• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 7
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 29
  • 29
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Evaluation environnementale des systèmes agricoles urbains en Afrique de l'Ouest : Implications de la diversité des pratiques et de la variabilité des émissions d'azote dans l'Analyse du Cycle de Vie de la tomate au Bénin / Environmental assessment of urban agricultural systems in West Africa : Implications of the diversity of practices and the variability of nitrogen emissions for the Life Cycle Assessment of tomato from Benin

Perrin, Aurélie 20 December 2013 (has links)
L’agriculture urbaine représente une opportunité de réduire la pauvreté et d’améliorer la sécurité alimentaire des habitants des villes d’Afrique de l’Ouest. L’objectif général de cette thèse est de produire des données d’inventaire représentatives ainsi qu’une évaluation environnementale robuste de ces systèmes de production par la méthodologie Analyse du Cycle de Vie (ACV). Notre cas d’étude a été la tomate des jardins urbains au Bénin. Notre état de l’art nous a permis d’identifier que prendre en compte la diversité des systèmes de production et la variabilité des émissions au champ étaient deux enjeux majeurs de l’ACV des produits maraîchers. Nous avons donc développé un protocole de collecte de données basé sur la typologie qui prend en compte la diversité des systèmes puis mis au point une méthode d’estimation des flux d’azote au champ combinant un bilan d’azote et l’usage d’un modèle biophysique. Nous avons ainsi créé des inventaires pour 6 types de systèmes et une moyenne pondérée représentative de la population étudiée. L’analyse des performances agronomiques de ces systèmes a montré une forte variabilité des rendements et une utilisation fluctuante et souvent excessive d’engrais et de pesticides. L’exploration de la variabilité des flux d’azote à l’échelle de la parcelle et du cycle de culture a permis l’identification de 4 facteurs majeurs: les volumes d’eau d’irrigation, la dose d’azote, le pH du sol et la capacité au champ. A l’aide de scénarios favorables et défavorables aux émissions pour chacun de ces 4 facteurs, nous avons montré que leurs effets sur les résultats d’ACV étaient importants. L’intégration de ces données dans une ACV finalisée a montré qu’un hectare de production de tomate au Bénin était plus impactant que les productions maraichères Européennes. Les avantages du climat favorable du sud Bénin à la production de tomate en contre saison sont annulés par les faibles performances des systèmes d’irrigation, l’usage fréquent d’insecticides et d’importantes émissions azotées. Des données mesurées et des connaissances nouvelles sont nécessaires sur ces systèmes pour valider et affiner nos conclusions. / Urban agriculture provides opportunities to reduce poverty and ensure food safety for cities inhabitants in West Africa. The general objective of this thesis is producing representative inventories and a robust environmental assessment for those production systems using the Life Cycle Assessment (LCA) methodology. Our case study was the tomato production in urban gardens in Benin. Our state of the art identified the integration of the diversity of systems and the variability of field emissions as two major challenges for the LCA of vegetable products. We therefore developed a typology-based protocol to collect cropping systems data that includes their diversity and an approach combining a nitrogen budget and the use of a biophysical model to estimate nitrogen field emissions. We created inventories for 6 cropping system types and one weighted mean representative for the urban tomato growers in Benin. The analysis of the agronomical performances of these systems highlighted the important yield variability and the variable and often excessive use of pesticides and fertilizers. The investigation of nitrogen fluxes variability at plot and crop cycle scales led to the identification of 4 major influencing factors: water use, nitrogen input, soil pH and field capacity. Using favorable and unfavorable scenarios for nitrogen emissions for each of these 4 factors, we demonstrated that the LCA results were sensitive to their variations. The implementation of LCA using those contrasted data showed that one hectare of tomato production in Benin was more impacting than European vegetable productions. The benefits from the favorable climate for producing out-of-season tomatoes were hampered by the low efficiency of irrigations systems, the frequent use of insecticides and large nitrogen emissions. Measured data and new knowledge on these systems are needed to validate and refine our conclusions.
22

Conception et évaluation d’idéotypes variétaux et culturaux en orge d’hiver brassicolepour des conduites culturales à bas niveau d’intrants : approche par expérimentation et modélisation / Design and evaluation of management and barley malting cultivars adapted to low-input systems : an experimental and model approach

