• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • Tagged with
  • 8
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rupture ductile des matériaux CFC irradiés / Ductile fracture of FCC irradiated materials

Barrioz, Pierre-Olivier 08 January 2019 (has links)
Le mode de rupture des alliages CFC est généralement de type ductile par des mécanismes de germination, croissance et coalescence de cavités internes micrométriques et peut être modifié par l’irradiation. L’irradiation neutronique de ces alliages conduit à la création de défauts cristallins qui induisent un durcissement, une perte de la capacité d’écrouissage, une chute très importante de la ténacité et un mode de déformation localisé à l’échelle intragranulaire. La compréhension des mécanismes physiques élémentaires de la rupture ductile est indispensable au développement de modèles quantitatifs pour prédire la ténacité des matériaux CFC irradiés. Pour cela, trois différents points ont été étudiés dans cette thèse : (1) L’influence de la localisation de la déformation induite par l’irradiation sur la croissance et la coalescence de cavités : des expériences modèles in-situ MEB de croissance et coalescence de cavités micrométriques dans des matériaux irradiés aux protons ont été réalisées. Les résultats montrent un effet limité de la localisation pour des cavités de la taille des grains et une diminution de l’influence de la localisation avec l’augmentation du niveau de déformation pour des cavités intragranulaires. Par conséquent, les modèles homogénéisés de matériaux poreux développés pour les matériaux non irradiés pourraientt être utilisés en première approximation pour modéliser la rupture ductile des matériaux irradiés. (2) Le comportement sous chargement mécanique de nano-porosités d’irradiation et leur contribution éventuelle à la rupture : l’étude expérimentale et numérique de la déformation de cavités dans un matériau nanoporeux a permis de mettre en évidence la très forte hétérogénéité de la déformation à cette échelle et l’absence d’effet de taille significatif sur la déformation des cavités de diamètre supérieur à 10 nm en traction simple. (3) Le développement de modèles homogénéisés de matériaux poreux valides aux fortes porosités : deux nouveaux critères de coalescence obtenus par analyse limite sont proposés et validés par comparaison à des simulations d’analyses limites numériques, dans le cas de cavités de type fissures et de cavités ellipsoïdales. / The failure mode of FCC alloys is generally ductile through nucleation, growth and coalescence of micrometric voids, and can be modified by irradiation. Neutron irradiation of these alloys leads to the creation of crystalline defects that induce hardening, loss of work hardening capability, a very large drop in fracture toughness and a heterogeneous deformation mode at the grain scale. Understanding the elementary physical mechanisms of ductile fracture is essential for the development of quantitative models to predict fracture toughness of irradiated FCC materials. Thus, in this thesis, three different subjects have been studied. (1) Influence of the localization of deformation induced by irradiation on void growth and coalescence: Model experiments of growth and coalescence of micrometric voids in proton-irradiated materials have been performed based on SEM in-situ tests. Results show a limited effect of localization for grain-size voids and a decreasing influence of localization with increasing level of deformation for intragranular voids, so that homogenized models of porous materials developed for unirradiated materials may be used as a first approximation to model the ductile fracture of irradiated materials. (2) The behavior under mechanical loading of nanovoids generated under irradiation and their possible contribution to fracture: The experimental and numerical study of void deformation in a nanoporous material highlights the very strong heterogeneity of the deformation at this scale and the absence of significant size effect for voids of diameter greater than 10 nm under tensile loading. (3) Development of homogenized models for porous materials valid at high porosities: Two new coalescence criteria obtained by limit analysis are proposed and validated by comparison with numerical limit analysis simulations, in the case of penny-shaped cracks and ellipsoidal voids.
2

