• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • 3
  • 2
  • Tagged with
  • 29
  • 29
  • 10
  • 10
  • 10
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Advanced Control Schemes for High-Bandwidth Multiphase Voltage Regulators

Liu, Pei-Hsin 13 May 2015 (has links)
Advances in transistor-integration technology and multi-core technology of the latest microprocessors have driven transient requirements to become more and more stringent. Rather than relying on the bulky output capacitors as energy-storage devices, increasing the control bandwidth (BW) of the multiphase voltage regulator (VR) is a more cost-effective and space-saving approach. However, it is found that the stability margin of current-mode control in high-BW design is very sensitive to operating conditions and component tolerance, depending on the performance of the current-sensing techniques, modulation schemes, and interleaving approaches. The primary objective of this dissertation is to investigate an advanced multiphase current-mode control, which provides accurate current sensing, enhances the stability margin in high-BW design, and adaptively compensates the parameter variations. Firstly, an equivalent circuit model for generic current-mode controls using DCR current sensing is developed to analyze the impact of component tolerance in high-BW design. Then, the existing state-of-the-art auto-tuning method used to improve current-sensing accuracy is reviewed, and the deficiency of using this method in a multiphase VR is identified. After that, enlightened by the proposed model, a novel auto-tuning method is proposed. This novel method features better tuning performance, noise-insensitivity, and simpler implementation than the state-of-the-art method. Secondly, the current state-of-the-art adaptive current-mode control based on constant-frequency PWM is reviewed, and its inability to maintain adequate stability margin in high-BW design is recognized. Therefore, a new external ramp compensation technique is proposed to keep the stability margin insensitive to the operating conditions and component tolerance, so the proposed high-BW constant-frequency control can meet the transient requirement without the presence of bulky output capacitors. The control scheme is generic and can be used in various kinds of constant-frequency controls, such as peak-current-mode, valley-current-mode, and average-current-mode configurations. Thirdly, an interleaving technique incorporating an adaptive PLL loop is presented, which enables the variable-frequency control to push the BW higher than proposed constant-frequency control, and avoids the beat-frequency input ripple. A generic small-signal model of the PLL loop is derived to investigate the stability issue caused by the parameter variations. Then, based on the proposed model, a simple adaptive control is developed to allow the BW of the PLL loop to be anchored at the highest phase margin. The adaptive PLL structure is applicable to different types of variable-frequency control, including constant on-time control and ramp pulse modulation. Fourthly, a hybrid interleaving structure is explored to simplify the implementation of the adaptive PLL structure in an application with more phases. It combines the adaptive PLL loop with a pulse-distribution technique to take the advantage of the high-BW design and fast transient response without adding a burden to the controller implementation. As a conclusion, based on the proposed analytical models, effective control concepts, systematic optimization strategies, viable implementations are fully investigated for high-BW current-mode control using different modulation techniques. Moreover, all the modeling results and the system performance are verified through simulation with a practical output filter model and an advanced mixed-signal experimental platform based on the latest MHz VR design on the laptop motherboard. In consequence, the multiphase VRs in future computation systems can be scalable easier with proposed multiphase configurations, increase the system reliability with proposed adaptive loop compensation, and minimize the total system footprint of the VR with the superior transient performance. / Ph. D.
12

Smart Power Module for Distributed Sensor Power Network of an Unmanned Ground Vehicle

Roa, Christian Raphael 25 July 2014 (has links)
Energy efficiency is a driving factor in modern electronic design particularly in power conversion where conversion losses directly set the upper limit of system efficiency. A wide variety of commercially available DC-DC conversion elements have inefficiencies in the 90-97% range. The efficiency range of most common commercial-off-the-shelf (COTS) power supplies is 75-85%, highlighting the fact that COTS power supplies have not kept pace with efficiency improvements of modern conversion elements. Unmanned ground vehicles (UGVs) is an application where efficiency can be crucial in extending tight power budgets. In autonomous ground vehicles, geographic diversity with regard to sensor location is inherent because sensor orientation and placement are crucial to performance. Sensor power, therefore, is also distributed by nature of the devices being supplied. This thesis presents the design and evaluation of a smart power module used to implement a distributed power network in an autonomous ground vehicle. The module conversion element demonstrated an average efficiency of 96.7% for loads from 1-4A. Current monitoring and an adjustable output current limit were provided through a second circuit board within the same module enclosure. The module processing element sends periodic updates and receives commands over a CAN bus. The smart power modules successfully supply critical sensing and communication components in an operational autonomous ground vehicle. / Master of Science
13