Beillouin, Damien 29 September 2017 (has links)
La France est l’un des premiers producteurs européens d’orge brassicole (Hordeum vulgare L.) et le premier exportateur mondial de malt. La production d’orge brassicole repose actuellement sur une utilisation massive d’intrants de synthèse et entraîne comme d’autres grandes cultures des impacts négatifs sur l’environnement et la santé des consommateurs. Ce travail a pour objectif de concevoir et d’évaluer des variétés et des itinéraires techniques pour cette espèce permettant une production quantitative et qualitative élevée avec un moindre recours aux intrants de synthèse. À partir d’un réseau d’essai multilocal, nous montrons que la teneur en protéines et le rendement calibré (poids des grains >2.5 mm) des orges brassicoles doivent être spécifiquement améliorés pour les conduites techniques en bas niveau d’intrants. Sur cette base, nous avons identifié les caractéristiques variétales favorables à une faible perte de teneur en protéines et de rendement calibré en situation de stress azoté.Puis, après avoir développé un modèle de culture adapté à cette espèce, nous avons identifié des stratégies de fertilisation azotées offrant les meilleurs compromis entre production quantitative et qualitative, tout en minimisant les pertes en azote vers l’environnement. Grâce à une caractérisation précise des environnements de production français, les meilleures stratégies de fertilisation azotée ont été identifiées localement. Enfin, nous avons identifié de nouvelles combinaisons de caractéristiques variétales permettant d’optimiser la production d’orge dans des situations d’intrants réduits. Nous montrons in silico, qu’adapter simultanément les caractéristiques variétales et de l’itinéraire technique permet d’atteindre des performances comparables aux variétés actuelles dans des itinéraires techniques avec recours intensif aux intrants. Nous discutons des méthodes de sélection adaptées pour identifier les variétés les plus performantes dans des situations d’intrant réduit. Enfin, nous revenons sur la démarche de conception mobilisée. / France is the largest European producer of malting barley (Hordeum vulgare L.) and the leading exporter of malt worldwide, accounting for 20% of world trade. French barley production has relied heavily on the use of synthetic inputs and has led, as other arable crops, to considerable environmental damage. The aim of this study is to design and evaluate crop and management ideotype adapted to a lower use of synthetic fertilizer. From a multi-environment trial, we conclude that the grain protein content and the calibrated yield (weight of grains >2.5 mm) have to be specifically improved in low-input management systems. We experimentally identified genotypic characteristics adapted to a low grain protein content loss and calibrated yield loss under N stress. With a crop model we adapted to malting barley, we also identified optimal N fertilization strategies allowing to reach high quantitative and qualitative performances whilst minimizing N losses toward the environment. Based on a precise characterization of environments the French barley belt, the best N fertilization strategies were identified for different regions. Finally, we identified new combinations of genotypic characteristics optimizing quantitative and qualitative performances in low management system. We showed that, in silico, a simultaneous adaptation of genotypic characteristics and optimization of N fertilization management allowed to reach similar performances as current genotypes in high-input management systems. We discuss methods to breed genotypes with high performances in low-input systems and the method used for innovative design of new management and barley malting cultivars adapted to low-input systems.
23

Modeling Impacts of Climate Change on Crop Yield

Hu, Tongxi January 2021 (has links)
No description available.
24

Improving crop models with respect to yield variability and climate extremes as a precondition for food security assessments