Ductile damage characterization in Dual-Phase steels using X-ray tomography

Landron, Caroline 21 December 2011 (has links) (PDF)
Dans le cadre du développement de nuances d'aciers toujours plus performantes en termes de résistance à l'effort et à l'endommagement, les aciers Dual-Phase (DP) présentent un bon compromis résistance/ductilité. Cependant, il est nécessaire de disposer de meilleures connaissances concernant les mécanismes menant à la rupture de tels aciers. Les mécanismes d'endommagement ont ainsi été étudiés dans cette thèse à l'aide de la tomographie aux rayons X. Des essais de traction in-situ ont été réalisés sur plusieurs nuances d'aciers DP, un acier ferritique et un acier martensitique afin de caractériser chaque étape de l'endommagement ductile. Des observations qualitatives et des données quantitatives concernant la germination de l'endommagement, la croissance des cavités et la coalescence ont été recueillies lors de ces essais. Ces données quantitatives ont ensuite été utilisées pour le développement et/ou la validation de modèles d'endommagement. Une prédiction de la cinétique de germination a ainsi été proposée et la version du modèle de croissance de cavités de Rice et Tracey corrigée par Huang et prenant mieux en compte l'effet de la triaxialité a été validée expérimentalement. L'étape de coalescence des cavités menant à la rupture des matériaux a pour la première fois été caractérisée de façon quantitative dans un matériau industriel et des critères de coalescence ont été appliqués localement sur les couples de cavités présentes dans le matériau. L'utilisation de ces modèles analytiques a permis une meilleure compréhension des propriétés agissant sur les phénomènes mis en jeu. L'effet de la part cinématique de l'écrouissage sur la germination et la croissance de l'endommagement a notamment été souligné et validé par des essais de chargements complexes.
3

Influence des effets de forme et de taille des cavités, et de l'anisotropie plastique sur la rupture ductile / influence of void shape and size effects, and plastic anisotropy on ductile fracture

Morin, Léo 01 July 2015 (has links)
La rupture ductile des alliages métalliques survient suite à la nucléation, la croissance et la coalescence de microcavités. La première partie de cette thèse est consacrée à l'étude des effets de forme et d'anisotropie plastique sur la phase de croissance des cavités. Dans un premier temps, nous implémentons numériquement le modèle de croissance de Madou et Leblond pour des cavités ellipsoïdales générales plongées dans un matériau isotrope dans un code de calcul par éléments finis, afin d'appliquer le modèle à des cas de rupture où les effets de forme sont importants. On montre que la prise en compte des effets de forme des cavités est nécessaire afin de reproduire la rupture ductile en cisaillement. Ce modèle est ensuite étendu au cas de l'anisotropie plastique, en s'inspirant des travaux de Monchiet et Benzerga. On dérive notamment un critère de plasticité macroscopique pour les matériaux anisotropes contenant des cavités ellipsoïdales générales, que nous validons par analyse limite numérique. La seconde partie de la thèse est dédiée à l'étude des effets de taille sur la rupture ductile des matériaux nanoporeux contenant des cavités sphériques ou sphéroïdales. Enfin, la troisième partie de la thèse est consacrée à l'étude des effets de forme et d'anisotropie plastique sur la phase de coalescence des cavités. Nous dérivons deux nouveaux critères de coalescence en couche que nous validons par analyse limite numérique. Cette étude nous permet de développer un nouveau critère permettant d'unifier les phases de croissance et coalescence. Enfin nous dérivons un critère de coalescence pour les matériaux anisotropes. / Ductile fracture of metallic alloys occurs by the nucleation, growth and coalescence of microvoids. In a first step, we study the influence of void shape effects and plastic anisotropy on the growth phase. we implement numerically in a finite element code the void growth model of madou and leblond for ellipsoidal voids embedded in an isotropic material, in order to apply the model to ductile fracture problems involving important void shape effects. We show that the consideration of void shape effects is necessary in order to reproduce shear-dominant ductile fracture. This model is then extended to plastic anisotropy, in the spirit of the models of monchiet and benzerga. In particular, we derive a macroscopic criterion for anisotropic materials containing general ellipsoidal voids, which is assessed by finite element limite analyses. In a second step, we study the effects of void size on the ductile fracture of nanoporous materials contenant spherical or spheroidal voids. The last part of the thesis is dedicated to the study of void shape effects and plastic anisotropy on the coalescence phase. We derive two new criteria of coalescence by internal necking, which are assessed numerically. Then, we derive a new criterion that permits to unify the growth and coalescence phases. Finally we study the influence of plasticy anisotropy on coalescence by internal necking.
4

