• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 132
  • 52
  • 14
  • 10
  • 5
  • 4
  • 4
  • 3
  • Tagged with
  • 249
  • 249
  • 76
  • 66
  • 61
  • 51
  • 50
  • 45
  • 41
  • 39
  • 38
  • 34
  • 31
  • 25
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Pharmacomodulation anti-infectieuse en série 5-nitroimidazole : couplages pallado-catalysés et réactions par transfert monoélectronique. / Anti-infectious pharmacomodulation in 5-nitroimidazole serie : pallado-catalyzed cross-coupling and single electron transfer reactions

Neilde, Kevin 04 December 2014 (has links)
Ce travail s’inscrit dans la recherche de nouveaux 5-nitroimidazoles fonctionnalisés à visée thérapeutique. L’étude de la réactivité du 4-bromo-1,2-diméthyl-5-nitro-1H-imidazole vis-à-vis des réactions de couplages de Suzuki, Sonogashira et Stille a permis la synthèse de nouveaux 5-nitroimidazoles substitués en position 4. Par ailleurs, un couplage de Suzuki régiosélectif a pu être mis au point sur le 2,4-dibromo-1-méthyl-5-nitro-1H-imidazole permettant l’accès en une seule étape à des composés substitués à la fois en positions 2 et 4. Parmi les composés synthétisés via ces couplages pallado-catalysés, les dérivés chlorométhylés conjugués avec le groupement nitro ont été utilisés en tant que substrats pour l’étude de réactions par transfert monoélectronique (SRN1, TDAE). Ainsi, dans une seconde partie, nous décrivons la réaction entre le 4-(3-chloroprop-1-ynyl)-1,2-diméthyl-5-nitro-1H-imidazole et plusieurs anions nitronates dans des conditions de SRN1. Cette réactivité a pu être étendue au 2,4-bis(3-chloroprop-1-ynyl)-1-méthyl-5-nitro-1H-imidazole permettant la réalisation d’une bis-SRN1. La méthodologie TDAE a été mise en œuvre sur le 4-(3-chloroprop-1-ynyl)-1,2-diméthyl-5-nitro-1H-imidazole, avec de faibles rendements observés, contrairement à ceux obtenus avec le (E)-4-[4- (chlorométhyl)styryl]-1,2-diméthyl-5-nitro-1H-imidazole sur lequel plusieurs types d’électrophile ont pu être additionnés. Enfin, le pouvoir mutagène, ainsi que le potentiel de réduction des 5-nitroimidazoles synthétisés ont été déterminés. L’évaluation anti-infectieuse est actuellement en cours sur des souches de Giardia lamblia et sur une grande variété de bactéries anaérobies strictes. / This work focuses on the synthesis of novel functionalized 5-nitroimidazoles possessing therapeutic activities. New 4-substituted-5-nitroimidazoles were obtained using Suzuki, Stille or Sonogashira cross-coupling using the 4-bromo-1,2 dimethyl-5-nitro-1H-imidazole. Moreover, access to functionalized products at both 2 and 4 positions of imidazole ring was developed thanks to a regioselective Suzuki cross-coupling on the 2,4-dibromo-1-methyl-5-nitro-1H-imidazole. Among cross-coupling products, those possessing chloromethyle substituent conjugated with the nitro group, were employed as starting material in the single electron transfer reaction (SRN1, TDAE) studies. Therefore, in a second part, we described the reaction between the 4-(3-chloroprop-1-ynyl)-1,2-dimethyl-5-nitro-1H-imidazole and several nitronate anions in SRN1 conditions. This reactivity was applied to the 2,4-bis(3-chloroprop-1-ynyl)-1-méthyl-5-nitro-1H-imidazole allowing the formation of bis-SRN1 products. TDAE methodology was implemented on the 4-(3-chloroprop-1-ynyl)-1,2-dimethyl-5-nitro-1H-imidazole, however poor yields were observed. TDAE strategy on the (E)-4-[4-(chlorométhyl)styryl]-1,2-diméthyl-5-nitro-1H-imidazole were more successful, addition products with different electrophilic species were obtained. Finally, mutagenic power and potential of reduction of synthesized 5-nitroimidazole were assayed. The anti-infective properties of these novel 5-nitroimidazole are currently under investigation.
132