Schauberger, Bernhard 23 February 2018 (has links)
Die Ernährungssicherheit ist bedroht, unter anderem durch den Klimawandel. Eine Zunahme der Wetterextreme kann zu deutlichen Ertragseinbußen führen. Deshalb ist eine Quantifizierung des Klimaeinflußes auf die Landwirtschaft nötig um eine rechtzeitige Anpassung zu ermöglichen. Die vorliegende Dissertation schlägt daher Verbesserungen für Ertragsmodelle in Bezug auf Klimaextreme vor. Der erste Teil ist eine Metastudie zur Strukturierung von Wissen. Eine neue Methode wird zum Aufbau eines enzyklopädischen Netzwerks verwendet. Dieses erlaubt Vorschläge zur Modellverbesserung abzuleiten. Zwei davon, Ozonschäden und extreme Temperaturen, werden folgend behandelt. Der zweite Teil behandelt Ertragseinbußen durch Ozon. Das Ertragsmodell LPJmL wird um Ozonstress erweitert und damit globale Ertragseinbußen bei Weizen und Soja abgeschätzt. Wasserdargebot, Temperatur und CO2-Konzentration werden berücksichtigt, im Gegensatz zu früheren Abschätzungen. Laut Analyse kann Ozon zu Ernteeinbußen von bis zu 50% führen. Der dritte Teil behandelt Schäden durch hohe Temperaturen. Es wird untersucht, inwieweit neun Modelle die Effekte von Hitze auf Mais, Soja und Weizen in den USA abbilden. Das Modellkollektiv kann beobachtete Verluste quantitativ reproduzieren und legt Wasserstress als Ursache dafür nahe. Erhöhte CO2-Konzentrationen können laut Modellen die Ernteeinbußen nicht verringern, im Gegensatz zu gegenwärtigen Überzeugungen. Der vierte Teil enthält ein statistisches Modell, mit dem der Anteil des Wetters an globalen Ertragsschwankungen berechnet wird – unter Berücksichtigung von Hitze- und Froststress. Dieser Anteil wird bei Mais, Soja und Weizen global auf 15-42% beziffert. Weitere Ergebnisse zeigen über 50% Vorhersagekraft des Modells bereits zwei Monate vor der Ernte. Die vorliegende Arbeit stellt die negativen Einflüsse von Ozon und Hitze für die Landwirtschaft und damit die Ernährungssicherheit heraus. Die Vorteile der Anwendung mehrerer Modelltypen werden hervorgehoben. / Agricultural production and thus food security are under pressure, in particular by climate change. Climate extremes are likely to increase and may diminish harvests. Hence it is decisive to quantify such impacts. Consequently, this thesis aims at improving crop models with respect to climate extremes. The first part is a meta-study for structuring knowledge on crop physiology. A novel method is used to build a network-based encyclopedia. This allows for deducing improvement suggestions for crop models. Two of these suggestions (ozone and extreme temperatures) are treated in the following. The second part analyses crop losses from ozone damage. The crop model LPJmL is enhanced by ozone stress and used to simulate global historical wheat and soybean yield losses. Crop water status, temperature and CO2 are considered as modulators of ozone damage – an improvement over previous global assessments. The analysis indicates that ozone can cause yield losses up to occasional 50%. The third part treats effects of high temperatures on yields. It is assessed to what extent nine crop models can reproduce effects of heat on maize, soybean and wheat yields in the US. The model ensemble simulates observed yield losses in the correct quantities and suggests that they stem from water stress. It is hypothesized that future US yields could suffer from heat losses even under elevated CO2, contrary to current convictions. The fourth part describes a statistical model to assess the global share of weather-driven yield variability, considering heat and frost stress. The influence of weather on yield variability of maize, wheat and soybeans is quantified as 15-42% globally. Results also suggest a yield forecasting capacity of more than 50% two months before harvest in several countries. This thesis underlines the negative influence of ozone and high temperature stress on agricultural production and, consequently, food security. The benefits of using diverse types of models are highlighted.
25

Estimation of Root Zone Soil Hydraulic Properties by Inversion of a Crop Model using Ground or Microwave Remote Sensing Observations

