• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 5
  • 1
  • Tagged with
  • 22
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adsorption des cations alcalins et phénomènes électrocinétiques sur les surfaces de silices chargéess / Adsorption of alkali cations and electrokinetic phenomena on charged silica surfaces

Hocine, Sarah 28 September 2017 (has links)
Dans les structures confinées, comme les silices mésoporeuses, la mobilité et l'interaction des cations avec les surfaces sont des phénomènes clés. Ils guident les propriétés d'adsorption dont découlent de nombreuses applications, en particulier pour l’extraction et la séparation. Ce travail de thèse en modélisation propose de s'intéresser aux propriétés d'interface, d'équilibre et de transport qui pilotent l'échange ou l'adsorption ionique. Il s’agit de décrire la physico-chimie du processus d’adsorption de cations alcalins à la surface de silices chargée par une approche multiéchelle ayant une base moléculaire. Pour cela une étude de la série des alcalins (Li+, Na+, K+ et Cs+) a été menée. Le cadre théorique est la théorie de Mc Millan Mayer. Celle-ci, fondamentale pour les solutions libres s’est révélée également être une méthode de choix pour les milieux confinés. Le potentiel de force moyenne de McMillan Mayer entre les ions et des sites de surface a pu être calculé par la méthode d'Umbrella Sampling associé à l’algorithme WHAM. Le phénomène qui s’est révélé le plus pertinent correspond à la présence de paires au contact (Contact Ion Pairs - CIP) entre les oxygènes de la surface et les cations, sans molécule d’eau qui les sépare. Ces CIP se traduisent dans les courbes de potentiel par un premier minimum d’intensité supérieure à l’agitation thermique. Pour les petits ions (lithium), ce complexe de surface est particulièrement stable, les constantes d’adsorption et les temps de résidence étant particulièrement élevés, ce qui rend délicat la simulation moléculaire directe de ces phénomènes. Il a été observé une inversion de sélectivité entre les sites silanolates et siloxanes. L'adsorption est différente pour un ion cosmotrope comme Li+ qui doit se déshydrater pour s'adsorber et un ion chaotrope comme Cs+ qui est moins lié au solvant. Les constantes d’adsorption de chaque site de même type ne sont pas toutes égales. L’étude des phénomènes électrocinétiques (électro-osmose et conductivité de surface) a également été menée en comparant les descriptions classiques (modèles de Poisson-Boltzmann, de Smoluchowski, et de Bikerman) aux résultats de dynamique moléculaire. Il est apparu que l'image traditionnelle en plusieurs couches des interfaces (couches de Helmholtz internes et externes, de Stern, de Gouy-Chapman, plan de cisaillement) devait être remplacée par un modèle beaucoup plus simple mais plus efficace. Du point de vue des ions, deux domaines apparaissent : les CIP, globalement fixés à la surface transmettant la force électrique au solide et pas au fluide, et les autres ions, globalement libres, transmettant la force électrique au fluide. Aucune viscosité ou constante diélectrique dépendant de la distance n’a été mise en évidence. Une diminution de la mobilité des ions à proximité de la surface a en revanche été observée. Ce phénomène peut être quantitativement compris comme un effet hydrodynamique du à la présence des surfaces qui gênent le flux en retour du solvant. Ce travail permet ainsi de mieux caractériser l'interface verre chargé-solution pour les applications en science de la séparation. Il a pu montrer comment les simulations moléculaires pouvaient non seulement prédire les paramètres des modèles macroscopiques (constantes d’adsorption, coefficients de transport, etc.) mais surtout modifier ceux-ci pour les rendre en accord avec la description moléculaire. Une telle stratégie pourra par la suite être mise en œuvre sur des systèmes plus complexes, comme des modèles de surfaces greffées. / In confined structures, such as mesoporous silica, the mobility of the cations and the surface/cations interactions are key phenomena. They drive adsorption properties, which control numerous applications, especially for extraction and separation. This modelling work describes equilibrium and transport interface properties that control ion exchange and ionic adsorption. The physical and chemical properties of adsorption processes of alkali cations at the surface of charged silica is studied thanks to a multiscale approach based on a molecular description. The systematic study of alkali serie (Li+, Na+, K+ and Cs+) has been studied to that goal. The theoretical framework is Mc Millan-Mayer theory. The latter, which is known to be of fundamental significance for bulk solutions is found to be also relevant for confined media. The mean force potential of Mc Millan-Mayer between ions and surface sites has been calculated by Umbrella Sampling associated to the WHAM algorithm. The most important phenomenon we identified corresponds to the existence of Contact Ion Pairs (CIP) between the surface oxygen and the cations, without separating solvent molecules. The CIP correspond to the first minima in the potential curves if the associated energy is more than the thermal agitation (kT). For small ions (lithium) this surface complex is especially stable, adsorption constant and residence time being particularly high so that the direct molecular simulations are very difficult. A selectivity inversion has been observed between silanolates and siloxanes. Adsorption is different for kosmotropic ions (as Li+) which has to be dehydrated to be adsorbed and chaotropic ions (as Cs+) for which the solvent bound is weaker. Adsorption constants for sites of the same nature are not equal. The study of the electrokinetic phenomena (electro-osmosis and surface conductivity) has also been performed by comparing the classical descriptions (Poisson-Boltzmann, Smoluchowski, and Bikerman models) to molecular simulations. The traditional picture of the interface with several layers (inner and outer Helmholtz, Stern and Gouy-Chapman layers, shear plane) is found to be replaced by a simpler but more efficient model. For the ions, two domains are obtained: (i) CIPs, firmly bound to the surface that transmit the electrical force to the solid (and not the fluid) (ii) other ions that are globally free that transmit the electric force to the fluid. No space dependent viscosity or dielectric constant have been obtained. On the other hand, a decrease of ion mobility in the vicinity of the surface has been observed. This phenomenon can be quantitatively understood as a hydrodynamic effect that comes from the solid surface, which hinders the backflow of the solvent. This work allows a better characterization of charged glass-solution interfaces for separation science. It shows how molecular simulations can not only predict the parameters of macroscopic models (adsorption constant, transport coefficients), but also modify the latters in order to make them in agreement with molecular descriptions. Such a strategy can be extended to more complex systems, such as models of grafted surfaces.
2

