Spelling suggestions: "subject:"début sanguin cérébrale""
1 |
Analyse des écoulements micro-vasculaires cérébrauxGuibert, Romain 01 December 2009 (has links) (PDF)
Ces travaux s'intéressent à la micro-hydrodynamique des écoulements sanguins cérébraux dans les réseaux micro-vasculaires. A partir d'images tridimensionnelles haute résolution obtenues par micro-tomographie, les réseaux micro-vasculaires sont numérisés après différentes étapes de traitement d'images. Une résolution numérique approchée des écoulements sanguins quasi-statique de type réseau est développée. Cette approche permet à la fois de prendre en compte la structure géométrique micro-vasculaire complexe et les interactions hydrodynamiques non-locales des hématies confinées qui s'écoulent en son sein. La méthode proposée permet l'évaluation des distributions de pression, d'hématocrite et de débit sur des volumes cérébraux d'une dizaine de millimètres cube où quelques dizaines de milliers de segments vasculaires sont présents. L'analyse systématique des modèles de rhéologie sanguine existant montrent la prépondérance du choix du modèle de viscosité, à opposer au faible impact de la séparation de phase sur l'écoulement, phénomène pour lequel nous proposons aussi une modélisation alternative. De plus, nous avons analysé la perfusion sanguine cérébrale, et l'organisation générale des écoulements corticaux. Dans la situation physiologique normale, nous quantifions les territoires vasculaires qui sont les unités fonctionnelles micro-vasculaires. Nous évaluons leur évolution et leur robustesse dans des contextes pathologiques modèles et notamment pour les micro-accidents vasculaires cérébraux.
|
2 |
Innervation sympathique et hémodynamique cérébrale chez le ratRevel, Aurélia 06 December 2011 (has links) (PDF)
Ce travail avait pour but de déterminer, chez le rat vigil, le rôle de l'innervation sympathique dans le contrôle de l'hémodynamique cérébrale 1/ au cours d'une période d'activité normale d'environ 4 heures, et 2/ lors d'une augmentation aiguë de la pression artérielle (PA) induite par un stress émotionnel (jet d'air). Les débits sanguins dans les artères carotides internes (DSCa) ont été mesurés grâce à des sondes Doppler chroniquement implantées, chez des rats intacts ou ayant subi l'exérèse unilatérale du ganglion cervical supérieur. Le stress induit une élévation brusque et importante de la PA qui s'accompagne d'une hyperémie et d'une vasodilatation beaucoup plus marquées du côté dénervé que du côté innervé. Dans les conditions de base, l'analyse spectrale révèle une augmentation de la variabilité du DSCa du côté dénervé. La cohérence entre les deux DSCa, qui fournit un index de corrélation linéaire dans le domaine fréquentiel, a été calculée avant (cohérence ordinaire) et après élimination mathématique de l'influence de la PA (cohérence partielle). Les cohérences ordinaire et partielle sont diminuées par la sympathectomie unilatérale dans une bande de fréquences comprises entre 0,01 et 0,1 Hz. Ceci suggère un rôle modulateur important de l'innervation sympathique vis-à-vis de ces fluctuations lentes des DSCa. Ces résultats montrent que chez le rat vigil, l'innervation sympathique exerce un rôle protecteur de la circulation cérébrale face aux augmentations de PA au cours du stress émotionnel. Par ailleurs, cette innervation module des fluctuations spontanées lentes du débit sanguin cérébral qui ne sont pas directement reliées aux fluctuations de la PA.