Fast Modelling, Torque-Ripple-Reduction and Fault-Detection Control of Switched Reluctance Motors

Peng, Wei 05 April 2019 (has links) (PDF)
As the world moves towards a cleaner and greener future, electrical machines for various industrial purposes and transport applications have gained a lot of attention. Permanent magnet synchronous machines (PMSMs) are usually the solution for electric vehicle (EV) applications thanks to their high efficiency, compactness and high-power density. On the downside, although the price of rare-earth materials has recovered close to historical levels, concerns still remain and the questions on the environmental sustainability of these materials have also been raised, which has encouraged the researchers to consider rare-earth-free machines.The switched reluctance machine (SRM) is one of the competitive alternatives, thanks to the simple and robust construction, high reliability and inherent fault tolerance capability. However, it has a bad reputation when it comes to torque ripple and acoustic noise. And the highly nonlinear characteristic brings much difficulty to routine design purposes and machine optimisation.Therefore, some of the above mentioned problems are addressed - a torque-ripple-reduction, reliable and low-cost system of SRMs is presented in this thesis. Firstly from the modelling point of view, a combined magnetic equivalent circuit (MEC) and finite element (FE) model of SRMs is developed for fast characterization the nonlinear behavior. Secondly from the control point of view, various torque-ripple reduction techniques are implemented and compared. Moreover, a minimal current sensing strategy with enhanced fault-detection capability is proposed and validated experimentally. It requires two current sensors, to replace the phase current sensors, with no additional devices for fault detection, to achieve a more compact and low-cost drive. Finally from the reliability point of view, an interturn short-circuit fault detection method and a rotor position estimation approach are investigated and validated experimentally, which leads to a more reliable system. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
14

An Inductor Emulator Approach to Peak Current-mode Control in a 4-Phase Buck Regulator

January 2017 (has links)
abstract: High-efficiency DC-DC converters make up one of the important blocks of state-of-the-art power supplies. The trend toward high level of transistor integration has caused load current demands to grow significantly. Supplying high output current and minimizing output current ripple has been a driving force behind the evolution of Multi-phase topologies. Ability to supply large output current with improved efficiency, reduction in the size of filter components, improved transient response make multi-phase topologies a preferred choice for low voltage-high current applications. Current sensing capability inside a system is much sought after for applications which include Peak-current mode control, Current limiting, Overload protection. Current sensing is extremely important for current sharing in Multi-phase topologies. Existing approaches such as Series resistor, SenseFET, inductor DCR based current sensing are simple but their drawbacks such low efficiency, low accuracy, limited bandwidth demand a novel current sensing scheme. This research presents a systematic design procedure of a 5V - 1.8V, 8A 4-Phase Buck regulator with a novel current sensing scheme based on replication of the inductor current. The proposed solution consists of detailed system modeling in PLECS which includes modification of the peak current mode model to accommodate the new current sensing element, derivation of power-stage and Plant transfer functions, Controller design. The proposed model has been verified through PLECS simulations and compared with a transistor-level implementation of the system. The time-domain parameters such as overshoot and settling-time simulated through transistor-level implementation is in close agreement with the results obtained from the PLECS model. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2017
15

Design and Optimization of Displacement Measurement Eddy Current Sensor for Mass Production