Etude théorique du matériau BaSnO₃, en tant que conducteur protonique pour électrolytes de piles à combustible / Theoretical study of BaSnO₃ material, as a protonic conductor for fuel cell electrolytes

Bevillon, Emile 03 December 2009 (has links)
Les travaux effectués ont consisté en une étude théorique du matériau BaSnO3 en tant que matériau conducteur protonique pour électrolytes de piles à combustible. Ces matériaux sont obtenus après un dopage aliovalent préalable qui génère des lacunes d'oxygène sur le sous-réseau d'oxygène du matériau. Ce matériau, placé en milieu humide va s'hydrater, c'est à dire que des molécules d'eau vont se dissocier au sein du matériau. La propriété principale souhaitée pour de tels matériaux est la conductivité protonique. Celle-ci dépend du nombre de porteurs de charges (les hydrogènes ou protons apportés par les molécules d'eau) et de leur mobilité. Ces deux paramètres sont quantifiés par des grandeurs thermodynamiques (l'enthalpies d'hydratation) et cinétiques (énergies d'activation) qui peuvent dépendre très fortement des dopants et de leur concentration. Une étude systématique a donc été entreprise sur ce matériau dopé par Ga, In, Y, Gd, Sm et La sur le site du Sn. Les objectifs étaient, d'une part de déterminer les paramètres clés de la conduction protonique et de les comparer aux données expérimentales, et d'autre part de corréler ces informations énergétiques aux effets structuraux imputables aux dopants, dans le but de comprendre comment ces derniers influencent la conduction. Pour remonter à ces paramètres, des calculs basés sur la Théorie de la Fonctionnelle de la Densité ont été réalisés dans l'approximation GGA-PBE, par l'intermédiaire de deux codes de calculs différents: ABINIT et SIESTA. Les calculs ont été menés à la fois à des concentrations de 12,5% et de 3,7% de dopants et le matériau BaTiO3 a également été étudié. D'intéressants résultats ont étés obtenus, notamment d'un point de vue structural, avec l'analyse des déformations locales aux alentours des dopants. Ont été mis en évidence: i. La stabilisation préférentielle de certaines positions des défauts due aux interactions électrostatiques. ii. L'effet de la concentration des dopants sur les énergies d'interaction entre dopant et défauts (lacune d'oxygène et proton) et iii. Un effet de taille de dopant, perceptible notamment dans le cas des gros dopants, et qui stabilise préférentiellement une autre position que celle favorisée d'un point de vue électrostatique. / The present work consist in a theoretical study of the BaSnO3 compound as a protonic conductor for fuel cell electrolytes. These materials are obtained after an aliovalent doping stage that will create oxygen vacancies on the oxygen sublattice of the compound. Then, in a moist atmosphere, this lacunar material is going to hydrate: water molecule will be dissociated, creating protonic defects inside of the compound. The main desired property is the protonic conduction, which is due to two major contributions: number of charge careers (hydrogen or proton coming from the hydration reaction) and their mobility, at a given temperature. These two parameters are quantified by a thermodynamic quantity (hydration enthalpy) and a kinetic parameter (activation energy), which are known to be dependant on the dopant concentration. Thus, a systematic study has been done for the material doped Ga, In, Y, Gd, Sm and La on the Sn site. The objectives of this study were, first, to compute the key parameters of the protonic conduction and to compare them to the experimental data, and, in second, to correlate the calculated results to structural effect due to the dopants, in order to understand how they influence the conduction parameters. To determine these parameters, calculations based on the Density Functional Theory in the GGA-PBE form were carried out, using two different codes: ABINIT and SIESTA. Computations were done for dopant concentrations going from 12.5% to 3.7%, the BaTiO3 compound were also studied. Interesting results were also obtained, from a structural point of view, and concerning dopant local environment. Were evidenced: i. Prefential stabilization of defects, relatively to electrostatic interaction considerations. ii. The dopant concentration effect on dopant-defect (oxygen vacancy and proton) interactions. iii. A dopant size effect which acts in particular in the case of big dopants and which stabilize an other defect position than the one favoured by electrostatic considerations.
3

