic activity between SOX10 and p54NRB. We proposed that such a dominant negative effect may contribute to or be at the origin of the progressive neurological phenotype observed in affected patients.One of the roles of p54NRB is the regulation of gene expression via nuclear retention, by binding to hyperedited IRAlu sequences this protein blocks their efficient export to the cytoplasm (Zhang and Carmichael., 2001), we then decided to get into the world of editing. Editing, is a molecular mechanism characterized by the deaminase conversion of adenosines into inosines (A-to-I). In mammals, this molecular modification, is performed by a cluster of three enzymes named Adenosine deaminases acting on RNA (ADARs 1-3) (Wagner RW et al., 1989).In order to evaluate the role of ADAR1 in NC development, we decided to conditionally invalidate the expression of this enzyme using the NC specific HtPA-Cre line. Two main crossing strategies were followed, one including the Rosa26R-LacZ marker (RADR crossing) to track the NCCs and one not (CADR crossing). Globally, the Adar1 deficient pups harvested from the CADR crossing presented with 100% mortality within the first three days after birth. The survival rate of the mutants generated using the second strategy (RADR) was higher, however, none of the mutants survived up to P30. In general, the mutants of the latest crossing, presented with pleiotropic NC phenotype: abnormal melanocyte, ENS and sciatic nerve defects were observed.
|
115 |
Morphogenèse précoce des muscles squelettiques chez l'embryon de pouletRios, Anne C. 07 September 2011 (has links)
Comment les signalisations dynamiques et les mouvements morphogénétiques régionalisent et permettent la formation de tissus complexes durant l'embryogenèse est très peu compris. J’ai caractérise au cours de ma thèse, les évènements signalisants qui sont mis en place au cours de la myogenèse précoce chez l'embryon de poulet. J'ai montre que les progénitures musculaires présents dans les somites requièrent l'activation dynamique des voies de signalisation Wnt et Notch. L’activation transitoire de la signalisation Notch est requise pour adopter un destin myogénique. Le ligand de Notch Dll1 est exprime de manière mosaïque dans les cellules migrantes des crêtes neurales qui passent près du somite. Gain et perte de fonction de Dll1 dans les crêtes neurales modifient la signalisation Notch dans les somites, résultant en un délai ou une prématuré myogenèse. Nos résultats indiquent que les crêtes neural régulent la formation précoce du muscle par un mécanisme unique mené par la migration des cellules des crêtes neurales exprimant Dll1 qui déclenche l'activation transitoire de la signalisation Notch dans certains progénitures musculaires sélectionnes. Cette dynamique signalisation garantie une différentiation progressive du pool de progénitures musculaires. / How dynamic signalling and extensive tissue rearrangements interplay to generate complex patterns and shapes during embryogenesis is poorly understood. During my PhD, I have characterized the signalling events taking place during early morphogenesis of chick skeletal muscles. I observed that muscle progenitors present in somites require dynamic activation of Wnt and Notch signalling. I showed that a transient activation of NOTCH signalling is required to undergo terminal differentiation. The NOTCH ligand Delta1 is expressed in a mosaic pattern in neural crest cells that migrate past the somites. Gain and loss of Delta1 function in neural crest modifies NOTCH signalling in somites, which results in delayed or premature myogenesis. These results suggest that the neural crest regulates early muscle formation by a unique mechanism that relies on the migration of Delta1-expressing neural crest cells to trigger the transient activation of NOTCH signalling in selected muscle progenitors. This dynamic signalling guarantees a balanced and progressive differentiation of the muscle progenitor pool.