Composites BMC injectés : analyse et modélisation multi-échelles du comportement endommageable

Le, Thi Tuyet Nhung 16 December 2011 (has links) (PDF)
Les pièces élaborées par le groupe Schneider Electric sont principalement utilisées dans les domaines de la Basse Tension de Puissance, la Moyenne Tension et le Contrôle Industriel et fortement contraintes sur les plans diélectrique, mécanique et thermique. Cette étude traite des matériaux de type BMC appliqués dans l'industrie électrotechnique pour répondre à ces besoins. Si les BMC sont tous élaborés à base de résine polyester, d'un agent anti retrait, et de charges et renforts minéraux, ils diffèrent entre eux par le choix du procédé de fabrication mais aussi par la nature et la proportion de chacun des constituants du mélange. La conception des pièces et le choix du matériau composite permettant de remplir les fonctions principales demandées à une pièce ne sont donc pas triviaux et s'appuient encore largement sur un savoir-faire empirique. L'objectif de Schneider Electric est donc de disposer à terme d'un outil d'aide à la conception des pièces en décrivant les propriétés mécaniques des BMC en fonction de leur formulation et en optimisant ensuite le choix du matériau composite en fonction du cahier des charges demandé. Nous proposons ici de mettre en place les éléments nécessaires à l'établissement d'un modèle prédictif permettant de déduire la loi de comportement des composites BMC en fonction des propriétés de ses constituants. La démarche proposée est fondée sur une approche multi échelle d'homogénéisation des milieux aléatoires. Une analyse expérimentale complète nous permet de déterminer de manière précise la microstructure du matériau, son influence sur les propriétés mécaniques macroscopiques mais aussi de mettre en évidence les spécificités de cette classe de matériaux. Les résultats sont ensuite intégrés dans un modèle de type Mori-Tanaka élastique couplé à la prise en compte de l'endommagement par croissance de cavités et décohésion de fibres.
5

Tack de matériaux modèles

Teisseire, Jérémie 11 December 2006 (has links) (PDF)
Nous étudions, dans une approche expérimentale et théorique, les mécanismes de séparation et de rupture lors de la traction d'un matériau confiné entre deux plaques parallèles (test de probe-tack). Cette étude est menée sur deux matériaux choisis pour leur comportement rhéologique de liquides viscoélastiques : une huile de silicones de grande masse, d'une part, et les mélanges d'une huile de silicones de faible masse avec des nanoparticules (à base de silice) en proportions variées, d'autre part. <br /> L'étude réalisée sur le premier matériau a permis de mettre en évidence qu'outre la digitation et la cavitation, mécanismes de rupture observés sur des liquides newtoniens, un mécanisme de fracture peut également apparaître, la fracture étant localisée à l'interface entre la plaque solide et le matériau viscoélastique. Un modèle théorique, faisant notamment intervenir la cinétique de cavitation, a été élaboré pour interpréter la succession de ces mécanismes et décrire les courbes de traction. Le bon accord entre les prédictions et les résultats expérimentaux valide l'importance du rôle de la cinétique et nous permet d'expliquer l'apparition de fractures malgré la croissance préalable de cavités.<br /> Le second système étudié provient de la déformulation d'adhésifs industriels. Nous avons tout d'abord étudié l'influence de la proportion en particules sur la rhéologie des mélanges. Nous avons observé une évolution des paramètres rhéologiques, que nous avons comparée à l'évolution de l'adhésion des mélanges. Nous avons ainsi pu corréler la présence d'un second plateau de force, observé fréquemment pour de véritables adhésifs, au taux de particules dans le matériau. Enfin, cette étude nous a permis de proposer la voie de rupture optimale pour un matériau adhésif.
6