|
3 |
Innervation sympathique et hémodynamique cérébrale chez le rat / Sympathetic innervation and cerebral hemodynamics in the ratRevel, Aurélia 06 December 2011 (has links)
Ce travail avait pour but de déterminer, chez le rat vigil, le rôle de l’innervation sympathique dans le contrôle de l’hémodynamique cérébrale 1/ au cours d’une période d’activité normale d’environ 4 heures, et 2/ lors d’une augmentation aiguë de la pression artérielle (PA) induite par un stress émotionnel (jet d’air). Les débits sanguins dans les artères carotides internes (DSCa) ont été mesurés grâce à des sondes Doppler chroniquement implantées, chez des rats intacts ou ayant subi l’exérèse unilatérale du ganglion cervical supérieur. Le stress induit une élévation brusque et importante de la PA qui s’accompagne d’une hyperémie et d’une vasodilatation beaucoup plus marquées du côté dénervé que du côté innervé. Dans les conditions de base, l’analyse spectrale révèle une augmentation de la variabilité du DSCa du côté dénervé. La cohérence entre les deux DSCa, qui fournit un index de corrélation linéaire dans le domaine fréquentiel, a été calculée avant (cohérence ordinaire) et après élimination mathématique de l’influence de la PA (cohérence partielle). Les cohérences ordinaire et partielle sont diminuées par la sympathectomie unilatérale dans une bande de fréquences comprises entre 0,01 et 0,1 Hz. Ceci suggère un rôle modulateur important de l’innervation sympathique vis-à-vis de ces fluctuations lentes des DSCa. Ces résultats montrent que chez le rat vigil, l’innervation sympathique exerce un rôle protecteur de la circulation cérébrale face aux augmentations de PA au cours du stress émotionnel. Par ailleurs, cette innervation module des fluctuations spontanées lentes du débit sanguin cérébral qui ne sont pas directement reliées aux fluctuations de la PA. / The goal of the present work was to determine, in conscious rats, the role of the sympathetic innervation in the control of cerebral hemodynamics 1/ during a baseline period lasting ~4 h, and 2/ during an acute increase in blood pressure (BP) evoked by an emotional stressor (jet of air). Blood flows in internal carotid arteries (CaBF) were recorded with Doppler flow probes chronically implanted in intact rats and in rats that underwent unilateral excision of the superior cervical ganglion. Stress induced a large and brisk increase in BP which was accompanied by hyperemia and vasodilatation that were much stronger on the denervated than on the intact side. Spectral analysis demonstrated an overall enhancement of CaBF variability on the denervated side. Coherence between the two CaBFs, which provides an index of linear correlation in the frequency domain, was computed before (ordinary coherence) and after (partial coherence) mathematically eliminating the influence of BP. Both ordinary and partial coherences were lowered by unilateral sympathectomy in the 0.01-0.1 Hz frequency range, which suggests an important modulatory role for sympathetic innervation with respect to these slow CaBF fluctuations. These results indicate that in the conscious rat, sympathetic innervation plays a protective role of the cerebral circulation in the face of stress-induced increases in BP. On the other hand, this innervation modulates slow, spontaneous fluctuations of cerebral blood flow which are not directly related to BP fluctuations.
|
4 |
ELEMENTS DE CARACTERISATION DE LA MICROVASCULARISATION CEREBRALE PAR DIFFERENTES METHODES D'IMAGERIE. <br />Application à l'étude d'un modèle d'ischémie focale transitoire chez le rat.Gachenot - Grillon, Emmanuelle 15 December 2006 (has links) (PDF)
Ce travail s'intéresse à l'étude préclinique de l'ischémie cérébrale focale transitoire à travers la caractérisation de la microvascularisation cérébrale grâce à différents outils d'investigation. Il décrit le développement d'un modèle d'ischémie cérébrale réversible par occlusion intraluminale de l'artère cérébrale moyenne chez le rat. Une ouverture précoce de la barrière hémato-encéphalique après reperfusion a été mise en évidence par l'extravasation d'agents de contraste en imagrie par résonance magnétique nucléaire. L'influence de différents anesthésiques sur l'évolution de la pathologie ischémique a été évaluée par la mesure du débit sanguin cérébral en autoradiographie et l'évaluation histologique des lésions induites. Enfin, une technique d'imagerie par spectroscopie proche-infrarouge permettant la localisation spatiale en temps réel d'un foyer ischémique est présentée.
|
5 |
Impact de la rigidité artérielle sur le cerveau et effets bénéfiques potentiels de l’œstradiol et de la vitamine KMuhire, Gervais 04 1900 (has links)
Les études épidémiologiques ont associé la rigidité artérielle au déclin cognitif et à la démence. Cependant ses effets sur la biologie du cerveau restent méconnus. Dans notre première étude, en utilisant un nouveau modèle murin de rigidité artérielle, nous avons voulu caractériser les effets de la rigidité artérielle sur le cerveau indépendamment de l’âge et de l’augmentation de la pression artérielle. Les résultats indiquent que la rigidité artérielle altère la régulation du flux sanguin cérébral et l'intégrité du système vasculaire cérébral, endommageant la barrière hémato-encéphalique et conduisant à des déficits cognitifs. Le débit sanguin cérébral est altéré au repos ainsi qu’au niveau de ses mécanismes de régulation comme l’autorégulation cérébrale, le couplage neurovasculaire et la fonction endothéliale.
Dans notre deuxième étude nous avons cherché à comprendre le dimorphisme sexuel pour la rigidité artérielle et ses conséquences sur le cerveau dans le même modèle. Nos résultats montrent que la rigidité artérielle entraîne une altération du couplage neurovasculaire et de la réactivité vasculaire dépendante de l’endothélium chez les souris mâles mais pas chez les souris femelles reproductives. Chez les souris ovariectomisées, cette protection a été supprimée, mais a été restaurée par un traitement à l’œstradiol.