Sreelash, K January 2014 (has links) (PDF)
Good estimates of soil hydraulic parameters and their distribution in a catchment is essential for crop and hydrological models. Measurements of soil properties by experimental methods are expensive and often time consuming, and in order to account for spatial variability of these parameters in the catchment, it becomes necessary to conduct large number of measurements. Estimation of soil parameters by inverse modelling using observations on either surface soil moisture or crop variables has been successfully attempted in many studies, but difficulties to estimate root zone properties arise for heterogeneous layered soils. Although extensive soil data is becoming more and more available at various scales in the form of digital soil maps there is still a large gap between this available information and the input parameters needed for hydrological models. Inverse modeling has been extensively used but the spatial variability of the parameters and insufficient data sets restrict its applicability at the catchment scale. Use of remote sensed soil moisture data to estimate soil properties using the inverse modeling approach received attention in recent years but yielded only an estimate of the surface soil properties. However, in multilayered and heterogeneous soil systems the estimation of soil properties of different layers yielded poor results due to uncertainties in simulating root zone soil moisture from remote sensed surface soil moisture. Surface soil properties can be estimated by inverse approach using surface soil moisture data retrieved from remote sensing data. Since soil moisture retrieved from remote sensing is representative of the top 5 cm only, inversion of models using surface soil moisture cannot give good estimates of soil properties of deeper layers. Crop variables like biomass and leaf area index are sensitive to the deeper layer soil properties. The main focus of this study is to develop a methodology of estimation of root zone soil hydraulic properties in heterogeneous soils by crop model based inversion techniques. Further the usefulness of the radar soil moisture and leaf area index in retrieving soil hydraulic properties using the develop approach is be tested in different soil and crop combinations. A brief introduction about the soil hydraulic properties and their importance in agro-hydrological model is discussed in Chapter 1. Soil water retention parameters are explained in detail in this chapter. A detailed review of the literature is presented in chapter 2 to establish the state of art on the following: (i) estimation of soil hydraulic properties, (ii) role of crop models in estimating soil hydraulic properties, (iii) retrieval of surface soil moisture using water cloud model from SAR data, (iv) retrieval of leaf area index from SAR (synthetic aperture radar) data and (v) modeling of root zone soil moisture and potential recharge. The thesis proposes a methodology for estimating the root zone soil hydraulic properties viz. field capacity, wilting point and soil thickness. To test the methodology developed in this thesis for estimating the soil hydraulic properties and their uncertainty, three synthetic experiments were conducted by inversion of STICS (Simulateur mulTIdiscplinaire pour les Cultures Standard) model for maize crop using the GLUE (Generalized Likelihood Uncertainty Estimation) approach. The estimability of soil hydraulic properties in a layer-wise heterogeneous soil was examined with several sets of likelihood combinations, using leaf area index, surface soil moisture and above ground biomass. The robustness of the approach is tested with parameter estimation (model inversion) in two different meteorological conditions. The details of the numerical experiments and the several likelihood and meteorological cases examined are given in Chapter 3. The likelihood combination of leaf area index and surface soil moisture provided consistently good estimates of soil hydraulic properties for all soil types and different meteorological cases. Relatively wet year provided better estimates of soil hydraulic properties as compared with a dry year. To validate the approach of estimating root zone soil properties and to test the applicability of the approach in several crops and soil types, field measurements were carried out in the Berambadi experimental watershed located in the Kabini river basin in south India. The profile soil measurements were made for every 10 cm upto 1 m depth. Maize, Marigold, Sunflower, Sorghum and Turmeric crops were monitored during the four year period from 2010 to 2013. Crop growth parameters viz. leaf area index, above ground biomass, yield, phenological stages and crop management activities were measured/monitored at 10 day frequency for all the five crops in the study area. The details of the field experiments performed, the data collected and the results of the model inversion using the ground measured data are given in Chapter 4. The likelihood combination of leaf area index and surface soil moisture provided consistently lower root mean square error (1.45 to 2.63 g/g) and uncertainty in the estimation of soil hydraulic properties for all soil crop and meteorological cases. The uncertainty in the estimation of soil hydraulic properties was lower in the likelihood combination of leaf area index and soil moisture. Estimability of depth of root zone showed sensitivity to the rooting depth. Estimating root zone soil properties at field plot scale using SAR data (incidence angle 24o, wave length 5.3 GHz) of RADARSAT-2 is presented in the Chapter 5. In the first step, an approach of estimating leaf area index from radar vegetation index using the parametric growth curve of leaf area index and the retrieval of soil moisture using water cloud model are given in Chapter 5. The parameters of the growth curve and the leaf area index are generated using a time series of RADARSAT-2 for two years 2010-2011 and 2011-12 for the crops (maize, marigold, sunflower, sorghum and turmeric) considered in this study. The surface soil moisture is retrieved using the water cloud model, which is calibrated using the ground measured values of leaf area index and surface soil moisture for different soils and crops in the study area. The calibration and validation of LAI and water cloud models are discussed in this Chapter. Eventually, the retrieved leaf area index and surface soil moisture from RADARSAT-2 data were used to estimate the soil hydraulic properties and their uncertainty in a similar manner as discussed in Chapter 4 for various crop and soil plots and the results are presented in Chapter 5. The mean and uncertainty in the estimation of soil hydraulic properties using inversion of remote sensing data provided results similar to the estimates from inversion of ground data. The estimates of soil hydraulic properties compared well (R2 of 0.7 to 0.80 and RMSE of 2.1 to 3.16 g/g) with the physically measured vales of the parameters. In Chapter 6, root zone soil moisture and potential recharge are modelled using the STICS model and the soil hydraulic parameters estimated using the RADARSAT-2 data. The potential recharge is highly sensitive to the water holding capacity of rooting zone. Variability in the root zone soil moisture for wet and dry years for different soil types on irrigated and non-irrigated crops were investigated. Potential recharge from different crop and soil types were compared. The uncertainty in the estimation of potential recharge due to uncertainty in the estimation of field capacity is quantified. The root zone soil moisture modeled by STICS showed good agreement with the measured root zone soil moisture in all crop and soil cases. This was tested for both dry and wet year and provides similar results. The temporal variability of root zone soil moisture was also modeled well by the STICS model; the model also predicted well the intra-soil variability of soil moisture of root zone. The results of the modeling of root zone soil moisture and potential recharge are presented in Chapter 6. At the end, in Chapter 7, the major conclusions drawn from the various chapters are summarized.
26

Prédictions génomiques des interactions Génotype x Environnement à l'aide d'indicateurs agro-climatiques chez le blé tendre (Triticum aestivum L.) / Genomic Predictions of Genotype x Environment interactions using weather data in wheat (Triticum aestivum L.)