Organoferrate als Intermediate in Eisen-Katalysierten Kreuzkupplungsreaktionen / Organoferrates as Intermediates in Iron-Catalyzed Cross-Coupling Reactions

Parchomyk, Tobias 14 March 2019 (has links)
No description available.
133

Aplicação de reagentes organometálicos na funcionalização de indolizinas de interesse sintético / Application of organometallic reagents in the functionalization of indolizines of synthetic interest

Toledo, Mônica Franco Zannini Junqueira 30 January 2015 (has links)
Nos últimos anos, houve um aumento considerável dos estudos envolvendo o núcleo indolizínico, um entre os milhares de heterociclos existentes, sendo 2012 o ano de maior destaque, com 102 publicações. Esse crescente interesse é atribuído principalmente à busca por novos substratos funcionalizados que apresentem características medicinais e biológicas. Todavia, as indolizinas ainda são pouco exploradas se comparadas a outros núcleos heterocíclicos, principalmente no que diz respeito a sua funcionalização por emprego de reagentes organometálicos. Desta forma, o objeto deste trabalho foi o estudo da reatividade de diversas indolizinas perante diferentes organometálicos, por meio de reações de metalação dirigida, troca iodo-magnésio e acoplamento cruzado de Negishi com o intuito de construir indolizinas polifuncionalizadas. Assim sendo, inicialmente foi estudada a reatividade de bases organometálicas diante de algumas indolizinas e as reações de seus intermediários organometálicos com uma variedade de eletrófilos. Para tanto, as indolizinas foram divididas por posicionamento das funcionalizações, ou seja, indolizinas funcionalizadas na posição 1 do anel (-CO2Et, -CO2tBu e CN), indolizinas funcionalizadas na posição 2 do anel (-CO2Et, CN) e indolizinas funcionalizadas nas posições 1 e 3 do anel. Na sequência, foram estudadas as reações de troca iodo-magnésio diante das indolizinas funcionalizadas nas posições 1 e 3 e, por último, as reações de metalação dirigida com os substratos 2-arilindolizínicos seguidas por reações de acoplamento cruzado de Negishi. As moléculas sintetizadas nesta última etapa, por terem apresentado fortes propriedades fluorescentes, foram submetidas a um estudo minucioso sobre essas características. Essas estratégias sintéticas desenvolvidas no presente trabalho foram altamente eficientes, permitindo o preparo de uma série de compostos com grande diversidade estrutural, sendo sintetizadas 64 indolizinas polifuncionalizadas inéditas e 11 indolizinas polifuncionalizadas já descritas na literatura por meio de outras metodologias, com rendimentos variando de 15% a 87%. / In recent years, there has been a considerable increase in studies involving the indolizinic core, one of thousands of existing heterocycles, with 2012 being the most outstanding year, with 102 publications. This growing interest is mainly attributed to the search for new functionalized substrates that have medicinal and biological characteristics. However, indolizines are unexplored when compared to other heterocycles, particularly regarding their functionalization with the use of organometallic reagents. Thus, the object of this work was the reactivity study of several indolizines with different organometallics by means of directed metalation reactions, iodine-magnesium exchange and Negishi cross-coupling, in order to build functionalized poly-indolizines. Therefore, initially, it was investigated the reactivity of organometallic bases upon some indolizines and the reactions of their organometallic intermediates with a variety of electrophiles. To achieve this, indolizines were divided according to their function position, i.e. indolizines functionalized at position 1 of the ring (-CO2Et, CN and -CO2tBu), indolizines functionalized at position 2 of the ring (-CO2Et, CN) and functionalized at positions 1 and 3 of the ring. Furthermore, the iodine-magnesium exchange reactions of indolizines functionalized at positions 1 and 3 were studied and, finally, directed metalation reactions with 2-aryl indolizinic substrates followed by Negishi cross-coupling reactions were performed. The ultimate products of such reactions showed strong fluorescent properties and, for this reason, were subject of detailed studies on these characteristics. The synthetic strategies developed in this research were highly efficient, enabling the preparation of a large number of compounds with structural diversity, having been synthesized 64 novel poly-functionalized indolizines and 11 known poly-functionalized indolizines, with yields ranging from 15% to 87%.
134