|
116 |
In vivo regeneration of rat laryngeal cartilage with mesenchymal stem cells derived from human induced pluripotent stem cells via neural crest cells / 神経堤細胞を介して誘導したヒトiPS細胞由来間葉系幹細胞を用いたラット喉頭軟骨再生Yoshimatsu, Masayoshi 26 July 2021 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23417号 / 医博第4762号 / 新制||医||1052(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 松田 秀一特定拠点, 教授 妻木 範行, 教授 安達 泰治 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
117 |
Comparative Oncogenomics Identifies Novel Regulators and Clinical Relevance of Neural Crest Identities in MelanomaVenkatesan, Arvind M. 01 December 2017 (has links)
Cancers often resurrect embryonic molecular programs to promote disease progression. In melanomas, which are tumors of the neural crest (NC) lineage, a molecular signature of the embryonic NC is often reactivated. These NC factors have been implicated in promoting pro-tumorigenic features like proliferation, migration and therapy resistance. However, the molecular mechanisms that establish and maintain NC identities in melanomas are largely unknown. Additionally, whether the presence of a NC identity has any clinical relevance for patient melanomas is also unclear. Here, using comparative genomic approaches, I have a) identified a novel role for GDF6-activated BMP signaling in reawakening a NC identity in melanomas, and b) identified a NC signature as a clinical predictor of melanoma progression. Like the genomes of many solid cancers, melanoma genomes have widespread copy number variations (CNV) harboring thousands of genes. To identify disease-promoting drivers amongst such huge numbers of genes, I used a comparative oncogenomics approach with zebrafish and human melanomas. This approach led to the identification of a recurrently amplified oncogene, GDF6, that acts via BMP signaling to invoke NC identities in melanomas. In maintaining this identity, GDF6 represses the melanocyte differentiation gene MITF and the proapoptotic factor SOX9, allowing melanoma cells to remain undifferentiated and survive. Functional analysis in zebrafish embryos indicated a role of GDF6 in blocking melanocyte differentiation, suggesting that the developmental function of GDF6 is reiterated in melanomas. In clinical assessments, a major fraction of patient melanomas expressed high GDF6, and its expression correlated with poor patient survival. These studies provide novel insights into regulation of NC identities in melanomas and offer GDF6 and components of BMP pathway as targets for therapeutic intervention. In additional studies, I wanted to test whether a broader NC identity in melanomas had any clinical relevance. In these studies, I performed transcriptome analysis of zebrafish melanomas and derived a 15-gene NC signature. This NC gene signature positively correlated with the expression of SOX10, a known NC marker in human melanomas. Patients whose melanomas expressed this signature showed poor overall survival. These findings identify an important predictive signature in human melanomas and also illuminate the clinical importance of NC identity in this disease.
|
118 |
Rôle de MMP14/MT1-MMP au cours de la transition épithélio-mésenchymateuse et de la migration des crêtes neurales dans l'embryon de poulet / Role of MMP14/MT1-MMP during epithelial-mesenchymal transition and cell migration of neural crest in chick embryoAndrieu, Cyril 24 October 2018 (has links)
La migration cellulaire est un phénomène essentiel au développement, à l'immunité et à la cicatrisation. Pourtant, l'activation des programmes de migration en dehors des situations physiologiques peut avoir des effets néfastes. Par exemple, la migration cellulaire permet aux cellules d'une tumeur primaire d'envahir de nouveaux territoires et d'installer des tumeurs secondaires ou métastases. Lorsqu'une migration cellulaire est initiée à partir d'un tissu épithélial, ces cellules doivent acquérir des caractéristiques mésenchymateuses. Pour cela, elles diminuent leur adhérences cellule-cellule, perdent leur polarité apico-basale, réorganisent leur cytosquelette, changent d'adhérence à la matrice et modifient la composition et l'organisation de la matrice. C'est ce qu'on appelle la transition épithélio-mésenchymateuse (TEM). La famille des Métalloprotéinases Matricielle (MMP) est connue pour participer au remodelage de la matrice. Les MMPs sont au nombre de 25 et sont sécrétées ou membranaires. L'une de ces MMP membranaires est MMP14 ou MT1-MMP. Elle participe à la migration physiologique et pathologique via la dégradation de composants de la matrice. Elle dégrade également des protéines non matricielles sécrétées ou membranaires. De plus, MMP14 agit indépendamment de son activité catalytique en régulant par exemple l'activation de petites GTPases, de voies de signalisation et en contrôlant l'expression de gênes. Cependant, beaucoup d'études sur MMP14 ont été faites in vitro et ex vivo et il n'est pas clair si toutes les fonctions de MMP14 sont retrouvées in vivo. Plus spécifiquement les fonctions possibles