Etude des interactions moléculaires polymère-eau lors de l'hydratation de la membrane Nafion, électrolyte de référence de la pile à combustible

Chabe, Jérémy 01 April 2008 (has links) (PDF)
Le polymère Nafion est l'électrolyte de référence de la pile à combustible. Lorsqu'il est hydraté, il présente une conductivité élevée (10^-2 S.cm^-1). Néanmoins cette conductivité chute à faible taux d'hydratation. L'ajout d'un composé hygroscopique dans la membrane, tel le phosphate de zirconium (ZrP), a été proposé dans la littérature pour répondre à ce problème. <br /><br />La conductivité est le fait de la structure du matériau, des mécanismes de diffusion du proton, et des interactions eau-polymère au sein de la membrane. Nous nous sommes intéressés à cette dernière partie du problème. Nous avons étudié les mécanismes d'hydratation à l'échelle moléculaire pour les membranes Nafion puis Nafion-ZrP par technique de spectrométrie infrarouge. Cette technique peut être couplée à une étude par dynamique moléculaire que nous avons initié sur le polymère Nafion. Les spectres infrarouges du Nafion et du Nafion-ZrP ont été mesurés sur toute la gamme d'hydratation.<br /><br />Les résultats obtenus font état de 5 mécanismes d'hydratation successifs pour la membrane Nafion. L'ionisation des groupes sulfoniques SO_3H est très rapide en début d'hydratation. Elle est suivie d'un éloignement des protons H^+ par rapport aux groupes sulfonates SO_3^- dont ils sont issus et d'une réorganisation du réseau de liaisons H autour de ces groupes ioniques. Enfin une eau de type « bulk » apparaît vers 40% d'hydratation. Nous avons ainsi une "photographie" de la membrane à chaque taux d'hydratation. L'ajout d'un composé inorganique ZrP n'influe pas sur les mécanismes d'hydratation. <br /><br />D'après la comparaison entre nos mécanismes et la courbe de conductivité, il est nécessaire de dissocier tous les groupes sulfoniques pour atteindre une diffusion optimale du proton, probablement assurée par le mécanisme de Grotthuss.
4

Modélisation d'un ciment pétrolier depuis le jeune âge jusqu'à l'état durci : cinétique d'hydratation et comportement poromécanique / Modelling of an oil well cement paste from early age to hardened state : hydration kinetics and poromechanical behaviour