Ly, Delphine 25 January 2016 (has links)
Un des principaux enjeux de l’amélioration des plantes consiste aujourd’hui à faire face au changement climatique, en assurant un rendement élevé et plus stable dans des systèmes agricoles économes en intrants (eau, fertilisants) et respectueux de l’environnement. Les nouvelles variétés de blé devront non seulement être tolérantes aux stress hydriques et aux fortes températures, mais aussi continuer à être productives avec des apports limités en fertilisation, tout en maintenant une qualité du grain adaptés aux différents usages. De nouvelles méthodes de prédiction des réponses des blés à ces stress sont indispensables pour avancer dans cette direction. Dans ce travail, nous avons tout d’abord identifié les stress qui régissaient les interactions entre génotypes et les environnements (GxE) dans les essais considérés, puis développé un modèle génomique de l’adaptation à un stress environnemental (Factorial Regression genomic Best Linear Unbiased Prediction ou FR-gBLUP), en particulier pour le stress hydrique. En émettant l’hypothèse que plus des variétés de blés sont génétiquement proches, plus elles répondront de façon similaire à un stress environnemental donné, nous avons mesuré par validation croisée des gains de précision de prédiction par rapport à un modèle additif variant entre 3.5% et 15.4%. Des simulations complètent l’étude en démontrant que plus la part de variance expliquée par les réponses au stress considéré est importante, plus le modèle FR-gBLUP apporte un gain de précision. Pour prédire les réponses variétales à un stress particulier, les environnements doivent être finement caractérisés pour les stress limitant le développement des plantes. En nous intéressant plus particulièrement au stress azoté en France, nous avons établi des indicateurs de stress à partir d’un modèle de culture, et les avons comparés à des indicateurs classiques, tels que le type de conduite azotée ou l’azote disponible. Nous avons ainsi mis en évidence l’intérêt des modèles de culture pour caractériser les interactions GxE et pour prédire la réponse génomique au stress azoté, à condition que le signal d’interaction soit assez fort. Au-delà de l’application potentielle de ces méthodes pour la sélection ou la recommandation de variétés de blés plus adaptées ou plus résistantes au changement climatique, les résultats de ce travail démontrent aussi l’intérêt de la complémentarité des approches éco-physiologiques et génétiques. / In a climate change context, assuring high and stable yield in more sustainable agricultural systems is a major challenge for plant breeding. We are aiming for future wheat varieties which will be heat and drought tolerant, and also productive in limited fertilization input environments. New prediction methods of the response to these stresses are needed to move forward. In this study, we first identified stresses that generated interactions between genotypes and environments (GxE) in our experimental trials and then developed a genomic model for adaptation to a particular environmental stress (Factorial Regression genomic Best Linear Unbiased Prediction ou FR-gBLUP), in our case drought. This model hypothesizes that the more individuals are genetically close, the more their response to a stress will resemble. We used cross-validations to measure prediction accuracy gains compared to an additive model and observed gains between 3.5% and 15.4%. Besides, simulation studies showed that the more the variance explained by the responses to the stress is important, the more the FR-gBLUP model will improve the additive model. Furthermore, fine characterization of the stresses limiting the plants’ growth is required to predict varietal responses to a particular stress. We focused on the particular case of nitrogen stress in France. By establishing crop model based stress indicators and comparing them to classical indicators, such as the management system or the available nitrogen, we pointed out the interest of crop model to characterize GxE interactions and to predict the genomic response to nitrogen stress, as long as the GxE interaction signal is strong enough. Beyond the potential applications of these methods for breeding or recommendation for varieties more adapted or tolerant to environmental stresses, this study also raises the interest of coupling eco-physiological and genetics approaches.
27

Inversion d’un modèle de culture pour estimer spatialement les propriétés des sols et améliorer la prédiction de variables agro-environnementales / Inversion of a crop model for estimating spatially the soil properties and improving the prediction of agro-environmental variables