Modélisation de l'endommagement dynamique avec prise en compte de l'effet de forme des cavités / Void growth model for ductile materials accounting for micro-inertia and void shape

Sartori, Cédric 13 November 2014 (has links)
L'endommagement des matériaux ductiles est un processus impliquant trois étapes : la nucléation, la croissance et la coalescence de vides. La phase de croissance des vides a été largement étudiée dans la littérature. Il a été montré que, durant cette étape, la forme des vides joue un rôle fondamental sur le comportement macroscopique du matériau. Dans le cas de sollicitations dynamiques, les effets micro inertiels, qui résultent des accélérations subies par la matrice au voisinage du vide, influent eux aussi fortement sur la croissance des vides. Cependant, les travaux intégrant simultanément ces deux contributions (effets inertiels et forme) sont très rares. L'objectif de ce travail est de proposer un modèle de comportement pour les matériaux poreux qui prend en compte la forme des vides et les effets micro inertiels. Dans une première partie, un volume élémentaire représentatif défini par deux ellipsoïdes allongés confocaux est utilisé pour représenter le matériau poreux. La matrice est rigide viscoplastique. En se basant sur les travaux de Molinari et Mercier (2001), la contrainte macroscopique se décompose en une partie statique et une partie dynamique. La contrainte statique est décrite par le modèle de Gologanu et al. (1997). La contrainte dynamique est obtenue en adoptant le champ de vitesse de Gologanu et al. (1993). Avec cette modélisation, il est montré que la contrainte dynamique est liée de façon quadratique au tenseur des vitesses des déformations et de façon linéaire à sa dérivée par rapport au temps. Le modèle fait l'objet d'une validation sur la base de comparaisons avec des résultats de calculs par éléments finis. Différentes forme de vides et valeurs de la porosité ont été considérées. Dans une seconde partie, le cas de matériaux contenant des vides aplatis est abordé ; le volume élémentaire représentatif est défini par deux ellipsoïdes confocaux aplatis. La contrainte statique est toujours décrite par le modèle de Gologanu et al. (1997). La contrainte dynamique est obtenue en adoptant le champ de vitesse de Gologanu et al. (1994). La procédure de validation est identique à celle mise en œuvre dans le cas des vides allongés. Une bonne adéquation entre les résultats du modèle et les résultats de calculs par éléments finis est retrouvée. L'utilisation des surfaces d'écoulement permet de mettre en lumière les effets de la forme des vides sur le comportement du matériau poreux sous chargement dynamique. En fonction du chargement appliqué, certaines géométries de vide favorisent la déformation du matériau. Le cas particulier du vide sphérique est étudié comme limite des deux modèles. La continuité des deux modèles est démontrée. L'évolution de la porosité et de la forme des vides dans un matériau poreux sous chargement dynamique est analysée. Des comparaisons avec des résultats de simulations par éléments finis sont proposées. L'influence de la triaxialité et de la vitesse du chargement sur le comportement dynamique du matériau poreux est étudiée, ainsi que celle de la forme initiale du vide. Au final, il est démontré que le modèle développé dans cette thèse permet de retrouver les tendances fournies par les calculs éléments finis / The ductile fracture mechanism involves three stages: void nucleation, void growth and void coalescence. Under dynamic loading conditions, void growth is strongly affected by microinertia effects resulting from the local acceleration of the matrix material in the vicinity of the void. Several works devoted to quasi-static conditions also show that void shape has a strong impact on the behavior of porous ductile materials. However, there exist only few works considering the combined effect of these two contributions. In the present work, we propose an original, multi-scale constitutive model of porous materials, taking into account void shape and micro-inertia effects. In a first step, a representative volume element defined by two confocal prolate spheroids is used to represent the porous material. The matrix behavior is assumed to be rigid-viscoplastic. Based on the work of Molinari and Mercier (2001), the macroscopic stress is the sum of a static and a dynamic part. The static contribution is described by the Gologanu et al. model (1997). The dynamic stress is derived by choosing the trial velocity field proposed by Gologanu et al. (1993). With the present modeling, a link is established between the macroscopic dynamic stress, on the one hand and, the macroscopic strain rate tensor and its time derivative on the other hand. To validate the proposed model, finite element computations have been performed for different void geometries and void volume fractions. The influence of micro-inertia on the macroscopic flow surface is analyzed and a good agreement between modeling and simulations is observed. In a second step, a representative volume element defined by two confocal oblate spheroids is used to represent the porous material. For this configuration, the static contribution is also described by using the Gologanu et al. model (1997), while the derivation of the dynamic stress is based on the trial velocity field proposed by Gologanu et al. (1994). As for the prolate case, a good agreement is retrieved between model predictions and results of finite element computations. The spherical void configuration is investigated as the limit case for the oblate and prolate models. The continuity between the two models is established. Finally, the proposed models are combined to investigate the porosity and void shape evolutions in a porous solid under dynamic loadings. A parametric study has been performed by varying the stress triaxiality, the initial void shape and the loading rate. Significant void shape variations are observed for low triaxiality loadings. With the present modeling, the void can evolve from prolate to oblate shapes (and the reverse). Model predictions are compared to finite element computations
7