de MMP14 dans la TEM et la migration in vivo sont encore mal définies. Nous proposons d'utiliser les crêtes neurales (CN) de l'embryon de poulet comme modèle pour étudier MMP14 au cours de la TEM et de la migration in vivo. Les CN sont des cellules embryonnaires retrouvées dans la partie dorsale du tube neural. Les CN réalisent une TEM pour quitter le tube neural avant de parcourir de longues distances et donner de nombreux types cellulaires. Les CN se séparent en deux populations, les CN céphaliques retrouvées dans la tête et les CN troncales dans le reste de l'embryon. Ces deux populations de CN réalisent des TEM différentes, avec une TEM rapide et massive pour les CN céphaliques et plus lente et en continue pour les CN troncales. Même si ces TEM sont différentes, elles présentent une diminution des jonctions cellulaires, une perte de la polarité apico-basale, un changement d'adhérence à la matrice et une réorganisation de la matrice. Une particularité des CN troncales est la localisation du noyau en position basale de l'épithélium juste avant la sortie du tube neural. Plusieurs substrats de MMP14 sont retrouvés dans la TEM et la migration des CN et une étude a montré par PCR la présence de l'ARNm de MMP14 dans les CN céphaliques de poulet. L'objectif de la thèse est d'explorer la fonction de MMP14 au cours de la TEM et de la migration des CN. Nous avons montré que MMP14 est exprimée dans les deux populations de CN au cours de la TEM et de la migration. / Cell migration is an essential event during embryonic development, immunity and wound healing. Furthermore, the activation of migration program in non-physiologic conditions can have side effects. For example, cell migration promotes invasion of primary tumor cells in new territories and the formation of secondary tumors or metastasis. When an epithelial tissue initiates migration, epithelial cells need to gain mesenchymal attributes. To this end, they decrease their cell-cell adhesions, loss their apico-basal polarity, reorder their cytoskeleton, change their matrix adhesions and modify the matrix composition and organization. This event is named epithelial-mesenchymal transition (EMT). The family of Matrix Metalloproteinase (MMP) is known to reshape the matrix. MMP family is composed of 25 members which are secreted or linked to the membrane. One of the membrane-bound MMP is MMP14 or MT1-MMP. MMP14 is known to promote physiological and pathologic cell migration by inducing degradation of numerous matrix components. MMP14 cleaves also non-matrix proteins which are secreted or membrane-bound. Moreover, MMP14 can act independently of its catalytic activity for example in the regulation of small GTPases, signaling pathway and in gene expression control. However, the vast majority of MMP14 related studies were conducted in vitro or ex vivo and it is not clear whether some of its functions occur in vivo. More specifically, MMP14's putative functions in EMT and migration are still ill-defined. We propose to use the Neural Crest (NC) of chick embryo as model to study MMP14 during in vivo EMT and migration. NC is an embryonic cell population located in the dorsal part of the neural tube. NC cells realize an EMT to leave the neural tube before performing a long-distance migration and producing a myriad of cell types as neurons, bones and cartilages of the face and pigment cells. NC cells are divided in two populations, the cephalic NC in embryo's head and the trunk NC in the posterior part. The cephalic NC perform a fast and massive EMT while the trunk NC's EMT is slower and continuous. Although the EMT are different, they conserve common characteristics with a decrease of cell junctions, a loss of the apico-basal polarity, a change of matrix adherence and a rearrangement of the matrix. One particularity of trunk NC is the epithelium basal position of the nucleus just prior their exit from the neural tube. Many MMP14's substrates are found during NC EMT and migration and a study suggested by PCR that chick cephalic NC express MMP14 mRNA. The goal of this thesis is to explore the function of MMP14 during chick NC EMT and migration. Our results show that MMP14 is expressed by the two populations of NC during EMT and migration. Moreover, MMP14 cell localization changes from apical to basal during EMT. Loss of function experiments show that MMP14 is needed for NC EMT. Our rescues with various MMP14 versions indicate that: 1/ the cytoplasmic domain is not essential, 2/ the extracellular domain is needed and 3/ the catalytic activity is not required for EMT. MMP14 is involved in the control of cell junctions by a switch between cadherin-6B and cadherin-7 but not in the remodeling of the matrix during NC EMT. We have also showed that MMP14 is necessary for the change of cell polarity during EMT. Furthermore, we have showed that MMP14 is needed for the formation of matrix adherence. In conclusion, our study shows that MMP14 is involved in NC EMT and migration and that NC are a good model to investigate MMP14 function in vivo.