Samudio, Marcos 20 December 2017 (has links)
La prédiction des propriétés mécaniques des matériaux cimentaires nécessite d'un modèle intégrant l'hydratation progressive du matériau, le couplage entre la consommation d'eau et les contraintes et l'historique des charges appliquées. Ceci est particulièrement important lors de la modélisation du comportement de la gaine de ciment des puits pétroliers qui est soumise, dès son plus jeune âge, à une large gamme de chargements mécaniques et thermiques qui pourraient avoir un effet négatif sur ses propriétés mécaniques. L’objectif de cette thèse est de fournir un cadre de modélisation pour le comportement hydro-mécanique d'une pâte de ciment pétrolier dès son plus jeune âge jusqu'à son état durci. Le manuscrit est divisé en deux parties. Partie I : cinétique d'hydratation L’évolution des propriétés physiques des matériaux cimentaires est contrôlée par l'avancement des réactions d'hydratation. Deux approches de modélisation sont présentées:- Un cadre théorique pour la modélisation de l'hydratation du ciment est développé comme une extension des modèles de nucléation et de croissance classiques. Le modèle multi-composants proposé considère explicitement le ciment anhydre et l'eau comme des phases indépendantes participant à la réaction. Un taux de croissance est introduit qui permet de représenter sous une forme mathématique unique la croissance linéaire ainsi que la diffusion parabolique. La formulation introduit naturellement des paramètres des mélanges cimentaires tels que la composition de la poudre de ciment, les densités des différentes phases, le rapport eau/ciment, le retrait chimique et les propriétés des hydrates. Les différents mécanismes de contrôle de la réaction sont identifiés sur la base du modèle physique proposé.- Une loi générale de la cinétique d'hydratation basée sur la théorie des transformations en phase solide est proposée. Cette formulation est comparée aux lois d'évolution trouvées dans la littérature et contribue à fournir une explication physique qui pourrait aider à la compréhension de la cinétique d'hydratation du ciment. Dans les deux cas, les modèles cinétiques sont calés sur une série de résultats expérimentaux. Partie II : loi de comportement mécanique Le comportement mécanique de la pâte de ciment est décrit dans le cadre des milieux poreux réactifs. La pâte de ciment est modélisée en tant que matériau poreux multi-phases avec une loi constitutive élasto-visco-plastique, dont les paramètres dépendent du degré d'hydratation. Le retrait chimique de la pâte de ciment et la consommation d'eau pendant l'hydratation sont pris en compte dans la détermination des déformations macroscopiques. L’évolution des paramètres poroélastiques de la pâte de ciment lors de l'hydratation est calculée à l’aide d'un modèle micromécanique. Une surface de charge asymétrique avec des seuils de compression et de traction est adoptée pour le régime plastique, avec des mécanismes d’écrouissage tenant compte à la fois des déformations plastiques accumulées et du degré d'hydratation. Le comportement visqueux est basé sur les notions de la théorie de solidification. Une courbe de rétention d'eau est introduite pour tenir compte de la désaturation potentielle du matériau lors de l'hydratation. Les paramètres du modèle pour une pâte de ciment pétrolier classe G sont évalués en simulant des expériences de chargement mécanique dans un dispositif spécialement conçu pour tester le comportement thermo-mécanique de la pâte de ciment dès le début de l'hydratation. Le modèle prédit avec une bonne précision la réponse d'une pâte de ciment en cours d’hydratation lorsqu'elle est soumise à divers chemins de chargement dès son plus jeune âge. L'importance de l'histoire de chargement est mise en évidence, ainsi que la nécessité de la détermination des contraintes effectives tout au long de la vie du matériau / The prediction of the performance of cement-based materials requires a holistic model integrating the progressive hydration of the material, the coupling between water consumption and strains, and the history of the applied loadings. This is particularly important when modelling the behavior of the cement sheath in oil wells which is subjected, from its earliest age and during its lifetime, to a wide range of mechanical and thermal loadings that could have a detrimental effect on its future mechanical properties. The aim of the present thesis is to provide a complete modelling framework for the hydro-mechanical behavior of an oil well cement paste from its earliest age to its hardened state. The manuscript is divided in two parts. Part I: Hydration kinetics The evolution of the most significant physical properties of cement-based materials is controlled by the advancement of the hydration reactions. Two different modelling approaches are presented:- A theoretical framework for the modelling of cement hydration is developed as an extension of classical nucleation and growth models. The proposed multi-component model explicitly considers anhydrous cement and water as independent phases participating in the reaction. We also introduce a growth rate that encompasses linear as well as parabolic diffusion growth in a single continuous mathematical form. The formulation naturally introduces some of the most relevant parameters of cement paste mixtures, such as the cement powder composition, mass densities of the different phases, water to cement ratio, chemical shrinkage and hydrates properties. The different rate-controlling mechanisms can be identified and interpreted on the basis of the proposed physical model.- A general hydration kinetics law based on the theory of solid phase transformations is proposed. This formulation is compared with the evolution laws found in the literature and helps providing a physical explanation that could shed light on the understanding of cement hydration kinetics. In both cases, the kinetic models are calibrated over a series of experimental results in order to properly evaluate the quality of the predictions. Part II: Mechanical constitutive law The mechanical behavior of cement paste is described in the framework of reactive porous media. The cement paste is modelled as a multi-phase porous material with an elastic-viscous-plastic constitutive law, with mechanical parameters depending on the hydration degree. Furthermore, the cement paste chemical shrinkage and pore water consumption during hydration are accounted for in the determination of the macroscopic strains. The evolution of the poroelastic parameters of the cement paste during hydration is calculated by means of a micromechanical upscaling model. An asymmetric yield surface with compressive and tensile caps is adopted for the elastoplastic regime, with hardening mechanisms considering both the cumulated plastic deformations and the hydration degree. The viscous behaviour is based on the notions of solidification theory. A water retention curve is introduced to account for the potential desaturation of the material during hydration. The model parameters for a class G cement paste are evaluated by simulating the results of mechanical loading experiments in a device specially designed for testing the thermo-mechanical behavior of cement paste from the early stages of hydration. The results show that the proposed model predicts with good accuracy the response of a hydrating cement paste when subjected to various loading paths from its early age. The importance of the loading history is outlined, as well as the need for the accurate determination of the effective stresses throughout the life of the material
5

