111 |
The Eigenvalue Problem of the 1-Laplace Operator: Local Perturbation Results and Investigation of Related Vectorial QuestionsLittig, Samuel 23 January 2015 (has links)
As a first aspect the thesis treats existence results of the perturbed eigenvalue problem of the 1-Laplace operator. This is done with the aid of a quite general critical point theory results with the genus as topological index. Moreover we show that the eigenvalues of the perturbed 1-Laplace operator converge to the eigenvalues of the unperturebed 1-Laplace operator when the perturbation goes to zero. As a second aspect we treat the eigenvalue problems of the vectorial 1-Laplace operator and the symmetrized 1-Laplace operator. And as a third aspect certain related parabolic problems are considered.
|
112 |
Magnetization Study of the Heavy-Fermion System Yb(Rh1-xCox)2Si2 and of the Quantum Magnet NiCl2-4SC(NH2)2Pedrero Ojeda, Luis 28 May 2013 (has links)
This thesis presents a comprehensive study of the magnetic properties and of quantum phase transitions (QPTs) of two different systems which have been investigated by means of low-temperature magnetization measurements. The systems are the heavy-fermion Yb(Rh1-xCox)2Si2 (metallic) and the quantum magnet NiCl2-4SC(NH2)2 (insulator). Although they are very different materials, they share two common properties: magnetism and QPTs. Magnetism originates in Yb(Rh1-xCox)2Si2 from the trivalent state of the Yb3+ ions with effective spin S = 1=2. In NiCl2-4SC(NH2)2, the magnetic Ni2+ ions have spin S = 1. These magnetic ions are located on a body-centered tetragonal lattice in both systems and, in this study, the QPTs are induced by an external magnetic field.
In Yb(Rh1-xCox)2Si2 the evolution of magnetism from itinerant in slightly Co-doped YbRh2Si2 to local in YbCo2Si2 is examined analyzing the magnetic moment versus chemical pressure x phase diagram in high-quality single crystals, which indicates a continuous change of dominating energy scale from the Kondo to the RKKY one. The physics of the antiferromagnet YbCo2Si2 can be completely understood. On the other hand, the physics of pure and slightly Co-containing YbRh2Si2 is much more complex, due to the itinerant character of magnetism and the vicinity of the system to an unconventional quantum critical point (QCP). The field-induced AFM QCP in Yb(Rh0.93Co0.07)2Si2 and in pure YbRh2Si2 under a pressure of 1.5GPa is characterized by means of the magnetic Grüneisen ratio. The final part of this thesis describes quantum criticality near the field-induced QCP in NiCl2-4SC(NH2)2 .
These results will be compared to the theory of QPTs in Ising and XY antiferromagnets. Since the XY -AFM ordering can be described as BEC of magnons by mapping the spin-1 system into a gas of hardcore bosons, the temperature dependence of the magnetization for a BEC is analytically derived and compared to the results just below the critical field. The remarkable agreement between the BEC theory and experiments in this quantum magnet is one of the most prominent examples of the concept of universality.:1 Introduction 1
2 Theoretical concepts 5
2.1 Ce- and Yb-based 4f-electron systems . . . . . . . . . . . . . . . . 5
2.1.1 Crystalline electric field . . . . . . . . . . . . . . . . . . . . 6
2.2 Heavy-fermion systems . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Fermi liquid theory . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Kondo eff ect . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 RKKY interaction . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Doniach phase diagram . . . . . . . . . . . . . . . . . . . . . 12
2.3 Quantum phase transitions . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Spin density wave scenario . . . . . . . . . . . . . . . . . . . 16
2.3.2 Local quantum critical point scenario . . . . . . . . . . . . . 17
2.3.3 Global phase diagram . . . . . . . . . . . . . . . . . . . . . 18
2.3.4 The Grüneisen ratio . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Spins are almost bosons . . . . . . . . . . . . . . . . . . . . . . . . 22
3 Experimental methods 31
3.1 Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.1 Magnetization measurements . . . . . . . . . . . . . . . . . 32
