Spelling suggestions: "subject:"crouzon"" "subject:"crouching""
1 |
Schémas numériques pour les modèles de turbulence statistiques en un pointLarcher, Aurélien 05 November 2010 (has links) (PDF)
Les modèles de turbulence de type Navier-Stokes en moyenne de Reynolds (RANS) au premier ordre sont étudiés dans cette thèse. Ils sont constitués des équations de Navier-Stokes, auxquelles on adjoint un système d'équations de bilan pour des échelles scalaires caractéristiques de la turbulence. L'évaluation de celles-ci permet, grâce à une relation algébrique, de calculer une viscosité additionnelle dite "turbulente", modélisant la contribution de l'agitation turbulente dans les équations de Navier-Stokes. Les problèmes d'analyse numérique abordés se placent dans le contexte d'un algorithme à pas fractionnaire constitué d'une approximation, sur un maillage régulier, des équations de Navier-Stokes par éléments finis non-conformes de Crouzeix-Raviart, ainsi que d'un ensemble d'équations de bilan de la turbulence de type convection-diffusion, discrétisées par la méthode de volumes finis standard. Un schéma numérique basé sur une discrétisation de volumes finis, permettant de préserver la positivité des échelles turbulentes telles que l'énergie cinétique turbulente (k) et son taux de dissipation (ε), est ainsi proposé dans le cas des modèles k − ε standard, k − ε RNG et leur extension k − ε − v2 − f. La convergence du schéma numérique proposé est ensuite étudiée sur un problème modèle constitué des équations de Stokes incompressibles et d'une équation de convection-diffusion stationnaires, couplées par les viscosités et le terme de production turbulente. Il permet d'aborder la difficulté principale de l'analyse d'un tel problème : l'expression du terme de production turbulente amène à considérer, pour les équations de bilan de la turbulence, un problème de convection-diffusion avec second membre appartenant à L1. Enfin, afin d'aborder le problème instationnaire, on montre la convergence du schéma de volumes finis pour une équation de convection-diffusion modèle avec second membre appartenant à L1. Les estimations a priori de la solution et de sa dérivée en temps sont obtenues dans des normes discrètes dont les espaces correspondants ne sont pas duaux. Un résultat de compacité plus général que le théorème de Kolmogorov usuel, qui se pose comme un équivalent discret du Lemme d'Aubin-Simon, est alors proposé et permet de conclure à la convergence dans L1 d'une suite de solutions discrètes.
|
2 |
Crouzeix's Conjecture and the GMRES AlgorithmLuo, Sarah McBride 13 July 2011 (has links) (PDF)
This thesis explores the connection between Crouzeix's conjecture and the convergence of the GMRES algorithm. GMRES is a popular iterative method for solving linear systems and is one of the many Krylov methods. Despite its popularity, the convergence of GMRES is not completely understood. While the spectrum can in some cases be a good indicator of convergence, it has been shown that in general, the spectrum does not provide sufficient information to fully explain the behavior of GMRES iterations. Other sets associated with a matrix that can also help predict convergence are the pseudospectrum and the numerical range. This work focuses on convergence bounds obtained by considering the latter. In particular, it focuses on the application of Crouzeix's conjecture, which relates the norm of a matrix polynomial to the size of that polynomial over the numerical range, to describing GMRES convergence.