|
119 |
The role of teratogen exposure on neural crest cells in the pathogenesis of fetal alcohol spectrum disordersCarozza, Richard Bohling 03 November 2015 (has links)
Maternal consumption of ethanol during pregnancy contributes to a set of pathologies, grouped together as the fetal alcohol spectrum disorders, affecting as many as 5% of live births in the United States annually. Ethanol acts widely in the developing embryo, affecting many tissues, but causing deficits in neuronal and neural crest populations particularly. These deleterious effects cause archetypical craniofacial expression and neurological deficits, including microcephaly and neuronal dysfunction. Severity of symptoms is linked to frequency of maternal alcohol consumption as well as the maximum blood alcohol concentration reached by the mother.
The teratology of ethanol has been widely researched over the last four decades, with the link between the neural crest pathology and the fetal alcohol spectrum phenotype becoming clearer. Animal model studies have managed to replicate many of the symptoms seen in humans afflicted with fetal alcohol spectrum disorders, and have allowed us to elucidate the biochemical mechanisms behind the disease. There is no singular pathway responsible for the fetal alcohol spectrum disorders: over half a dozen models of dysfunction have been identified, and ethanol’s ability to react with a series of targets means that more pathways are likely to be discovered.
Current theories regarding the effects of ethanol on the neural crest have implicated apoptosis of the cephalic neural crest, mediated by G-protein coupled receptors, activation of a phospholipase C pathway, and subsequent release of intracellular calcium; perturbations of the actin cytoskeleton leading to migration dysfunction of neural crest cells in the developing neural tube; lack of functional trophic molecules, specifically Shh, likely due to dysfunction of the cholesterol biosynthetic pathway; lack of retinoic acid production; oxidative stress, production of reactive oxygen species, and iron dysregulation; and genetics, which seems to confer greater susceptibility and resistance to ethanol in certain individuals. Ultimately, a global model for ethanol’s actions on the developing fetus eludes researchers, as do any potential treatments, and more research is required to further elucidate ethanol’s teratogenic mechanism.
|
120 |
Embryologie de la neurofibromatose de type I : morphogenese craniofaciale et regulations du gene NF1 dans la crete neurale / Embryology of Neurofibromatosis Type I : Craniofacial Morphogenesis and NF1 Gene Regulations in Neural CrestAlrajeh, Moussab 19 December 2017 (has links)
La neurofibromatose type1 (maladie de Von-Rechlinghausen) est une affection autosomique dominante, causée par des mutations polymorphes du gène NF1, dont la protéine, la Neurofibromine, agit comme un suppresseur de tumeur en opérant une contrôle négatif des protéines de RAS. D’un point de vue embryologique, cette maladie affecte les dérivés de la crête neurale (CN), une structure embryonnaire pluripotente, capable de générer des dérivés variés tels que des neurones, des cellules gliales, périvascullaires, squelettiques et pigmentaires. Les cellules de la CN subsistent aussi chez l’adulte, à l’état de cellule souches, pouvant être impliqués dans des processus régénératifs. Toutefois, lorsque leur programme morphogénétique est altéré, elles peuvent générer des processus tumoraux, à l’origine de tumeurs multiples dans la peau, les nerfs (tumeurs bénignes et malignes des gaines nerveuses, neurofibromes,) et le cerveau (50% des cas de tumeurs cérébrales avec un tiers de gliomes des voies optique sont cancéreuses). La compréhension des mécanismes de cette maladie est limitée par la faible corrélation qui existe entre génotypes et phénotypes, à savoir l’adéquation entre la nature hautement polymorphe des anomalies génétiques et la diversité des manifestations cliniques. L’objectif de l’étude est d’analyser les conséquences de l’invalidation du gène NF1 sur le comportement des cellules de la CN (CCN), leur prolifération, leur capacité de migration et leur potentiel de différenciation, chez un modèle expérimental. De