Influence du métakaolin sur le comportement rhéologique et mécanique des bétons à hautes performances / Influence of metakaolin on the rheological and mechanical behavior of high perfomance concretes

Said Mansour, Mohamed 29 December 2010 (has links)
L'utilisation du kaolin calciné, sous forme de métakaolin, comme matériau pouzzolanique pour le mortier et le béton a suscité une attention considérable ces dernières années. Le travail actuel décrit les résultats d'un projet de recherche lancé pour étudier la calcination d'un kaolin local sous diverses températures (650-950°C) et durées (2, 3 et 4 heures) qui ont produit le métakaolin avec une activité pouzzolanique élevée. L'activité pouzzolanique a été évaluée par des méthodes de la chaleur d'hydratation et la résistance à la compression à 28 jours. L'activité maximale a été obtenue à une température de 850°C pendant 3 heures. Les résultats observés établissent qu'une augmentation de la chaleur d'hydratation et de la résistance à la compression a été obtenue lorsque le ciment Portland Ordinaire a été remplacé par 10% de métakaolin. L'utilisation du ciment ternaire améliore la résistance au jeune âge et à long terme. La durabilité a été également améliorée où une meilleure résistance des mortiers à l'attaque des acides a été observée. / The utilisation of calcined clay, in the form of metakaolin as a pozzolanic material for mortar and concrete has received considerable attention in recent years. The present work describes the results of a research project initiated to study the calcination of a local kaolin at various temperatures (650-950°C) and durations (2, 3 and 4 hours) to produced a metakaolin with a high pozzolanic activity. The pozzolanic activity was assessed by 28-days compressive strength and hydration heat methods. The maximum identified activity was obtained at 850°C for 3 hours duration. The observed results establish that an increase of both hydration heat and compressive strength was obtained when ordinary Portland cement was replaced by 10% metakaolin. The use of ternary blended cement improves the early age and the long-term compressive strength. The durability was also enhanced as better acidic resistance was observed.
6

Optimisation du broyage des mangues séchées (manguifera indica var Kent) : influence sur les propriétés physicochimiques et fonctionnelles des poudres obtenues / Optimization of dried mango (Manguifera indica var Kent) : grinding : influence on the physicochemical and functional propertie of the powder