|
3 |
Développement d'une méthode d'éléments finis multi-échelles pour les écoulements incompressibles dans un milieu hétérogène / Development of a multiscale finite element method for incompressible flows in heterogeneous mediaFeng, Qingqing 20 September 2019 (has links)
Le cœur d'un réacteur nucléaire est un milieu très hétérogène encombré de nombreux obstacles solides et les phénomènes thermohydrauliques à l'échelle macroscopique sont directement impactés par les phénomènes locaux. Toutefois les ressources informatiques actuelles ne suffisent pas à effectuer des simulations numériques directes d'un cœur complet avec la précision souhaitée. Cette thèse est consacré au développement de méthodes d'éléments finis multi-échelles (MsFEMs) pour simuler les écoulements incompressibles dans un milieu hétérogène avec un coût de calcul raisonnable. Les équations de Navier-Stokes sont approchées sur un maillage grossier par une méthode de Galerkin stabilisé, dans laquelle les fonctions de base sont solutions de problèmes locaux sur des maillages fins prenant précisément en compte la géométrie locale. Ces problèmes locaux sont définis par les équations de Stokes ou d'Oseen avec des conditions aux limites ou des termes sources appropriés. On propose plusieurs méthodes pour améliorer la précision des MsFEMs, en enrichissant l'espace des fonctions de base locales. Notamment, on propose des MsFEMs d'ordre élevée dans lesquelles ces conditions aux limites et termes sources sont choisis dans des espaces de polynômes dont on peut faire varier le degré. Les simulations numériques montrent que les MsFEMs d'ordre élevés améliorent significativement la précision de la solution. Une chaîne de simulation multi-échelle est construite pour simuler des écoulements dans des milieux hétérogènes de dimension deux et trois. / The nuclear reactor core is a highly heterogeneous medium crowded with numerous solid obstacles and macroscopic thermohydraulic phenomena are directly affected by localized phenomena. However, modern computing resources are not powerful enough to carry out direct numerical simulations of the full core with the desired accuracy. This thesis is devoted to the development of Multiscale Finite Element Methods (MsFEMs) to simulate incompressible flows in heterogeneous media with reasonable computational costs. Navier-Stokes equations are approximated on the coarse mesh by a stabilized Galerkin method, where basis functions are solutions of local problems on fine meshes by taking precisely local geometries into account. Local problems are defined by Stokes or Oseen equations with appropriate boundary conditions and source terms. We propose several methods to improve the accuracy of MsFEMs, by enriching the approximation space of basis functions. In particular, we propose high-order MsFEMs where boundary conditions and source terms are chosen in spaces of polynomials whose degrees can vary. Numerical simulations show that high-order MsFEMs improve significantly the accuracy of the solution. A multiscale simulation chain is constructed to simulate successfully flows in two- and three-dimensional heterogeneous media.
|
4 |
Stabilité de l'équation d'advection-diffusion et stabilité de l'équation d'advection pour la solution du problème approché, obtenue par la méthode upwind d'éléments-finis et de volumes-finis avec des éléments de Crouzeix-Raviart / Stability for the convection-diffusion problem and stability for the convection problem discretized by Crouzeix-Raviart finite element using upwind finite volume-finite element method / Stabilität des diffusions-konvektions-problems und stabilität des konvektions-problems für die losüng mittels upwind finite-elemente finte-volume methoden mit Crouzeix-Raviart elementeMildner, Marcus 30 May 2013 (has links)
On considère le problème d’advection-diffusion stationnaire v(∇u, ∇v)+( β•∇u, v) = (f, v) et non stationnaire d/dt (u(t), v) + v(∇u, ∇v)+( β•∇u, v) = (g(t), v), ainsi que le problème d’advection (β•∇u, v) = (f, v) sur un domaine polygonal borné du plan. Le terme de diffusion est approché par des éléments de Crouzeix Raviart et le terme de convection par une méthode upwind sur des volumes barycentriques finis avec un maillage triangulaire. Pour le problème stationnaire d’advection-diffusion, la L²-stabilité (c’est-à-dire indépendante du coefficient de diffusion v) est démontrée pour la solution du problème approché obtenue par cette méthode d’éléments finis et de volumes finis. Pour cela une condition sur la géométrie doit être satisfaite. Des exemples de maillages sont donnés. Toujours avec cette condition géométrique sur le maillage, une inégalité de stabilité (où la discrétisation en temps n’est pas couplée à une condition sur la finesse du maillage) est obtenue pour le cas non-stationnaire. La discrétisation en temps y est faite par un schéma d’Euler implicite. Une majoration de l’erreur, proportionnelle au pas en temps et à la finesse