Ductile damage characterization in Dual-Phase steels using X-ray tomography / Caractérisation de l'endommagement dans les aciers Dual-Phase à l'aide de la tomographie aux rayons X

Landron, Caroline 21 December 2011 (has links)
Dans le cadre du développement de nuances d’aciers toujours plus performantes en termes de résistance à l’effort et à l’endommagement, les aciers Dual-Phase (DP) présentent un bon compromis résistance/ductilité. Cependant, il est nécessaire de disposer de meilleures connaissances concernant les mécanismes menant à la rupture de tels aciers. Les mécanismes d’endommagement ont ainsi été étudiés dans cette thèse à l’aide de la tomographie aux rayons X. Des essais de traction in-situ ont été réalisés sur plusieurs nuances d’aciers DP, un acier ferritique et un acier martensitique afin de caractériser chaque étape de l’endommagement ductile. Des observations qualitatives et des données quantitatives concernant la germination de l’endommagement, la croissance des cavités et la coalescence ont été recueillies lors de ces essais. Ces données quantitatives ont ensuite été utilisées pour le développement et/ou la validation de modèles d’endommagement. Une prédiction de la cinétique de germination a ainsi été proposée et la version du modèle de croissance de cavités de Rice et Tracey corrigée par Huang et prenant mieux en compte l’effet de la triaxialité a été validée expérimentalement. L’étape de coalescence des cavités menant à la rupture des matériaux a pour la première fois été caractérisée de façon quantitative dans un matériau industriel et des critères de coalescence ont été appliqués localement sur les couples de cavités présentes dans le matériau. L’utilisation de ces modèles analytiques a permis une meilleure compréhension des propriétés agissant sur les phénomènes mis en jeu. L’effet de la part cinématique de l’écrouissage sur la germination et la croissance de l’endommagement a notamment été souligné et validé par des essais de chargements complexes. / As part of the current context of requiring ever more efficient grades of steels in terms of resistance to stress and to damage, the Dual-Phase steels (DP) present an acceptable strength/ductility compromise. It is nevertheless necessary to have a better understanding of the mechanisms leading to the fracture of such steels. Damage mechanisms were studied in this PhD using X-ray tomography. In-situ tensile tests were carried out on several grades of DP steel, a ferritic steel and a martensitic steel in order to characterize each step of ductile damage. Qualitative observations and quantitative data on the nucleation of damage, the void growth and the coalescence of cavities were collected during these tests. This quantitative data was then used for the development and/or the validation of damage models. A prediction of the kinetic of nucleation was proposed and the Huang’s correction of the void growth model of Rice and Tracey accounting for the triaxiality was experimentally validated. For the first time, the step of void coalescence leading to fracture of materials was quantitatively characterized in an industrial material and coalescence criteria were locally applied on couples of neighboring cavities present in the studied specimen. The use of analytical models enabled a better understanding of the properties influencing the studied damage phenomena. The effect of the kinematic part of the strain hardening on void nucleation and void growth was notably emphasized and validated by performing complex loading tests.
8