Elie Baudelaire, Djantou Njantou 23 November 2006 (has links)
La mangue représente une source naturelle de provitamine A pouvant être utilisée dans la lutte contre l’avitaminose A. Ce travail a été effectué dans le but de développer un procédé de préparation de poudre de mangue par des techniques de séchage et de broyage généralement employées sous les tropiques pour la production de poudre. Le travail a également consisté en l’étude des caractéristiques physicochimiques et fonctionnelles des poudres préparées. Les résultats ont montré que la teneur en eau est responsable de l’encrassement lors du broyage des mangues. L’association de l’éminçage et de la déshydratation osmotique à l’alternance de phase de séchage et de broyage permet d’éviter l’encrassement et d’obtenir des rendements élevés de poudre. Le broyage des mangues décrit un modèle sigmoïdal qui permet de relier le temps de broyage à l’énergie, la distribution des particules, l’aptitude et le rendement de broyage. Il a été montré que les caractéristiques biochimiques des poudres sont significativement influencées par le procedé (p<0,05). Il a été également relevé que l’utilisation de prétraitements d’éminçage et de déshydratation osmotique conduisent à une augmentation du rendement de broyage de 50 %. Les mêmes observations ont été effectuées avec la méthode d’alternance de phase de séchage et de broyage permettant d’obtenir des rendements proches de 68 %. La modification de la composition biochimique des poudres affecte leurs caractéristiques physiques. En modifiant les caractéristiques physicochimiques des poudres, il est apparu que le procédé de production influence leurs propriétés d’usage telles que la rhéologie et la réhydratation. Il est globalement ressorti de cette étude que la méthode par alternance de phases associée à l’éminçage et à la deshydratation osmotique est l’approche technologique permettant d’obtenir la poudre possédant la teneur la plus élevée en provitamine A et en vitamine C. Cette approche permet également d’obtenir un meilleur écoulement des poudres. / Mango is a natural source of provitamin A that can be used to fight against vitamin A deficiency, a serious problem in developing countries. The objective of this work was to elaborate a process for mango powder preparation based on drying and grinding technics generally used in subsaharan areas for powder processing. The work also studied the effect of biochemical, physicochemical, rheological characteristics and rehydration properties of mango powder. Concerning powder production, it has been shown that mango grinding ability varies according to their moisture content. It has been observed that slincing and osmodrying reduces mango moisture content and increases their grinding yield. Increasing in dried mango grinding ability was characterised by particles sizes and grinding energy reduction and a higher grinding yield. The highest grinding yield (90%) and the lowest energy consumption was obtained with a combined process that associates slicing, osmotic dehydration with alternating drying and grinding. It has been shown that the process modified the biochemical composition, the physicochemical characteristics and functional properties of powders. In general, the alternating drying and grinding method associated with slicing and osmodrying appears to be the best technological approach for powder processing from ripe mango. This method leads to powder with better rheological properties and high Vitamin A and C contents.
7

Aspects physico-chimiques de l'interaction des éthers de cellulose avec la matrice cimentaire

Pourchez, Jérémie 22 November 2006 (has links) (PDF)
Les éthers de cellulose sont systématiquement introduits dans les formulations des mortiers industriels. Les conséquences macroscopiques de ces adjuvants sur la réaction d'hydratation du ciment sont parfaitement connues, mais elles n'en restent pas moins inexpliquées. Ce projet a été initié afin d'accroître notre compréhension des interactions organo-minérales intervenant dans les mortiers.<br />Pour ce faire, le mode d'action de l'éther de cellulose sur la cinétique d'hydratation du ciment a été élucidé. Contrairement à la masse moléculaire du polymère, le degré de substitution des groupements greffés sur la molécule est le paramètre clef. En outre, les éthers de cellulose apparaissent très stables en milieu alcalin. Ainsi, les produits de dégradation de type carboxylate sont en trop faible concentration pour induire le retard d'hydratation constaté. Finalement, il apparaît que les éthers de cellulose ont un impact mineur sur la dissolution des différentes phases anhydres. Au contraire, ces adjuvants présentent un effet important sur la germination-croissance de certains hydrates comme les hydroaluminates de calcium, l'hydrosilicate de calcium et la portlandite.
8

Relation chaleur d'hydratation du ciment : montée en température et contraintes générées au jeune âge du béton / Relation between the hydration heat of the cement and the increase of temperature and stress at the early age in concrete