du maillage, est ensuite proposée et exprimée explicitement en fonction des données du problème. Pour le problème d’advection, une approche utilisant la théorie des graphes est utilisée pour obtenir l’existence et l’unicité de la solution, ainsi que le résultat de stabilité. Comme pour la stabilité du problème d’advection-diffusion, une condition géométrique - qui est équivalente pour les points intérieurs du maillage à celle du problème d’advection-diffusion - est nécessaire. / We consider the stationary linear convection-diffusion equation v(∇u, ∇v)+( β•∇u, v) = (f, v), the time dependent d/dt (u(t), v) + v(∇u,∇v)+( β•∇u, v)= (g(t), v) equation and the linear advection equation (β•∇u, v) = (f, v) on a two dimensional bounded polygonal domain. The diffusion term is discretized by Crouzeix-Raviart piecewise linear finite elements, and the convection term by upwind barycentric finite volumes on a triangular grid. For the stationary convection-diffusion problem, L²-stability (i.e. independent of the diffusion coefficient v) is proven for the approximate solution obtained by this combined finite-element finite-volume method. This result holds if the underlying grid satisfies a condition that is fulfilled, for example, by some structured meshes. Using again this condition on the grid, stability is shown for the time dependent convection-diffusion equation (without any link between mesh size and time step). An implicit Euler approach is used for the time discretization. It is shown that the error associated with this scheme decays linearly with the mesh size and the time step. This result holds without any link between mesh size and time step. The dependence of the corresponding error bound on the diffusion coefficient is completely explicit. For the stationary advection equation, an approach using graph theory is used to obtain existence, uniqueness and stability. As in the stationary linear convection-diffusion equation, the underlying grid must satisfy some geometric condition. / Gegenstand der Arbeit ist die zweidimensionale stationäre Konvektion-Diffusionsgleichung v(∇u, ∇v)+( β•∇u, v) = (f, v), die zeitabhängige Konvektion-Diffusionsgleichung d/dt (u(t), v) + v(∇u,∇v)+( β•∇u, v)= (g(t), v), sowie die Konvektionsgleichung (β•∇u, v) = (f, v). Der Diffusionsterm ist diskretisiert mittels Crouzeix-Raviart stückweise lineare Finite Elemente. Das Gebiet ist in Dreiecke unterteilt und der Konvektionsterm ist mittels einer upwind Methode auf Baryzentrische Finite Volumenelemente definiert. Für die stationäre Konvektion-Diffusionsgleichung, wird (d.h. von v unabhängige) L²-Stabilität der numerischen Lösung bewiesen. Voraussetzung dafür, ist die Erfüllung gewisser geometrischer Bedingungen an die Unterteilung des Gebiets. Beispiele von Unterteilungen die diese Bedingungen erfüllen, werden gegeben. Wieder an dieser geometrischen Bedingung geknüpft, wird Stabilität (d.h. die Zeitdiskretisierung ist entkoppelt von der Netzweite) für die zeitabhängige Konvektion-Diffusionsgleichung, bewiesen. Für die Zeitableitung wird dabei eine Implizite Euler Diskretisierung verwendet. Eine obere Schranke für den Diskretisierungsfehler, proportional zum Zeitdiskretisierungsparameter und zur Netzfeinheit, ausgedrückt als Funktion der Daten der Differenzialgleichung, wird gezeigt. Für die Konvektionsgleichung wird ein graphentheoretischer Zugang verwendet, der es ermöglicht Existenz, Eindeutigkeit und Stabilität, zu bekommen. Für die Stabilität, werden ähnliche geometrische Bedingungen an die Unterteilung des Gebiets gestellt, wie beim stationären Konvektion-Diffusionsproblem.
|
5 |
Modélisation des écoulement en milieux poreux fracturés : estimation des paramètres par approche inverse multi-échelleTrottier, Nicolas 16 May 2014 (has links) (PDF)
Ce travail a pour objectif de développer et d'appliquer une méthode originale permettant de simuler l'écoulement dans un milieu poreux fracturé. Cette méthode repose sur une approche multicouches double continuum permettant de séparer le comportement des différents aquifères présents sur un site. La résolution des écoulements, basée sur la méthode des Eléments Finis de Crouzeix-Raviart, est associée à une méthode inverse (minimisation de type Quasi-Newton combinée à la méthode de l'état adjoint) et à une paramétrisation multi-échelle.La méthode est appliquée dans un premier temps sur l'aquifère fracturé du site expérimental de Poitiers. Les résultats montrent une bonne restitution du comportement de l'aquifère et aboutissent à des champs de transmissivité plus réguliers par rapport à ceux de l'approche simple continuum. L'application finale est réalisée sur le site de Cadarache (taille plus importante et données d'entrée moins denses). Le calage des deux aquifères présents sur le site est satisfaisant et montre que ceux-ci se comportent globalement de façon indépendante. Ce calage pourra être amélioré localement grâce à données de recharge plus fines.