Guganeswaran, S January 2014 (has links) (PDF)
Eddy current (EC) based testing and measurement methods are well known in non-destructive testing (NDT) world. EC sensors are extensively studied and used for material health monitoring and its property measurement. Target displacement measurement is one of the well-known applications of EC method. The main advantage of EC sensor is its working capability in harsh environment like humidity, contamination etc. It is non-contact, rugged and requires less maintenance. The range and sensitivity of target displacement is mainly determined by the probe geometry and its construction method. Also displacement measurement depends upon geometry and electromagnetic (EM) properties of the target plate. Any variation of ambient temperature alters the EM properties of the probe as well as EM properties of the target. Thus, many parameters like geometry, EM properties and temperature involved in target displacement measurement. Hence, while using EC sensor for displacement measurement, it demands careful design and measurement procedure to achieve high sensitivity and high precision with low temperature drift. To achieve these, we present the following. 1) A temperature compensation technique 2) Optimization of probe geometry and its construction method to increase the range and sensitivity 3) Selection of suitable probe measurement parameter (Z, R, X) based on target material properties 4) Making the displacement measurement less sensitive to tolerance in probe construction parameter. A temperature compensation technique for target displacement measurement, using a self-running LC oscillator has been presented. A sensing coil is energized by a Hartley oscillator. The oscillator voltage is maintained at a constant level by a closed loop feedback circuit and the average feedback current to the oscillator is measured for target displacement detection. The temperature drift of the feedback current is compensated by applying temperature compensation function (TCF) and this is verified experimentally. Cold rolled mild steel (carbon steel) is taken as a target material and the sensor is tested over a temperature range of 20 °C – 80 °C. It shows that the temperature drift is less than ±30 ppm/°C over 3 mm target displacement. To match all the sensor modules in mass production, components selection procedure is presented. To avoid mismatch across sensors in manufacturing process, the transistor based oscillator is modified with operational trans-conductance amplifier (OTA). The same temperature compensation formula (TCF) is applied to compensate the temperature drift of feedback current and achieved intended accuracy. Geometry and construction parameters of the eddy current sensing probe is optimized for target displacement measurement using Ansoft Maxwell, electromagnetic design software. EC probe with different geometry are analyzed in search of suitable geometry for target displacement measurement. Four shapes of commercially available core have been chosen for probe construction. For each shape of sensing probe, the radius and height of the probe is increased by 0 mm to 9 mm to find the effect of them on sensitivity and range of target displacement measurement. It has been observed that the probe with less height and maximum diameter has shown better performance. In addition to that, the probe geometry is optimized to achieve more sensitivity and range within the space available for probe mounting. It helps to utilize the available space effectively for probe design. Coil winding and mount-ing it inside the core window also important parameter in probe design. It has been observed that de-pressing the sensing coil inside the core window from sensing face by 3 mm decreases the sensitivity by 40 %. Hence, it is recommended to place the coil on the extreme end of the sensing face of the core. To know the effect of core permeability, it is varied from 1000 to 15000. It has been observed that it has no effect on sensitivity and measurement range. Only optimizing the probe geometry and its construction method is not adequate for target displacement measurement. We know that the EC based displacement measurement is also target material dependent. Generally probe impedance is measured and then the temperature drift of the sensing coil resistance is compensated to know the target displacement. Most of the temperature compensation techniques use this compensation technique and it is shown that those are suitable for high conductivity targets like copper. Choosing Z for displacement measurement may not be only best choice for all target materials. The displacement can be measured also through either R or X of the probe. Choosing the proper probe parameter for a given target material will provide a less temperature drift for target displacement measurement. To know about this, a simulation has been made for target displacement measurement with target metal of μr = 1, relative permittivity εr =1, and temperature coefficient of resistivity ∝ = 0.004 K-1. The conductivity (σ) of the target is varied from 1×106 S/m to 62×106 S/m in the temperature range of 20 ℃ – 80 ℃. Now the simulation has been repeated by fixing  as a constant and varying target μr. The metal plate with  = 1×106 S/m, εr=1 and ∝ = 0.004 K – 1 is taken as a target and μr is varied from 100 to 10000. For both conductivity and permeability sweep analysis, the target displacement is measured as a function of Z, R and X independently. The temperature drift in displacement measurement is also analysed for the above temperature range. An experiment has been conducted with copper, stainless steel and mild steel as target metal in the temperature range of 20 ℃ – 80 ℃. The temperature drift is calculated when the displacement is measured as function of Z, R and X. Based on the results, we have identified that the target material relative permeability determines the selection of probe measurement parameter for target displacement measurement. Hence, knowing tar-get r alone suffice to select the probe measurement parameter (Z or R or X) for displacement measurement. Optimizing the probe geometry, selecting the proper probe measurement parameter and temperature compensation technique suffice to provide a good sensitivity, range and low temperature drift for a single probe. But in general, one of the mass produced probes is selected as a reference probe and it is calibrated against the ambient temperature and target displacement. And the calibration curves are loaded to all the probes. Matching the probe construction parameters to each other across the production patches is not possible in mass production. This makes the temperature compensation function and displacement calibration are different for every individual probes for displacement measurement. This degrades the measurement accuracy. A simulation has been performed with pot core with commercial tolerance. Using this, we have obtained 24 probes due to variations in 1) Individual and few combinational variations in core and coil dimensions 2) Core permeability variation and 3) relative position of the coil with respect to core. Finally, we have quantified the displacement error for each probe. We have identified the important probe dimensional parameters that have to be controlled precisely in mass production to improve the measurement accuracy. It shows error of 0.86 % in the displacement measurement when the relative reactance and relative displacement is used for measurement. In practice, error in displacement measurement due to both the ambient temperature drift and the tolerance in probe construction parameter exist simultaneously. Hence, the combined error is computed for the target displacement range of 0 mm – 3 mm for the temperature range of 0 °C – 100 °C. The total error of less than 1 % is achieved for commercial standard probe tolerance. Finally, we have provided general factory production procedure and user calibration procedure of probe design to achieve cost effective displacement measurement with sensitivity and range with low temperature drift.
16