Bourchy, Agathe 19 March 2018 (has links)
L’hydratation du ciment est une réaction exothermique. Ce phénomène est particulièrement surveillé lorsque des pièces massives sont construites étant donné l’élévation de la température, le développement de contraintes thermomécaniques et le risque de réaction sulfatique interne. Compte tenu de la grande variété des formules de béton, le choix d’un ciment ayant une basse chaleur d’hydratation à 41 h n’est plus exclusif. La chaleur totale dégagée dépend d’autres paramètres de formulation tels que le dosage en ciment et l’emploi d’addition. D’un point de vue mécanique, le risque de fissuration dépend aussi du développement des propriétés mécaniques. Dans le but de mieux connaître et contrôler ces risques, une étude de l’effet de la composition du ciment sur la cinétique d’hydratation et les propriétés du ciment, et notamment, sur le dégagement de chaleur est d’abord réalisée. A la suite de cela, la formulation du béton est étudiée afin de voir son effet sur les propriétés thermomécaniques de celui-ci. Enfin, un nouvel essai permettant d’évaluer le risque de fissuration du béton est développé. Le premier chapitre présente donc tout d’abord un condensé des connaissances sur l’hydratation du ciment et de ses propriétés, suivi du type d’essais réalisés et les différents ciments fabriqués, et enfin l’analyse des résultats puis les ciments sélectionnés pour la poursuite de l’étude au niveau béton. Dans le deuxième chapitre, après une étude bibliographique du béton, une trentaine de bétons sont formulés à partir des ciments précédemment sélectionnés et sont étudiés thermiquement par mesure de chaleur d’hydratation. Grâce aux résultats obtenus, un outil de formulation permettant de prendre en compte un cahier des charges est développé. Après sélection de 9 bétons – dont l’échauffement thermique et les résistances mécaniques varient, le troisième chapitre s’attache à les caractériser de manière plus poussée au jeune âge, avec un suivi de l’évolution du module d’Young statique et dynamique, des déformations endogènes ainsi que du fluage. Un nouvel essai à l’anneau mettant en jeu l’échauffement thermique durant l’hydratation et les déformations endogènes gênées du béton est développé. L’imposition de l’échauffement thermique mesuré d’une pièce massive dans l’anneau permet de tester le béton comme s’il était utilisé dans une structure. L’utilisation d’anneau en invar ayant un coefficient de dilatation thermique inférieur à celui du béton induit, lors de l’échauffement, des contraintes en compression dans le béton, et lors du refroidissement, des contraintes en traction. Lorsque les contraintes en traction générées sont supérieures à la résistance en traction du béton, il y a fissuration. Enfin, le dernier chapitre consiste à modéliser l’essai à l’anneau avec le logiciel de calcul CESAR en prenant en compte l’évolution de l’échauffement thermique, du module d’Young, des déformations endogènes et du fluage du béton et de confronter les résultats obtenus avec les essais expérimentaux / Hydration reactions of cement are exothermic. This phenomenon is especially tracked in large concrete structures because temperature gradients create mechanical stresses which can induce the development of cracks or of Delayed Ettringite Formation (DEF). Nowadays, because of the wide range of concrete formulations, low 41 h hydration heat cement need not to be used. Hydration heat depends on other formulation parameters such as quantity of cement and addition use. From a mechanical point of view, the risk of cracking also depends on the development of mechanical properties. In this study, screenings of constituents and characteristics of cement and concrete are performed to determine which ones have the most influence on the thermal activity and on the heat released in massive concrete structures. Then, the effect of concrete formulation on its thermo-mechanical properties is studied. Finally, a new experimental test is developed in order to evaluate the risk of cracking. In the first chapter, a summary of knowledge on the cement hydration and its properties is presented. Experimental tests, fabrication of cement and results are then explained. Nine cements are selected for pursuing the study at the concrete level. The second chapter presents state of the art on concrete and the results obtained for 30 formulated concretes. Hydration heat and compressive strengths are measured. A mix design tool is created according to the results in order to meet the required specifications. In the third chapter, the risk of cracking at early age is assessed for nine different concretes, including concretes with a low heat of hydration. Characteristics of concrete at early age such as the evolution of the mechanical properties (dynamic and static Young’s modulus, dynamic shear modulus and Poisson ratio) are measured dynamically, thanks to ultrasonic waves, and statically, by loading cycles. Autogenous shrinkage is evaluated since setting. Finally, the risk of cracking is monitored using dual concentric rings for evaluating stress development due to restrained volume change. In the fourth chapter, BT-Ring test is modeled with CESAR - an IFSTTAR software – and compared to the experimental results
9

Interactions entre une biomolécule et son environnement : de la dynamique d'hydratation à la catalyse enzymatique / Interplay between a biomolecule and its environment : from hydration dynamics to enzyme catalysis