Fonctionnalisation directe de liaisons C-H et couplages croisés pour la formation de liaisons C-C et C-N : synthèse de purines 6,8,9-trisubstituées / C-H bond direct functionalization and cross-coupling reactions for C-C and C-N bonds formation : synthesis of 6,8,9-trisubstituted purines

Vabre, Roxane 15 October 2013 (has links)
La grande variété de propriétés biologiques associées au noyau purine en fait une structure privilégiée pour la conception et la synthèse de nouvelles molécules à visée thérapeutique. Cette spécificité est étroitement liée à la grande diversité de substituants pouvant être introduits sur les différentes positions du noyau purine et en particulier sur C2, C6, C8 et N9. Par conséquent, le développement de méthodes de fonctionnalisation rapides de cette famille de composés est d’un grand intérêt synthétique. Nous nous sommes focalisés sur la formation de liaisons C-C et C-N sur les positions 6 et 8 du noyau purine pour pouvoir présenter de nouveaux outils de synthèse permettant d’introduire une plus grande diversité fonctionnelle. D’une part, nous avons étudié la fonctionnalisation directe de liaisons C-H de purines, sujet encore peu exploré. En effet, de nos jours, le traditionnel couplage croisé (Negishi, Suzuki-Miyaura), utilisé pour la création de liaisons C-C, se voit de plus en plus concurrencé par ces réactions puisqu’elles ne nécessitent pas la préparation d’un partenaire organométallique. Ce sont des réactions dites à économie d’atomes. En nous basant sur l’expérience du laboratoire dans le domaine de la fonctionnalisation directe de liaisons C-H, nous avons envisagé l’alcénylation et l’alcynylation directes en position 8 de la purine, les motifs alcényle et alcynyle étant présents dans certaines purines d’intérêt biologique. D’autre part, nous nous sommes intéressés à deux méthodes de couplage croisé pallado-catalysé permettant la formation de liaisons C-N et C-C : le couplage de Buchwald – Hartwig entre une 8-iodopurine et des amides ou des amines aromatiques, et le couplage de Liebeskind – Srogl entre une 6-thioétherpurine et divers acides boroniques. / Purine is the most widely distributed N-heterocycle scaffold in the nature and its derivatives are well known for their biological and fluorescent properties. These characteristics are linked to the diversity of substituents that can be introduced, especially on the C-2, C-6, C-8 and N-9 positions. Therefore, the development of methods for rapid functionalization of this family of compounds represent a valuable asset. We focused on the formation of C-C and C-N bonds at positions 6 and 8 of the purine ring in order to provide new synthesis tools allowing the introduction of functional diversity. On the one hand, we studied the direct functionalization of C-H bonds of purines, subject still little explored. Indeed, nowadays, traditional cross-coupling reactions (Negishi, Suzuki-Miyaura), used for the creation of C-C bonds, are increasingly challenged by these reactions since they do not require the preparation of an organometallic partner. Their advantage lies in step and atom economy. Based on previous experience in our laboratory in the field of direct functionalization of C-H bonds, we envisioned direct alkenylation and alkynylation at position 8 of the purine, knowing that alkenyl and alkynyl patterns are found in purines of biological interest. On the other hand, we were interested in two pallado-catalyzed cross-coupling methods for the formation of C-N and C-C bonds : Buchwald – Hartwig coupling between 8-iodopurine and aromatic amines or amides, and Liebeskind – Srogl coupling between 6-thioétherpurine and a range of boronic acids.
135

Des nosylates à la synthèse totale de diènediynes / From nosylates to the total synthesis of dienediynes

Dikova, Anna 23 September 2016 (has links)
La synthèse totale de la N1999-A2 représente un défi synthétique qui a intéressé plusieurs grandes équipes spécialisées dans ce domaine. L’approche synthétique envisagée repose sur le savoir-faire du laboratoire. Elle permet de former le cœur diènediyne dans les dernières étapes de la synthèse. Nous avons réussi à réaliser le premier couplage des deux synthons clefs, une avancée majeure dans le cadre de notre approche synthétique. Ce travail a aussi permis le développement de nouvelles méthodologies. Notamment les couplages croisés au palladium avec un nouveau type de partenaire électrophile stable : les nosylates d’aryle ou vinyle. Cette découverte permettra de compenser l’instabilité de plusieurs intermédiaires synthétiques clefs (triflates d’énol). / The total synthesis of N1999-A2 is a synthetic challenge which mobilized several renown groups specialized in this field. Our group is also interested in the construction of this complex molecule. Our strategy is based on the know-how of our laboratory. The considered synthetic approach permits the formation of the dienediyne core at the lasts steps of the synthesis. We managed to achieve the first coupling of the two key building blocks. This is a major advance in our synthetic approach. This project also allowed the development of new synthetic methodologies. In particular the palladium catalyzed cross-coupling reactions with aryl and vinyl nosylates, novel stable and reactive electrophilic partners. This discovery will allow us to bypass the extreme instability of several key intermediates (enol triflates).
136