|
6 |
Stabilité de l'équation d'advection-diffusion et stabilité de l'équation d'advection pour la solution du problème approché, obtenue par la méthode upwind d'éléments-finis et de volumes-finis avec des éléments de Crouzeix-RaviartMildner, Marcus 30 May 2013 (has links) (PDF)
On considère le problème d'advection-diffusion stationnaire v(∇u, ∇v)+( β*∇u, v) = (f, v) et non stationnaire d/dt (u(t), v) + v(∇u, ∇v)+( β*∇u, v) = (g(t), v), ainsi que le problème d'advection (β*∇u, v) = (f, v) sur un domaine polygonal borné du plan. Le terme de diffusion est approché par des éléments de Crouzeix Raviart et le terme de convection par une méthode upwind sur des volumes barycentriques finis avec un maillage triangulaire. Pour le problème stationnaire d'advection-diffusion, la L²-stabilité (c'est-à-dire indépendante du coefficient de diffusion v) est démontrée pour la solution du problème approché obtenue par cette méthode d'éléments finis et de volumes finis. Pour cela une condition sur la géométrie doit être satisfaite. Des exemples de maillages sont donnés. Toujours avec cette condition géométrique sur le maillage, une inégalité de stabilité (où la discrétisation en temps n'est pas couplée à une condition sur la finesse du maillage) est obtenue pour le cas non-stationnaire. La discrétisation en temps y est faite par un schéma d'Euler implicite. Une majoration de l'erreur, proportionnelle au pas en temps et à la finesse du maillage, est ensuite proposée et exprimée explicitement en fonction des données du problème. Pour le problème d'advection, une approche utilisant la théorie des graphes est utilisée pour obtenir l'existence et l'unicité de la solution, ainsi que le résultat de stabilité. Comme pour la stabilité du problème d'advection-diffusion, une condition géométrique - qui est équivalente pour les points intérieurs du maillage à celle du problème d'advection-diffusion - est nécessaire.
|
7 |
Direct guaranteed lower eigenvalue bounds with quasi-optimal adaptive mesh-refinementPuttkammer, Sophie Louise 19 January 2024 (has links)
Garantierte untere Eigenwertschranken (GLB) für elliptische Eigenwertprobleme partieller Differentialgleichungen sind in der Theorie sowie in praktischen Anwendungen relevant. Auf Grund des Rayleigh-Ritz- (oder) min-max-Prinzips berechnen alle konformen Finite-Elemente-Methoden (FEM) garantierte obere Schranken. Ein Postprocessing nichtkonformer Methoden von Carstensen und Gedicke (Math. Comp., 83.290, 2014) sowie Carstensen und Gallistl (Numer. Math., 126.1, 2014) berechnet GLB. In diesen Schranken ist die maximale Netzweite ein globaler Parameter, das kann bei adaptiver Netzverfeinerung zu deutlichen Unterschätzungen führen. In einigen numerischen Beispielen versagt dieses Postprocessing für lokal verfeinerte Netze komplett. Diese Dissertation präsentiert, inspiriert von einer neuen skeletal-Methode von Carstensen, Zhai und Zhang (SIAM J. Numer. Anal., 58.1, 2020), einerseits eine modifizierte hybrid-high-order Methode (m=1) und andererseits ein allgemeines Framework für extra-stabilisierte nichtkonforme Crouzeix-Raviart (m=1) bzw. Morley (m=2) FEM. Diese neuen Methoden berechnen direkte GLB für den m-Laplace-Operator, bei denen eine leicht überprüfbare Bedingung an die maximale Netzweite garantiert, dass der k-te diskrete Eigenwert eine untere Schranke für den k-ten Dirichlet-Eigenwert ist. Diese GLB-Eigenschaft und a priori Konvergenzraten werden für jede Raumdimension etabliert. Der neu entwickelte Ansatz erlaubt adaptive Netzverfeinerung, die für optimale Konvergenzraten auch bei nichtglatten Eigenfunktionen erforderlich ist. Die Überlegenheit der neuen adaptiven FEM wird durch eine Vielzahl repräsentativer numerischer Beispiele illustriert. Für die extra-stabilisierte GLB wird bewiesen, dass sie mit optimalen Raten gegen einen einfachen Eigenwert konvergiert, indem die Axiome der Adaptivität von Carstensen, Feischl, Page und Praetorius (Comput. Math. Appl., 67.6, 2014) sowie Carstensen und Rabus (SIAM J. Numer. Anal., 55.6, 2017) verallgemeinert werden. / Guaranteed lower eigenvalue bounds (GLB) for elliptic eigenvalue problems of partial differential equation are of high relevance in theory and praxis. Due to the Rayleigh-Ritz (or) min-max principle all conforming finite element methods (FEM) provide guaranteed upper eigenvalue bounds. A post-processing for nonconforming FEM of Carstensen and Gedicke (Math. Comp., 83.290, 2014) as well as Carstensen and Gallistl (Numer. Math., 126.1,2014) computes GLB. However, the maximal mesh-size enters as a global parameter in the eigenvalue bound and may cause significant underestimation for adaptive mesh-refinement. There are numerical examples, where this post-processing on locally refined meshes fails completely. Inspired by a recent skeletal method from Carstensen, Zhai, and Zhang (SIAM J. Numer. Anal., 58.1, 2020) this thesis presents on the one hand a modified hybrid high-order method (m=1) and on the other hand a general framework for an extra-stabilized nonconforming Crouzeix-Raviart (m=1) or Morley (m=2) FEM. These novel methods compute direct GLB for the m-Laplace operator in that a specific smallness assumption on the maximal mesh-size guarantees that the computed k-th discrete eigenvalue is a lower bound for the k-th Dirichlet eigenvalue. This GLB property as well as a priori convergence rates are established in any space dimension. The novel ansatz allows for adaptive mesh-refinement necessary to recover optimal convergence rates for non-smooth eigenfunctions. Striking numerical evidence indicates the superiority of the new adaptive eigensolvers. For the extra-stabilized nonconforming methods (a generalization of) known abstract arguments entitled as the axioms of adaptivity from Carstensen, Feischl, Page, and Praetorius (Comput. Math. Appl., 67.6, 2014) as well as Carstensen and Rabus (SIAM J. Numer. Anal., 55.6, 2017) allow to prove the convergence of the GLB towards a simple eigenvalue with optimal rates.
|
8 |
Modélisation des écoulement en milieux poreux fracturés : estimation des paramètres par approche inverse multi-échelle / Flow parameter estimation in fractured porous media : inversion and adaptive multi-scale parameterizationTrottier, Nicolas 16 May 2014 (has links)
Ce travail a pour objectif de développer et d’appliquer une méthode originale permettant de simuler l’écoulement dans un milieu poreux fracturé. Cette méthode repose sur une approche multicouches double continuum permettant de séparer le comportement des différents aquifères présents sur un site. La résolution des écoulements, basée sur la méthode des Eléments Finis de Crouzeix-Raviart, est associée à une méthode inverse (minimisation de type Quasi-Newton combinée à la méthode de l’état adjoint) et à une paramétrisation multi-échelle.La méthode est appliquée dans un premier temps sur l’aquifère fracturé du site expérimental de Poitiers. Les résultats montrent une bonne restitution du comportement de l’aquifère et aboutissent à des champs de transmissivité plus réguliers par rapport à ceux de l’approche simple continuum. L’application finale est réalisée sur le site de Cadarache (taille plus importante et données d’entrée moins denses). Le calage des deux aquifères présents sur le site est satisfaisant et montre que ceux-ci se comportent globalement de façon indépendante. Ce calage pourra être amélioré localement grâce à données de recharge plus fines. / The aim of this study is to develop and validate a new method for the simulation of flow in fractured porous media. This method is based on a multi-layered and dual continuum approach allowing to discriminate the behavior of different aquifers present on a site. The flow equations are solved using a Crouzeix-Raviart Finite Element method, in association with an inverse method (Quasi-Newton minimization combined with the adjoint state method) and a multi-scale parameterization.The method is first applied and validated on the fractured aquifer of the Hydrogeological Experimental Site of Poitiers. The results closely reproduce the flow behavior of the aquifer and lead to a transmissivity field much more homogeneous than the one obtained with a simple continuum approach. The final application is performed on the site of Cadarache (large scale problem with heterogeneously distributed input data). The model calibration of both aquifers is rather satisfactory and shows that their behavior is globally independent. It could locally be improved if more accurate groundwater recharge data is made available.
|
Page generated in 0.0392 seconds