3.2 Experimental techniques . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 Faraday magnetometer . . . . . . . . . . . . . . . . . . . . . 35
3.2.1.1 Measurement of the force . . . . . . . . . . . . . . 35
3.2.1.2 Capacitive cell . . . . . . . . . . . . . . . . . . . . 35
3.2.1.3 Design and performance of the cell . . . . . . . . . 37
3.2.1.4 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.1.5 Background contributions . . . . . . . . . . . . . . 42
3.2.1.6 Calibration . . . . . . . . . . . . . . . . . . . . . . 42
3.2.1.7 Magnets characteristics . . . . . . . . . . . . . . . 44
3.2.1.8 Installation in a dilution refrigerator . . . . . . . . 45
3.2.2 SQUID magnetometer . . . . . . . . . . . . . . . . . . . . . 47
3.3 Magnetization measurements at high pressure . . . . . . . . . . . . 48
3.3.1 Experimental setup for M(H - T) under pressure . . . . . . . 50
4 Yb(Rh1-xCox)2Si2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
4.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . 51
4.1.1 The heavy-fermion compound YbRh2Si2 . . . . . . . . . . . 53
4.1.2 The antiferromagnet YbCo2Si2 . . . . . . . . . . . . . . . . 58
4.1.3 Isoelectronic substitution of Co for Rh: Yb(Rh1-xCox)2Si2 . . . .62
4.2 Itinerant vs. local magnetism in Yb(Rh1-xCox)2Si2 . . . . . . . . . 67
4.2.1 Magnetization of Yb(Rh1-xCox)2Si2 with 0 x 0.27 . . . 67
4.2.1.1 YbRh2Si2 and Yb(Rh0.93Co0.07)2Si2 . . . . . . . . . 67
4.2.1.2 Yb(Rh0.88Co0.12)2Si2 . . . . . . . . . . . . . . . . . 71
4.2.1.3 Yb(Rh0.82Co0.18)2Si2 . . . . . . . . . . . . . . . . . 73
4.2.1.4 Yb(Rh0.73Co0.27)2Si2 . . . . . . . . . . . . . . . . . 74
4.2.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.2 Magnetization of Yb(Rh1-xCox)2Si2 with x = 0.58 and x = 1 . . . . . 79
4.2.3 Evolution from itinerant to local magnetism . . . . . . . . . 83
4.3 Field-induced QCP in Yb(Rh0.93Co0.07)2Si2 . . . . . . . . . . . . . . 88
4.4 YbRh2Si2 under hydrostatic pressure . . . . . . . . . . . . . . . . . 96
4.4.1 Magnetization vs. field . . . . . . . . . . . . . . . . . . . . . 97
4.4.2 Comparison with 1.28 GPa . . . . . . . . . . . . . . . . . . . 99
4.4.3 Magnetization vs. temperature . . . . . . . . . . . . . . . . 101
4.4.4 Field-induced QCP at 1.5 GPa . . . . . . . . . . . . . . . . 103
4.4.5 The magnetic Grüneisen ratio . . . . . . . . . . . . . . . . . 105
4.5 The magnetic phase diagrams of YbCo2Si2 . . . . . . . . . . . . . . 107
4.5.1 Magnetization vs. temperature . . . . . . . . . . . . . . . . 107
4.5.2 Magnetization vs. fi eld . . . . . . . . . . . . . . . . . . . . . 109
4.5.3 H - T phase diagrams . . . . . . . . . . . . . . . . . . . . 114
4.5.4 Ac-susceptibility . . . . . . . . . . . . . . . . . . . . . . . . 117
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5 NiCl2-4SC(NH2)2 . . . . . . . . . . . . . . . . . . . . . . . .121
5.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . 121
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2.1 Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2.2 Comparison between theory and experiment . . . . . . . . . 126
5.2.3 Magnetic phase diagram . . . . . . . . . . . . . . . . . . . . 129
5.2.4 Speci c heat . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2.5 The magnetic Grüneisen ratio . . . . . . . . . . . . . . . . . 131
5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6 General conclusions . . . . . . . . . . . . . . . . . . . . . . . .135
Appendix 1 . . . . . . . . . . . . . . . . . . . . . . . .139
|
113 |
Criticalité quantique et opérateurs chargés dans la Famille Gross-Neveu à partir de la Limite de Grand 𝛮Fallah Zarrinkar, Amirhossein 05 1900 (has links)
Comprendre les transitions de phase quantiques dans les systèmes de fermions itinérants en interaction est crucial pour faire progresser notre connaissance de la criticité quantique. Cet intérêt est motivé par des expériences sur des matériaux fortement corrélés. L'attention récente s'est portée sur les matériaux bidimensionnels \((2D)\), tels que le graphène, les surfaces d'isolants topologiques et certains liquides de spin. Ces matériaux sont caractérisés par une dispersion de Dirac pseudo-relativiste.