Aplicação de reagentes organometálicos na síntese de novos derivados quinolínicos de interesse medicinal / Application of organometallic reagents in the synthesis of new quinoline derivatives of medicinal interest

Nicolino, Paula Valim 24 July 2015 (has links)
O núcleo quinolínico constitui uma das classes de heterociclos nitrogenados de maior destaque, pois são amplamente encontradas em produtos naturais, além de comporem a lista dos considerados esqueletos \"privilegiados\", relacionados com as diversas classes terapêuticas como: anticâncer, anticolinesterásicos, antimaláricos, etc. Diante das abordagens sintéticas de funcionalização de anéis heteroaromáticos, o uso de espécies organometálicas ocupa, hoje, uma posição central na química orgânica sintética, principalmente na formação de novas ligações carbono-carbono. Dessa forma, o presente trabalho explorou essencialmente a reatividade de quinolinas frente à reagentes organometálicos tais como alquil-lítio, amidetos de lítio, turbo-Grignard e amidetos mistos de magnésio e lítio. Inicialmente, foi estudada a funcionalização da 4,7- dicloroquinolina através da reação de metalação dirigida frente aos diferentes reagentes disponíveis. Em seguida, foi desenvolvida uma metodologia de troca iodo-magnésio para a 7-cloro-4-iodoquinolina visando a obtenção de derivados funcionalizados na posição C4 bastante estratégica para atividade antimalárica. Neste estudo foi utilizado o reagente turbo-Grignard para etapa de troca, seguida da reação com eletrófilos. Os compostos obtidos tiveram sua atividade antimalárica avaliada pelo grupo do Dr. Adrian M. Pohlit do Instituto Nacional de Pesquisas da Amazônia (INPA). A metodologia de troca iodomagnésio do turbo-Grignard frente à 7-cloro-4-iodoquinolina também foi aplicada para a obtenção de outros derivados por reações de acoplamento cruzado de Negishi, e na rota sintética de um híbrido molecular planejado com potencial atividade antimalárica. Além disso, foi estudada a reação de troca halogênio-metal da 3-bromoquinolina frente a reagentes de lítio seguida da reação com aldeídos. Por fim, algumas das estruturas sintetizadas também tiveram avaliação da atividade anticâncer realizada pelo grupo da Prof. Dra. Letícia Lotufo da Universidade Federal do Ceará. Portanto, foram demonstradas neste trabalho estratégias simples e eficientes utilizando reagentes organometálicos para funcionalização de quinolinas de interesse sintético e medicinal. / The quinoline unit is one of most important nitrogen heterocycle classes since it is found in a large number of natural products. Moreover, it is considered a privileged scaffold presenting a variety of pharmacologic activities such as: anti-cancer, anticholinesterase, antimalarial and others. Among the available aromatic heterocycle functionalization approaches, the organometallic chemistry have a prominent position mainly on the construction of new carbon-carbon bonds. In this context, this work have explored the quinoline reactivity against organometallic reagents like alkyl-lithium, lithium amides, turbo-Grignard and magnesium lithium amides. Initially, the functionalization of 4,7- dichloroquinoline was studied through the direct metalation reaction of the substrate with several available organometallic reagents. Afterwards, a new iodo-magnesium exchange methodology for the 7-chloro-4-iodoquinoline was developed in order to obtain C-4 functionalized quinoline derivatives. The turbo-Grignard was the reagent of choice in iodo-magnesium exchange reactions that were subsequently reacted with different electrophiles. The antimalarial activity of the compounds obtained in this study was evaluated by Dr. Adrian M. Pohlit group of National Institute of Amazon Research (INPA). The developed iodo-magnesium exchange methodology was further applied in Negishi cross-coupling reactions and on a synthetic study of a planned molecular hybrid with potential antimalarial activity. In addition, the halogen-metal exchange reaction on 3-bromoquinoline was studied using alkyl-lithium reagents with subsequent reaction with aldehydes. Finally, the anti-cancer activity of some of structures obtained in this work was evaluated by Prof. Dra Letícia Lotufo group of Federal University of Ceará
137