Etude numérique et expérimentale de l'endommagement de fluage à long terme dans les aciers inoxydables austénitiques / Numerical and experimental study of long term creep damage in austenitic stainless steels

Cui, Yiting 21 December 2015 (has links)
L’endommagement de fluage des aciers 316L(N) a été étudié expérimentalement et théoriquement à des températures élevées et des temps à rupture jusqu'à dix-neuf ans. Pour le fluage à court terme, les durées de vie sont correctement prédites par le modèle de striction en tenant compte de la dispersion expérimentale. Le modèle de Riedel couplant croissance de cavités par diffusion lacunaire et germination continue est utilisé afin de prédire l’effet de l’endommagement intergranulaire sur la durée de vie des aciers 316L(N). Les durées de vie sont correctement prédites par ce modèle pour le fluage à long terme quelle que soit l'acier austénitique étudié et la température appliquée (525°C-700°C). En tenant compte du régime de vitesse basse contrainte de la loi de Norton, le modèle de Riedel permet de prédire la durée de vie de fluage jusqu'à 25 ans. Aucun paramètre ajusté n’a été utilisé dans le modèle de Riedel. Mais le taux de nucléation de cavités doit être déduit des mesures de densité de cavités à partir des observations MEB-FEG. La cavitation se produit principalement aux interfaces carbures M23C6 /matrice austénitique. L'effet de l'hétérogénéité de la microstructure sur les concentrations de contraintes à l’interface matrice/précipité est simulé par la méthode des éléments finis (logiciel Cast3M). Elle vise à déterminer la distribution des champs de contraintes normales autour de précipités et à prédire numériquement le taux de nucléation de cavités. Les caractéristiques des précipités et le comportement en fluage de la matrice austénitique sont conjointement pris en compte. Les simulations numériques sont en accord avec les observations de sites préférentiels de micro-cavitation. / The creep fracture of 316L(N) austenitic SSs has been studied both experimentally and theoretically for high temperatures and lifetimes up to nineteen years. For short term creep, experimental lifetimes are predicted by the necking model taking into account scatter in input parameters. The Riedel modeling of cavity growth by vacancy diffusion along grain boundaries coupled with continuous nucleation is then carried out. Lifetimes are predicted fairly well using this model for long term creep failure whatever the considered austenitic SSs and the applied temperature (525°C - 700°C). Taking into account low and high stress regimes of the Norton-power law, the Riedel model allows us to predict the creep lifetimes in agreement with literature results up to 25 years. No fitted parameter has been used as applying the Riedel model. But the cavity nucleation rate should be deduced from cavity density measurements using FEG-SEM observations. The intergranular cavitation occurs mainly at M23C6 carbides / austenitic matrix interfaces. That is why the effect of the heterogeneity of the microstructure at the matrix/precipitate interface stress concentrations is simulated by the finite element method (Cast3M software). It aims to determine the distribution of normal stress fields around precipitates and to predict the cavity nucleation rate. The features of the precipitates and the creep behavior of the austenitic matrix are both taking into account. Numerical simulations are in agreement with the observations of preferential sites cavitation.

Page generated in 0.1324 seconds