Dans ce mémoire, nous étudions les points critiques quantiques dans les systèmes de Dirac en calculant les dimensions d'échelle des bilinéaires de charge \(2\) à travers diverses classes d'universalité de Gross-Neveu, incluant Gross-Neveu, chiral Ising Gross-Neveu, chiral XY Gross-Neveu, et chiral d'Heisenberg Gross-Neveu. Nous utilisons la méthode d'expansion en grand \(N\) pour calculer les dimensions anormales en termes de \(1/N\). Ces dimensions d'échelle sont essentielles pour comprendre les transitions de phase quantiques d'un semimétal de Dirac à une phase isolante, comme observé dans des systèmes tels que le modèle \(t-V\) et des matériaux semblables au graphène. De plus, nous proposons un opérateur dual dans une théorie bosonique, qui est une combinaison de doublets monopôles invariants de jauge pour les bilinéaires dans le modèle d'Heisenberg Gross-Neveu, basé sur des conjectures précédentes. / Understanding quantum phase transitions in systems of interacting itinerant fermions is crucial for advancing our knowledge of quantum criticality. This interest is driven by experiments on strongly correlated materials. Recent focus has been on two-dimensional \((2D)\) materials, such as graphene, surfaces of topological insulators, and certain spin liquids. These materials are characterized by a pseudo-relativistic Dirac dispersion in their freely moving fermions, which lack classical analogs.
In this thesis, we study the quantum critical points in Dirac systems by computing the scaling dimensions of charge \(2\) bilinears across various Gross-Neveu universality classes, including Gross-Neveu, chiral Ising Gross-Neveu, chiral XY Gross-Neveu, and chiral Heisenberg Gross-Neveu. We utilize the large \(N\) expansion method to compute the anomalous dimensions in terms of \(1/N\). These scaling dimensions are instrumental in understanding the quantum phase transitions from a Dirac semimetal to an insulating phase, as observed in systems like the \(t-V\) model and graphene-like materials. Additionally, we propose a dual operator in a bosonic theory, which is a combination of gauge-invariant monopole doublets for bilinears in the Gross-Neveu Heisenberg model, based on previous conjectures.
|
114 |
CO₂-balance in the athmosphere and CO₂-utilisation:an engineering approachTurunen, H. (Helka) 09 August 2011 (has links)
Abstract
The subject of the thesis was to analyze by an engineering approach the global CO₂ balance and CO₂ utilisation. The aim was to apply methods and knowledge used in engineering sciences to describe the global CO₂ balance and the role of CO₂ in anthropogenic utilisation applications. Moreover barriers restricting commercialisation of new applications are discussed. These subjects were studied by literature reviews and calculations based on thermodynamics models.
Engineering methods have shown to be applicable to describe the global balance of CO₂ and to define by a numerical way the Earth’s system carrying capacity. Direct and indirect actions, which mitigate the overload situation, were derived from the results. To screen out the attractive CO₂ properties in utilisation applications a mapping analysis was carried out. Properties, which enhance mass and heat transfer, are one of the most meaningful characteristics from the chemical engineering point of view. Attractive properties are often achieved at the supercritical state.
Engineering thermodynamic methods were used in fluid phase determination of the case studies. Even simple methods are sufficient to advice experimental research work. The thermodynamic knowledge is the basement in creation of industrial scale chemical processes. If detailed information on system properties is needed, a model development due to the special requirements of high pressure systems and CO₂ features is required. This knowledge covers property information from all the components involved in chemical reactions. In addition to engineering knowledge successful technology transfer requires positive social structure as well. Finally, if the humankind is willing to mimic Nature and use light of the Sun as an energy source in engineering systems, development of thermodynamic methods is required also in this area. Especially the work terms, originally defined in classical mechanical thermodynamics and afterwards formulised also in other parts of the engineering fields, play a key role. If this development work is successful, we may see the shift from thermodynamics approach to ‘photodynamics’.