Varella, Hubert Vincent 15 December 2009 (has links)
Les modèles de culture constituent des outils indispensables pour comprendre l’influence des conditions agropédoclimatiques sur le système sol-plante à différentes échelles spatiales et temporelles. A l’échelle locale de la parcelle agricole, le modèle peut être utilisé dans le cadre de l’agriculture de précision pour optimiser les pratiques de fertilisation azotée de façon à maximiser le rendement ou le revenu tout en minimisant le lessivage des nitrates vers la nappe. Cependant, la pertinence de l’utilisation du modèle repose sur la qualité des prédictions réalisées, basée entre autres sur une bonne détermination des paramètres d’entrée du modèle. Dans le cadre de l’agriculture de précision, les paramètres concernant les propriétés des sols sont les plus délicates à connaître en tout point de la parcelle et il existe très peu de cartes de sols permettant de les déterminer de manière précise. Néanmoins, dans ce contexte, on peut disposer d’observations acquises automatiquement sur l’état du système sol-plante, telles que des images de télédétection, les cartes de rendement ou les mesures de résistivité électrique du sol. Il existe alors une alternative intéressante pour estimer les propriétés des sols à l’échelle de la parcelle qui consiste à inverser le modèle de culture à partir de ces observations pour retrouver les valeurs des propriétés des sols. L’objectif de cette thèse consiste (i) dans un premier temps à analyser les performances d’estimation des propriétés des sols par inversion du modèle STICS à partir de différents jeux d’observations sur des cultures de blé et de betterave sucrière, en mettant en oeuvre une méthode bayésienne de type Importance Sampling, (ii) dans un second temps à mesurer l’amélioration des prédictions de variables agro-environnementales réalisées par le modèle à partir des valeurs estimées des paramètres. Nous montrons que l’analyse de sensibilité globale permet de quantifier la quantité d’information contenue dans les jeux d’observations et les performances réalisées en matière d’estimation des paramètres. Ce sont les propriétés liées au fonctionnement hydrique du sol (humidité à la capacité au champ, profondeur de sol, conditions initiales) qui bénéficient globalement de la meilleure performance d’estimation par inversion. La performance d’estimation, évaluée par comparaison avec l’estimation fournie par l’information a priori, dépend fortement du jeu d’observation et est significativement améliorée lorsque les observations sont faites sur une culture de betterave, les conditions climatiques sont sèches ou la profondeur de sol est faible. Les prédictions agro-environnementales, notamment la quantité et la qualité du rendement, peuvent être grandement améliorées lorsque les propriétés du sol sont estimées par inversion, car les variables prédites par le modèle sont également sensibles aux propriétés liées à l’état hydrique du sol. Pour finir, nous montrons dans un travail exploratoire que la prise en compte d’une information sur la structure spatiale des propriétés du sol fournie par les mesures de résistivité électrique, peut permettre d’améliorer l’estimation spatialisée des propriétés du sol. Les observations acquises automatiquement sur le couvert végétal et la résistivité électrique du sol se révèlent être pertinentes pour estimer les propriétés du sol par inversion du modèle et améliorer les prédictions des variables agro-environnementales sur lesquelles reposent les règles de choix des pratiques agricoles / Dynamic crop models are very useful to predict the behavior of crops in their environment and are widely used in a lot of agro-environmental work. These models have many parameters and their spatial application require a good knowledge of these parameters,especially of the soil parameters. These parameters can be estimated from soil analysis at different points but this is very costly and requires a lot of experimental work. Nevertheless,observations on crops provided by new techniques like remote sensing or yield monitoring, is a possibility for estimating soil parameters through the inversion of crop models. In my work, the STICS crop model is studied for the wheat and the sugar beet and it includes more than 200 parameters. After a previous work based on a large experimental database for calibrate parameters related to the characteristics of the crop, I started my study with a global sensitivity analysis of the observed variables (leaf area index LAI and absorbed nitrogen QN provided by remote sensing data, and yield at harvest provided by yield monitoring) to the soil parameters, in order to determine which of them have to be estimated. This study was made in different climatic and agronomic conditions and it reveals that 7 soil parameters (4 related to the water and 3 related to the nitrogen) have a clearly influence on the variance of the observed variables and have to be therefore estimated. For estimating these 7 soil parameters, I chose a Bayesian data assimilation method (because I have prior information on these parameters) named Importance Sampling by using observations, on wheat and sugar beet crop, of LAI and QN at various dates and yield at harvest acquired on different climatic and agronomic conditions. The quality of parameter estimation is then determined by comparing the result of parameter estimation with only prio rinformation and the result with the posterior information provided by the Bayesian data assimilation method. The result of the parameter estimation show that the whole set of parameter has a better quality of estimation when observations on sugar beet are assimilated. At the same time, global sensitivity analysis of the observed variables to the 7 soil parameters have been performed, allowing me to build a criterion based on sensitivity indices (provided by the global sensitivity analysis) able to rank the parameters with respect to their quality of estimate. This criterion constitutes an interesting tool for determining which parameters it is possible to estimate to reduce probably the uncertainties on the predictions. The prediction of the crop behaviour when estimating the soil parameters is then studied. Indeed, the quality of prediction of agro-environmental variables of the STICS crop model (yield, protein of the grain and nitrogen balance at harvest) is determined by comparing the result of the prediction using the prior information on the parameters and the result using the posterior information. As for the estimation of soil parameters, the prediction of the variable is made on different climatic and agronomic conditions. According to the result of parameter estimation, assimilating observations on sugar beet lead to a better quality ofprediction of the variables than observations on wheat. It was also shown that the number ofcrop seasons observed and the number of observations improve the quality of the prediction
28