plus, nous tentons d’élucider l’impact des modulations épigénétiques de l‘activité du NF1.Nous avons développé un système qui permet l’inactivation totale du gène NF1 dans les cellules de la CN spécifiquement en utilisant des molécules d’ARN interférent (silencing) transfectées par éléctroporation bilatérale dans les CCN, au stade précoce de la neurulation, en utilisant l’embryon de poulet comme modèle expérimental. Suite à l’invalidation du gène NF1, nous avons obtenus des déficits multi-systémiques qui consistent principalement en des altérations de la gangliogénèse céphalique, avec des phénotypes gliomateux, mais aussi des défauts périvasculaires qui affectent tant les parois adventitielles des artères branchiales, que les péricytes des capillaire faciaux et cérébraux, associés des asymétries faciales et des formations néoplasiques intra-cérébrales. Précocement, nous montrons que ces déficits peuvent être corrélés aux altérations du comportement migratoire, prolifératif et apoptotiques des cellules de la CN.Parallèlement, nous avons cherché à déterminer l’implication des régulations épigénétiques sur l’activité de NF1. Nous nous sommes focalisé sur l’activité des Histones Désacétylases (HDAC), qui contrôlent la configuration chromatinienne. Il s’avère que les transcrits de la classe I de famille des HDACs, les HDAC1, 2 et 8, normalement accumulés dans les CCN au cours de leur migration et selon un patron d’expression spatial et temporal similaire à celui de NF1, présentent des variations significatives suite au silencing de NF1. Nous avons testé l’inactivation sélective de ces gènes; Ainsi, nous montrons que l’invalidation de HDAC8 seule, permet de reproduire les altérations des phénotypes vasculaires observés chez les embryons hypomorphes pour NF1. Qui suggère un rôle prépondérant de HDAC8 dans la régulation de la vasculogenèse et de la différentiation des CCN en péricytes. Qui pourrait être par l’activation ectopique des gènes Sox9 soutenant la transdifférenciaton pathologique des péricytes en processus gliomateux ou en calcifications intracérébrales. / The neurofibromatosis-type 1 (NF1) (Von Recklinghausen disease) is an autosomal disorder, which stems from misrgulation of Neurofibromin (NF1), a gene encoding a tumour-suppressor protein which acts as a negative regulator of RAS proteins. Mutations of NF1 are causally linked to many types of tumours located in skin, nerves, but also in the brain (intra- cerebral tumours and gliomas). NF1 patients have a high risk of developing both benign and malignant tumours. The diversity of deficits and the nature of cellular lineages attribute all these tumoral manifestations to deregulation of neural crest cell (NC) derivatives. The NC is a multipotent stem cell population that contributes to a variety of cell types in vertebrate embryo, which include skeletogenic, glial, pigment cells as well as pericytes. In order to understand the pathologic process of this disease, it is essential to analyze the molecular mechanisms involved in the survival, proliferation and differentiation of NC.Our objectives are therefore to gain insights into the molecular cascade responsible for the diversity of NC derivatives at cephalic level. We opt for a drastic approach consisting in eradicating NF1 activity from NC at the beginning of their migration. In our experimental model, we can analyze developmental interactions of NC and the epigenetic regulation of the NF1 gene, at their level. Espically class1 Histone deacetylases (HDAC) family of molecules. So we have developed a system which allows complete inactivation of the NF1 gene in NC specifically using interfering RNA molecules (silencing) transfected by electroporation in the bilateral NC, during the early stage of neurulation, using the chick embryo as an experimental model.We show that HDAC8 inactivation can reproduce the alterations of vascular phenotypes observed in NF1 hypomorphic embryos. Suggesting an important role of HDAC8 in regulating vasculogenesis and differentiation of pericytes NC. That could be by ectopic activation of Sox9 gene supporting the pathological transdifférenciaton pericytes in gliomateux process or intracerebral calcifications.
|
Page generated in 0.0676 seconds