The Investigation of Oxidative Addition Reactions of Metal Complexes in Cross-Coupling Catalytic Cycles Based on a Unique Methodology of Coupled Ion/Ion-Ion/Molecule Reactions

Parker, Mariah L. 01 January 2018 (has links)
Popular catalytic cycles, such as the Heck, Suzuki, and Negishi, utilize metal centers that oscillate between two oxidation states (II/0) during the three main steps of catalysis: reductive elimination, oxidative addition, and transmetallation. There has been a push to use less toxic, cheaper metal centers in catalytic cycles, leading to interest in first-row transition metals, such as nickel and cobalt. With these metals, the cycles can potentially pass through the +1 oxidation state, which acts as reactive intermediates, undergoing oxidative additions to form products, potentially with radical characteristics. The oxidative addition steps of catalytic cycles are critical to determining overall rates and products, however in many cases, these steps have not been amenable to study, in either condensed phase or gas phase, in the past. Through the use of electron transfer dissociation (ETD) technology on a modified Thermo Electron LTQ XLTM mass spectrometer, it is possible to generate intermediates in these catalytic cycles, including those in unusual oxidation states. Using sequentially coupled ion/ion-ion/molecule reactions, the reduced, reactive intermediate can be readily generated, isolated, and studied.As a model set of reactions, the mono- and bis-phenanthroline complexes of Fe(I), Co(I), Ni(I), Cu(I), and Zn(I) were formed by reduction of the corresponding M(II) species in an ion/ion reaction with the fluoranthenyl radical anion. The chemistry of the M(I) species was probed in ion/molecule reactions with allyl iodide. In order to explore ligand effects and the scope of oxidative addition reagents further, bipyridine and terpyridine were studied with these five first-row transition metal complexes while using an acetate series and other substrates for oxidative additions. Through these studies, the roles of the metal and ligand in dictating the product distributions and reaction rates were assessed. Metal electron count, ligand flexibility, and coordination number are critical factors. The overall reactivity is in accord with density functional theory calculations and mirrors that of proposed intermediates in condensed-phase catalytic cycles. In addition, second- and third-row transition metals (Ru(I), Pd(I), and Pt(I)) were explored with bipyridine, mono- and bis-triphenylphosphine, and 1,2-bis(diphenylphosphino)benzene ligation schemes. A variety of oxidative addition reagents were surveyed to determine the scope of reactivity and preference toward metal-carbon bond formation or carbon radical formation.
138

Design and Synthesis of Novel HIV-1 Protease Inhibitors Comprising a Tertiary Alcohol in the Transition-State Mimic

Ekegren, Jenny January 2006 (has links)
<p>HIV-1 protease inhibitors are important in the most frequently used regimen for the treatment of HIV/AIDS, the highly active antiretroviral therapy (HAART). For patients with access to this treatment, an HIV infection is no longer lethal, but rather a manageable, chronic infection. However, the HIV-1 protease inhibitors are generally associated with serious shortcomings such as adverse events, development of drug resistance and poor pharmacokinetic properties. Most of the approved inhibitors suffer from high protein binding, rapid metabolism and/or low membrane permeability. </p><p>In this project, novel HIV-1 protease inhibitors comprising a rarely used tertiary alcohol in the transition-state mimic were designed, synthesized and evaluated. The rationale behind the design was to achieve ‘masking’ of the tertiary alcohol by for example, intramolecular hydrogen bonding, which was believed could enhance transcellular transport. </p><p>A reliable synthetic protocol was developed and a series of highly potent inhibitors was obtained exhibiting excellent membrane permeation properties in a Caco-2 cell assay. However, the cellular antiviral potencies of these compounds were low. In an attempt to improve the anti-HIV activity, microwave-accelerated, palladium-catalyzed cross-coupling reactions and aminocarbonylation of aryl bromide precursors were employed to produce P1'-extended test compounds. Inhibitors demonstrating up to six times higher antiviral effect were obtained, the best derivatives having para 3- or 4-pyridyl elongations in P1'.</p><p>Fast metabolic degradation was observed in liver microsome homogenate, which is believed, at least partly, to be attributable to benzylic oxidation of the indanol P2 group of the inhibitors. To enable facile variation of the P2 side chain a new synthetic route was developed using an enantiomerically pure, benzyl-substituted epoxy carboxylic acid as the key intermediate. Cyclic and amino-acid-residue-derived P2 groups were evaluated, and inhibitors equipotent to the series containing an indanol moiety were produced.</p>
139