Method for Monitoring and Analyzing Lead-Acid Batteries

Chobot, Simon, Hanssen, Johan January 2019 (has links)
Lead-acid batteries today are commonly used in the automotive industry with a considerable span of purposes, yet historically, a primary purpose of cranking the engine at ignition which does demand a high current drainage from a battery. These high drainages later result in a health implication which can be hard to detect without the proper tools and this thesis focuses on the development of those tools.To insure the health of a battery turns out to be a handy feature for most drivers today and early signs of deterioration may even warn a user in advance of damage or failure to insure that proper care is taken with a goal to extend every battery’s lifespan.The results of this thesis demonstrates great accuracy for the tools necessary for an accurate health estimation yet lacks extensive testing data to clearly verify an actual health estimation. Where the chapter of Further Work includes specific tests, error corrections and examples of how to achieve even greater accuracies. / Blybatterier används idag vanligen inom bilindustrin för ett stort antal ändamål, men historiskt sett har det ett primärt syfte att driva startmotorn vid tändning, vilket kräver en hög ström brukas från batteriet. Dessa höga strömmar resulterar senare i en hälsopåverkan som kan vara svår att upptäcka utan de korrekta verktygen och denna avhandling fokuserar på utvecklingen av just dessa verktyg.Att fastställa batteriets hälsa är en användbar tillgång för de flesta förare idag och tidiga tecken på försämring kan till och med varna en användare i förväg om nära förestående skador och således försäkra sig om att lämpliga åtgärder vidtas, med ett mål att förlänga alla batteriernas livslängd.Resultaten av denna avhandling visar en stor noggrannhet för de verktyg som behövs för en exakt hälsoestimering men saknar omfattande testdata för att tydligt verifiera denna estimering. I kapitlet “Further Work” ingår specifika tester, felkorrigeringar och exempel på hur man uppnår en ännu större noggrannhet.
17