Mitigation of global warming is a problem, which needs several kinds of activities. As a result of this study, there are listed a few engineering actions, which have a possibility to contribute to the work towards the carbon neutral society. / Tiivistelmä
Väitöskirjatyössä sovelletaan insinööritieteissä käytettyjä metodeja ja tietämystä määriteltäessä ilmakehän CO₂-tase sekä antropogeenisten hyötykäyttökohteiden merkitys teollisissa prosesseissa ja globaaleissa CO₂-virroissa. Lisäksi pohditaan uusien CO₂-hyötykäyttösovellusten kaupallistamiseen liittyviä rajoitteita. Näitä aiheita on tutkittu käymällä läpi tieteellistä kirjallisuutta ja tekemällä laskelmia.
Insinööritieteistä tutun taselaskennan avulla tarkastellaan ilmakehän CO₂-virtoja. Sen pohjalta määritetään numeerisesti maapallon CO₂-kantokyky. Tuloksista johdetaan suoria ja epäsuoria toimenpide-ehdotuksia, joiden avulla voidaan lieventää ilmakehän CO₂-ylikuormaa. Kartoitusmenetelmän avulla selvitetään hyötykäytön kannalta edulliset CO₂:n aineominaisuudet. Kemiantekniikan näkökulmasta ominaisuudet, jotka parantavat aineen- ja lämmönsiirtoa, ovat kiinnostavimpia. Nämä ominaisuudet tulevat esille silloin, kun fluidi on ylikriittisessä olomuodossa.
Termodynaamisia laskentamenetelmiä sovelletaan esimerkkiseosten olomuodon eli faasin määrityksessä. Tulokset osoittavat, että jopa verraten yksinkertaiset menetelmät antavat tietoja, jotka auttavat ymmärtämään laboratoriokokeiden faasikäyttäytymistä. Teollisen mittakaavan kemiallisten prosessien kehityksessä ja suunnittelussa termodynamiikan hallitseminen on keskeinen edellytys. Jos CO₂:n kiinnostavia ominaisuuksia toivotaan hyödynnettävän teollisesti, korkeapaineisten systeemien termodynaamisen teorian hallinta sekä aineominaisuuksien määrittäminen kaikille systeemiin osallistuville komponenteille ja niiden seoksille nousee merkittävään asemaan. Läpikotainen teorian ja teknisten perusteiden hallitseminen ei vielä takaa menestyksellistä teknologiansiirtoa pienestä suureen mittakaavaan. Lisäksi tarvitaan myönteinen ja kannustava yhteiskuntajärjestelmä.
Mikäli tavoitellaan vielä rohkeampaa kehitysnäkymää, tilannetta, jossa luonnon tavoin CO₂-prosessien energianlähteenä käytettäisiin auringonvaloa, havaitaan, että tämäkin askel edellyttäisi termodynaamista menetelmäkehitystä. Keskeinen termodynaaminen konsepti on työ. Työ siirtää energiaa ympäristön ja systeemin välillä. Tämä on määritelty jo klassisessa mekaniikassa; kappaleen siirto tietystä paikasta toiseen. Kemiantekniikassa työlle on kehitetty käyttökelpoisia kaavoja paine–tilavuus–lämpötila-systeemeihin. Mikäli työn elementit kyettäisiin määrittelemään auringonvalon fotoenergialle, avaisi se uusia näkymiä reaktiokemiaan. Silloin termodynamiikan sijaan voitaisiin ehkä mieluummin puhua 'photodynamiikasta'.
Ilmaston lämpeneminen on ongelma, jonka lieventämiseen tarvitaan useanlaisia toimia. Etsittäessä tietä kohti hiilineutraalia yhteiskuntaa, insinöörit voivat avustaa suunnan löytämisessä hyödyntämällä tieteenalallaan käytettyjä metodeja ja teorioita sekä tarpeen vaatiessa kehittää niitä edelleen uusille alueille.
|
Page generated in 0.3027 seconds