Connexion entre modèles dynamiques de communautés végétales et modèles architecture-fonction – cas du modèle GreenLab / Connection between plant community dynamics models and architectural-functional plant models – the GreenLab case

Feng, Lu 17 November 2011 (has links)
L'architecture des plantes est le résultat combiné des développements des structures topologique et géométrique qui interviennent dans l'acquisition de la biomasse et sa répartition sous l'influence des processus physiologiques. Pourtant cet aspect a été longtemps négligé dans la communauté des modèles dynamiques. Récemment les modèles structures fonction se sont montrés pertinents pour prendre en compte des questions comme les interactions plantes environnement (l'interception de la lumière), les interactions entre croissance et développement (répartition de la biomasse) en se plaçant au niveau de l'organe. Cependant les couts en calcul de la simulation numérique de ces processus rendent les applications impraticables en agriculture. Cette thèse vise a combiner le modèle structure fonction Greenlab avec d'une part un modèle de culture et d'autre part un modèle forestier basés sur le peuplement afin d'y introduire le concept d'architecture des plantes. Le modèle de culture Pilote fournit des prédictions de récoltes basés sur les paramètres de l'environnement (radiation, précipitations) et l'indice foliaire et l'indice de récolte. Une étude sur Maïs conjointe entre Pilote et GreenLab a permis d'expliciter en détail les paramètres de la production. Les indices foliaires et de récolte dépendent directement des paramètres sources puits, et la variabilité individuelle entre plantes est explicitée directement par les variations des retards a la germination et celles des surfaces disponibles par plantes (compétition spatiale). Tous ces paramétrés peuvent être calibré par méthodes inverses. Ainsi la jonction des deux types de modèles est réalisée au niveau du passage de la plante au peuplement.Une autre étude conjointe a été effectuée avec le modèle forestier empirique PNN qui modélise la croissance des peuplements forestiers de Pins noirs. A partir des données statistiques classiques sur les mesures de troncs et de houppiers, combinées avec les connaissances architecturales du Pin issues d'AMAP, GreenLab peut restituer l'architecture de l'arbre et visualiser des scenarios de sylviculture incorporant des élagages. Le procédé va jusqu'à l'obtention d'images de synthèse réalistes des peuplements. En conséquence il semble efficace de coupler les modèles de cultures et les modèles forestiers qui intègrent les connaissances écophysiologiques au niveau peuplement avec les modèles structures fonctions qui intègrent ces connaissances au niveau de l'architecture de la plante. Le modèle GreenLab par ses affinités avec ces deux types de modèles et ses performances en calcul, permet d'apporter un complément d'information essentiel sur la description du fonctionnement d'un peuplement tant du point de vue développement, que du point de vue des relations sources puits dans la plante. Enfin le modèle couplé a une plateforme comme Xplo (AMAP) permet en plus une simulation réaliste 3D du peuplement végétal aux divers stades de la croissance. / Plant architecture implies the development of both topological and geometrical structure over time, which determines resource acquisition, in the meantime interacts with physiological processes. However it has long been overlooked in traditional community dynamics models. Based on plant architecture, functional-structural plant models (FSPM) have showed their particular capability in addressing questions like interactions between plant and environment (e.g. light interception), between structure development and growth (e.g. carbon allocation), as they take into account morphogenesis with organ-level explicit descriptions. Anyway, high demand of time and memory for simulation and inverse calculation prevents FSPM from further agricultural or sylvicultural practice. This thesis attempts the combination of a mathematic FSPM GreenLab and a crop model or an empirical forest model (EFM) to introduce individual-based architectural support for community growth study. In the case of maize, disagreement from stand level (by crop model PILOTE) and individual level (by GreenLab) growth simulations implies different emergence time of individuals, which is used to quantify the distribution. By supposing that theoretical projective area (Sp) is determined by the growth situation and the final size of individual architecture, the variance of Sp is reversely computed with the variance of organ compartment measurements to characterize individual variability. In the case of Black pine, architecture dynamics built in GreenLab according to Rauh's model (architecture model for pine tree) are adapted to the simulation of an EFM PNN. As a consequence, thinning scenarios are well incorporated in the final stand visualization. From these preliminary applications, following conclusions can be drawn: (i) FSPM is able to provide individual performances (i.e. organ development and expansion) inside an area of crop field for crop models. (ii) The crop model may regulate the combined form of individuals from integral level. Both aspects are significant to deepen understanding of stand growth. (iii) Architecture conceptions integrated in FSPM may be adapted to EFM simulations for a data-driven visualization. (iv) EFM can guarantee ecological/sylvicultural function for 3D stand visualization. To take into consideration biomass processes, additional observations are needed. As models are independent in combinations, the same methods can be extended to linkage with other stand models.
29