Design and Synthesis of Novel HIV-1 Protease Inhibitors Comprising a Tertiary Alcohol in the Transition-State Mimic

Ekegren, Jenny January 2006 (has links)
HIV-1 protease inhibitors are important in the most frequently used regimen for the treatment of HIV/AIDS, the highly active antiretroviral therapy (HAART). For patients with access to this treatment, an HIV infection is no longer lethal, but rather a manageable, chronic infection. However, the HIV-1 protease inhibitors are generally associated with serious shortcomings such as adverse events, development of drug resistance and poor pharmacokinetic properties. Most of the approved inhibitors suffer from high protein binding, rapid metabolism and/or low membrane permeability. In this project, novel HIV-1 protease inhibitors comprising a rarely used tertiary alcohol in the transition-state mimic were designed, synthesized and evaluated. The rationale behind the design was to achieve ‘masking’ of the tertiary alcohol by for example, intramolecular hydrogen bonding, which was believed could enhance transcellular transport. A reliable synthetic protocol was developed and a series of highly potent inhibitors was obtained exhibiting excellent membrane permeation properties in a Caco-2 cell assay. However, the cellular antiviral potencies of these compounds were low. In an attempt to improve the anti-HIV activity, microwave-accelerated, palladium-catalyzed cross-coupling reactions and aminocarbonylation of aryl bromide precursors were employed to produce P1'-extended test compounds. Inhibitors demonstrating up to six times higher antiviral effect were obtained, the best derivatives having para 3- or 4-pyridyl elongations in P1'. Fast metabolic degradation was observed in liver microsome homogenate, which is believed, at least partly, to be attributable to benzylic oxidation of the indanol P2 group of the inhibitors. To enable facile variation of the P2 side chain a new synthetic route was developed using an enantiomerically pure, benzyl-substituted epoxy carboxylic acid as the key intermediate. Cyclic and amino-acid-residue-derived P2 groups were evaluated, and inhibitors equipotent to the series containing an indanol moiety were produced.
140

A Convenient Synthesis of Pyrrolnitrin and Related Halogenated Phenylpyrroles

MORRISON, MATTHEW 07 October 2009 (has links)
This thesis details a straightforward synthetic route to the antifungal compound pyrrolnitrin 1.2, along with several analogous halogenated phenylpyrroles. The proposed synthetic protocol involved the Suzuki-Miyaura cross-coupling of appropriately halogenated pyrrole pinacolboronate esters and aryl compounds. In the efforts towards preparing the cross-coupling partners, we report a regiospecific and high yielding synthesis of a 3-chloro pyrrole compound 2.14, its brominated analog 2.16, an iodinated analog 2.17, and the corresponding pinacolboronate ester 2.18. We also report a generalized reaction sequence (lithiation/carboxylation/Schmidt reaction/oxidation) for the preparation of halogenated benzoic acids, anilines and nitrobenzenes. In particular, we synthesized the desired halogenated nitrobenzene coupling partner 3.27 in excellent yield. We were also able to show that the conditions employed in this sequence were mild enough to allow preparation of the 2-bromo-6-iodo compound 3.33. Once the coupling partners were prepared, we developed the optimal conditions for our Suzuki-Miyaura cross-coupling reactions. In doing so, we were able to prepare our target compound 1.2 and several halogenated analogs in good yields. We also prepared brominated and deuterated arylpyrroles 4.27 and 4.28, respectively, for future use in mechanistic studies of the pyrrolnitrin biosynthetic enzymes, PrnB, Prn C and PrnD. This required preparation of the corresponding brominated and deuterated pyrrole pinacolboronate esters 4.24 and 4.26. / Thesis (Master, Chemistry) -- Queen's University, 2009-09-29 13:58:35.186

Page generated in 0.1376 seconds