Current sensing in software for electronic fuse applications : Analysis of two different current measurement implementations / Strömmätning för mjukvarusäkringsapplikation : Analys av olika strömmätningsimplementationer i mjukvara

Johansson, Elias January 2021 (has links)
Relays and fuses are used in a multitude of applications to deliver and control current to its consumers. To improve the controllability of both the fuse and relay function, they can be moved to software. This will not only increase the number of available features but can also give live feedback of the systems current state. For an electronic fuse to work the software needs to be able to measure the amount of current flowing through the circuit. For this a voltage drop can be measured across a series resistor. This can be implemented in several ways and will because of this utilize the resources of the controlling microcontroller differently. This thesis focuses on the software implementation of two current measuring circuits and will characterize the behavior of these in terms of making it simple to compare their advantages and disadvantages. Any hardware related aspect found to have an impact on the result will be taken into account as well. Two implementations, using two different integrated circuits, are tested against each other. MAX4172 is fully analog while the INA226 is half digital. A shorter study of current sensing in general is made but the foundation of the study is the datasheets and characteristics of the components chosen. In this thesis, both the hardware and the software is designed and built which end with gathering data in two different electronic fuse scenarios. The thesis concludes that the two implementations as electronic fuse is at least a factor of 10 faster than the traditional breaking fuse. It also concludes that both implementations have their advantages and either may be the right solution depending on the intended end application. The fully analog solution is generally faster but is more susceptible to external noise and bad hardware design whereas the half digital is slower but more forgiving and thus shows of more precise measurements out of the box. / Relä och säkringar används i flera olika applikationer för att leverera och kontrollera strömmen till förbrukaren. Genom att förflytta denna uppgift till mjukvara kan detta förbättras genom att ge utökad funktionalitet samt realtidsövervakning av systemet. För att en mjukvara ska kunna kontrollera strömmen i en krets måste denna kunna mätas. Detta kan göras genom att mäta spänningsfallet över ett motstånd kopplat i serie med förbrukaren. Hur man väljer att implementera denna metod avgör vilka kravs som ställs på den kontrollerande mikrokontrollern. Denna studie kommer fokusera på mjukvaruimplementationen av två olika kretsar för strömmätning och har för avsikt att karakterisera dessa för att skapa en tydlig jämförelse av dess för- och nackdelar. De aspekter av hårdvaruimplementationen som påverkar detta resultat kommer också diskuteras. Två implementationer, bestående av två olika integrerade kretsar, ställs mot varandra. MAX4172 är en helt analog lösning medans INA226 är delvis digital. En kortare studie av strömmätning kommer utföras men grunden av denna studie består i huvudsak av datablad och karakteristik av de utvalda komponenterna. Både mjukvara och hårdvara är utvecklad och tillverkad för att kunna utföra test och inhämta den data som krävs för analysen. Studien visar att båda lösningar är åtminstone en faktor 10 snabbare än en traditionell säkring. Den visar också att en lösning inte är bättre än den andra i alla aspekter. Båda implementationerna kan vara den rätta lösningen beroende på de krav den tilltänkta produkten har. Den helt analoga lösningen är generellt snabbare men lider av en större känslighet mot störningar vilket ställer högre krav på hårdvarudesignen. Den delvis digitala lösningen är långsammare men betydligt mer förlåtande i dess implementation och har också större noggrannhet som resultat.
18

Multi-Branch Current Sensing Based Single Current Sensor Technique for Power Electronic Converters