Supporting climate risk management in tropical agriculture with statistical crop modelling

Laudien, Rahel 12 December 2022 (has links)
Die Anzahl der unterernährten Menschen in der Welt steigt seit 2017 wieder an. Der Klimawandel wird den Druck auf die Landwirtschaft und die Ernährungssicherheit weiter erhöhen, insbesondere für kleinbäuerliche und von Subsistenzwirtschaft geprägte Agrarsysteme in den Tropen. Um die Widerstandsfähigkeit der Ernährungssysteme und die Ernährungssicherheit zu stärken, bedarf es eines Klimarisikomanagements und Klimaanpassung. Dies kann sowohl die Antizipation als auch die Reaktion auf die Auswirkungen der globalen Erwärmung ermöglichen. Eine zentrale Rolle spielen in dieser Hinsicht landwirtschaftliche Modelle. Sie können die Reaktionen von Pflanzen auf Veränderungen in den Klimabedingungen quantifizieren und damit Risiken identifizieren. Diese Dissertation demonstriert anhand dreier in Peru, in Tansania und in Burkina Faso durchgeführten Fallstudien, wie statistische Ertragsmodelle das Klimarisikomanagement und die Anpassung in der tropischen Landwirtschaft unterstützen können. Während die erste Studie zeigt, wie Klimaanpassungsbestrebungen unterstützt werden können, werden in Studie zwei und drei statistische Modelle genutzt, um Ertrags- und Produktionsvorhersagen zu erstellen. Die Ergebnisse können dazu beitragen, Frühwarnsysteme für Ernährungsunsicherheit zu unterstützen. In den drei Veröffentlichungen werden neue Ansätze statistischer Ertragsmodellierung auf verschiedenen räumlichen Ebenen vorgestellt. Ein besonderer Fokus liegt hierbei auf der Weiterentwicklung von bisherigen Ertragsvorhersagen, insbesondere in Bezug auf unabhängige Modellvalidierungen, eine stärkere Berücksichtigung von Wetterextremen und die Übertragbarkeit der Modelle auf andere Regionen. / The number of undernourished people in the world has been increasing since 2017. Climate change will further exacerbate pressure on agriculture and food security, particularly for smallholder and subsistence-based farming systems in the tropics. Anticipating and responding to global warming through climate risk management is needed to increase the resilience of food systems and food security. Crop models play an indispensable role in this regard. They allow quantifying crop responses to changes in climatic conditions and thus identify risks. This dissertation demonstrates how statistical crop modelling can inform climate risk management and adaptation in tropical agriculture in the case studies of Peru, Tanzania and Burkina Faso. While the first study shows how statistical crop models can support climate adaptation, studies two and three provide yield and production forecasts. The results can contribute to supporting early warning systems on food insecurity. The three publications present novel approaches of statistical yield modelling at different spatial scales. A particular focus is on further developing existing yield forecasts, especially with regard to independent rigorous model validations, improved consideration of weather extremes, and the transferability of the models to other regions.

Page generated in 0.0874 seconds