Duboué-Dijon, Elise 14 September 2015 (has links)
Les biomolécules sont naturellement immergées dans l’eau, qui joue un rôle clé dans de nombreux processus biologiques. Réciproquement, les propriétés de l’eau sont affectées par la présence de la biomolécule. Dans cette thèse, nous combinons modèles théoriques et simulations numériques pour obtenir une description à l’échelle moléculaire des interactions entre une biomolécule et son environnement. Le manuscrit est structuré en deux parties, abordant deux aspects complémentaires de cette interaction complexe. La première partie est consacrée à la perturbation induite par une biomolécule sur l’eau. Nous déterminons en quoi la couche d’hydratation diffère de l’eau bulk et identifions les facteurs moléculaires en jeu. Nous comparons ensuite les couches d’hydratation d’une protéine antigel et d’une protéine modèle afin de déterminer si les propriétés d’hydratation peuvent expliquer l’activité antigel. Nous étudions enfin la dynamique d’hydratation de l’ADN. Nous obtenons une image résolue spatialement des propriétés de sa couche d’hydratation et y caractérisons les différentes sources d’hétérogénéité. La deuxième partie s’intéresse au rôle de l’environnement sur la catalyse enzymatique. Nous étudions deux systèmes distincts, avec des questions différentes mais une même méthodologie. Nous examinons d’abord le rôle de résidus dans le site actif de la dihydrofolate réductase et obtenons une interprétation moléculaire de résultats expérimentaux récents. Enfin, nous nous intéressons à la catalyse enzymatique en solvant organique, où l’addition de petites quantités d’eau permet d’accélérer la réaction. Nous recherchons une description à l’échelle moléculaire de cet effet. / Biomolecules are immersed in an aqueous solvent, which plays a key role in a wide range of biochemical processes. In addition, the properties of water molecules in the hydration shell are perturbed by the presence of the biomolecule. In this thesis, we combine theoretical models and numerical simulations to provide a molecular description of the interplay between a biomolecule and its environment. The manuscript is structured in two parts, addressing two complementary aspects of this complex interaction. In the first part we focus on the perturbation induced by a biomolecule on water molecules. We determine how much the hydration shell differs from bulk water and we identify the molecular factors at play. We then compare the hydration shells of an antifreeze protein and of a typical protein and investigate whether the shell structure and dynamics can explain the antifreeze properties. We finally study the hydration dynamics of a DNA dodecamer where slow water dynamics was suggested. We obtain a spatially resolved picture of DNA hydration and investigate the sources of heterogeneity. In the second part we examine the role of the environment in the chemical step of enzyme catalysis. We focus on two distinct systems with different questions, but relying on a common simulation methodology. We first examine the role of specific active site residues in catalysis by dihydrofolate reductase and we provide a molecular interpretation of recent experimental results. We finally study the role of water in enzyme catalysis in organic solvents, where addition of small amounts of water was shown to accelerate the chemical step. We seek a molecular scale description of this effect.
10

Hydratation d'un système cimentaire binaire contenant des cendres volantes de biomasse

Davidenko, Tatyana January 2015 (has links)
Résumé : L’utilisation des cendres volantes générées par la combustion de biomasse présente une solution très prometteuse pour la conception de bétons écologiques de haute performance. Cependant, leur comportement dans un milieu cimentaire est encore peu étudié. Ce projet est concentré sur la compréhension des processus d’hydratation d’un système cimentaire contenant les cendres volantes de biomasse disponibles localement. Lors du programme expérimental, la caractérisation physico-chimique des cendres volantes étudiées a d’abord été réalisée. Ensuite, leur effet sur les propriétés rhéologiques, la cinétique d’hydratation, l’évolution des hydrates avec le temps et le développement des résistances ont été examinés. Les systèmes étudiés sont des pâtes et des mortiers avec différents taux de remplacement de ciment par les cendres volantes et deux rapports eau/liant de 0,5 et 0,4 en absence et en présence de superplastifiant. La variation des propriétés physico-chimiques de différents échantillons des cendres volantes (finesse, teneur en chaux libre, en sulfates et en calcite) a été utilisée pour déterminer l’effet de chacun de ces paramètres sur les performances des mélanges. Le remplacement partiel du ciment par les cendres volantes de biomasse entraine des changements sur la rhéologie, la cinétique d’hydratation, la composition des hydrates et la microstructure des pâtes hydratées. De plus, certains problèmes de compatibilité entre les cendres volantes et les superplastifiants sont observés. En se basant sur l’analyse des résultats obtenus, les explications des phénomènes qui se produisent dans les systèmes cimentaires contenant les cendres volantes de biomasse sont proposées. / Abstract : The use of wastepaper sludge ash (WSA) represents a very promising solution for ecological high performance concrete design. However, the effect of WSA on cementitious systems properties is still insufficiently studied. The present project intends to understand the hydration process in Portland cement systems containing locally available WSA. The experimental program begins with characterization of WSA physico-chemical properties. Then, the effect of WSA on rheology, hydration kinetics, hydration products evolution over time and strength development in cement blends is investigated. The systems discussed here are cement pastes and mortars with different cement replacement by WSA ratio and two water to binder ratio (0,5 and 0,4) with and without superplasticizer. The variation of physico-chemical properties (fineness; free lime, sulphate and calcite content) between different WSA samples was used to determine the effect of each of these parameters on blended cement performances. Partial cement replacement by WSA leads to changes in rheology, hydration kinetics, composition of the hydrates and microstructure of hydrated pastes. Moreover, some incompatibility problems between WSA and superplasticizers used are observed. Based on experimental results analysis, the explanations of the phenomena taking place in cement systems containing WSA are proposed.

Page generated in 0.1797 seconds