Cho, Younghoon 05 November 2012 (has links)
A new concept of current sensor reduction technique called multi-branch current sensing technique (MCST) is proposed in this dissertation. In the proposed current sensing method, one more branch currents are simultaneously measured several times in a single switching cycle by using a single current sensor. After that, the current reconstruction algorithm is applied to obtain all phase currents information. Compared to traditional single current sensor techniques (SCSTs), the proposed method samples the output of the current sensor regularly, and the current sensing dead-zone is dramatically reduced. Since the current sampling is performed periodically, its implementation using a digital controller is extremely simple. Moreover, the periodical dead-zone and the dead-zone near the origin of the voltage vector space which have been a big problem in the existing methods can be completely eliminated. Accordingly, there is no need to have a complicated vector reconfiguration or current estimation algorithm. The proposed MCST also takes the advantages of a SCST such as reduced cost and elimination of the sensor gain discrepancy problem in the multiple current sensor method. The fundamental concept, implementation issues, and limitation of the proposed MCST are described based on three-phase systems first. After that, the proposed MCST is adopted to two-phase inverters and multi-phase dc-dc converters with little modifications. Computer simulations and hardware experiments have been conducted for a three-phase boost converter, a three-phase motor drive system, a two-phase two-leg inverter, a two-phase four-leg inverter with bipolar modulation, a two-phase four-leg inverter with unipolar modulation, and a four-phase dc-dc converter applications. From the simulations and the experimental results, the feasibilities of the proposed method mentioned above are fully verified. / Ph. D.
19

New current sensing solutions for low-cost high-power-density digitally controlled power converters

Ziegler, Silvio January 2009 (has links)
[Truncated abstract] This thesis studies current sensing techniques that are designed to meet the requirements for the next generation of power converters. Power converters are often standardised, so that they can be replaced with a model from another manufacturer without an expensive system redesign. For this reason, the power converter market is highly competitive and relies on cutting-edge technology, which increases power conversion efficiency and power density. High power density and conversion efficiency reduce the system cost, and thus make the power converter more attractive to the customer. Current sensing is a vital task in power converters, where the current information is required for monitoring and control purposes. In order to achieve the above-mentioned goals, existing current sensing techniques have to be improved in terms of cost, power loss and size. Simultaneously, current information needs to be increasingly available in digital form to enable digital control, and to allow the digital transmission of the current information to a centralised monitoring and control unit. All this requires the output signal of a particular current sensing technique to be acquired by an analogue-to-digital converter, and thus the output voltage of the current sensor has to be sufficiently large. This thesis thoroughly reviews contemporary current sensing techniques and identifies suitable techniques that have the potential to meet the performance requirements of the next-generation of power converters. After the review chapter, three novel current sensing techniques are proposed and investigated: 1) The usefulness of the resistive voltage drop across a copper trace, which carries the current to be measured, to detect electrical current is evaluated. Simulations and experiments confirm that this inherently lossless technique can measure high currents at reasonable measurement bandwidth, good accuracy and low cost if the sense wires are connected properly. 2) Based on the mutual inductance theory found during the investigation of the copper trace current sense method, a modification of the well-known lossless inductor current sense method is proposed and analysed. This modification involves the use of a coupled sense winding that significantly improves the frequency response. Hence, it becomes possible to accurately monitor the output current of a power converter with the benefits of being lossless, exhibiting good sensitivity and having small size. 3) A transformer based DC current sense method is developed especially for digitally controlled power converters. This method provides high accuracy, large bandwidth, electrical isolation and very low thermal drift. Overall, it achieves better performance than many contemporary available Hall Effect sensors. At the same time, the cost of this current sensor is significantly lower than that of Hall Effect current sensors. A patent application has been submitted. .... The current sensing techniques have been studied by theory, hardware experiments and simulations. In addition, the suitability of the detection techniques for mass production has been considered in order to access the ability to provide systems at low-cost.
20

Návrh elektroniky pro řízení dvoukolového nestabilního vozidla / Design of control unit for two-wheeled self-balancing vehicle

Bastl, Michal January 2015 (has links)
This diploma thesis is a part of a project of two students. The aim of the project is to design safer electronics for the unstable balancing vehicle HUMMER and implementation of advanced diagnostics and fault detection. In the first part of the project we analysed the original vehicle using the FMEA analyse and created a new concept of the vehicle. The second part of the project describes a new hardware. I designed and tested the power electronics, control unit and supplies. The outputs of the work are prototypes which allow testing a new concept.

Page generated in 0.0842 seconds