Dans la troisième étude, nous avons voulu étudier la possibilité de prévenir la rigidité artérielle et ses effets subséquents sur le cerveau. Pour cette étude, nous avons utilisé la vitamine K (VK) (phylloquinone ou VK1 et la ménaquinone-4 ou MK-4) vu son action anti-calcifiante et ses effets bénéfiques sur les fonctions cognitives observés dans d’autres modèles animaux et chez l’homme. Cette étude a démontré que la VK améliore les fonctions cognitives et rétablit le débit sanguin cérébral au repos et diminue la calcification vasculaire. Les capacités d’apprentissage s’amplifient avec l’apport de la VK alimentaire et la concentration de la VK au cerveau.
Ces études permettent une meilleure compréhension de la rigidité artérielle et démontrent le potentiel de la VK et le traitement hormonal par l’œstradiol dans la prévention de ses effets sur le cerveau. Cependant, d’autres études sont nécessaires pour déterminer tous les mécanismes impliqués dans la protection du cerveau par la VK et l’œstradiol. / Epidemiological studies have associated arterial stiffness with cognitive decline and dementia. However, its effects on the brain biology remain unknown. In our first study, using a new murine model of arterial stiffness, we wanted to characterize the effects of arterial stiffness on the brain independently of age and pressure. Our results indicate that arterial stiffness impairs the regulation of cerebral blood flow and the integrity of the cerebrovascular system, damaging the blood-brain barrier and leading to cognitive deficits. Arterial stiffness results in significant alterations in resting cerebral blood flow and mechanisms regulating cerebral blood flow such as cerebral autoregulation, neurovascular coupling, and endothelial function.
In our second study we sought to understand sexual dimorphism in arterial stiffness and its consequences on the brain in the same model. Our results show that arterial stiffness leads to impaired neurovascular coupling and endothelial-dependent vascular reactivity in male mice but not in female reproductive mice. In ovariectomized mice this protection was suppressed but was restored by estradiol treatment.
In the third study, we wanted to study the possibility of preventing arterial stiffness and its subsequent effects on the brain. In this study, we used vitamin K (phylloquinone or VK1 and menaquinone-4 or MK-4) for its anti-calcifying action and its beneficial effects on the cognitive functions observed in other animal models and in humans. This study demonstrated that VK prevent cognitive impairment in part by restoring the resting cerebral blood flow but also by preventing vascular calcification. Learning abilities increase with the contribution of food VK, which in turn correlates with the VK content of the brain.
These studies provide a better understanding of arterial stiffness and demonstrate the potential of VK and hormone therapy with estradiol in preventing its effects on the brain. However, further studies are needed to determine all the mechanisms involved in the brain protection by VK and estradiol.
|
6 |
Relation entre la structure et la fonction des artères cérébrales dans l’athérosclérose : impact des traitements cardioprotecteursBolduc, Virginie 12 1900 (has links)
Thèse réalisée en cotutelle avec Dre Christine Des Rosiers / Le processus de l’athérosclérose est associé à des changements vasculaires structuraux et mécaniques dont la rigidification carotidienne et aortique. Ce phénomème est bien connu et contraste avec l’augmentation paradoxale de la distensibilité cérébrovasculaire observée dans les artères cérébrales exposées aux facteurs de risque cardiovasculaire, tels que l’hypertension. L’impact de l’athérosclérose sur le remodelage, la compliance et la fonction des artères cérébrales est inconnu. En ciblant l’endothélium, l’athérosclérose induit une dysfonction endothéliale cérébrale sévère qui interfère avec le contrôle du débit sanguin cérébral et ultimement avec les fonctions cognitives. Dans les artères cérébrales, le remodelage de la paroi artérielle est toujours accompagné d’une perte des fonctions vasodilatatrices, ce qui suggère que ces deux évènements sont au cœur d’un cercle vicieux. Nos études visent à vérifier l’hypothèse selon laquelle le remodelage de la paroi est déterminé par la fonction endothéliale au niveau cérébrovasculaire alors qu’au niveau de la carotide, le stress mécanique du pouls sanguin régule les propriétés structurales et biomécaniques.
Afin de vérifier cette hypothèse, dans une première étude, nous avons sélectionné trois interventions thérapeutiques aux mécanismes d’action différents qui modulent la fonction endothéliale indirectement en diminuant le stress mécanique exercé sur la paroi via une diminution de la fréquence cardiaque. Suite à un traitement chronique de trois mois chez la souris athérosclérotique, LDLr-/-; hApoB-100+/+, l’efficacité de l’ivabradine, du métoprolol et de l’exercice physique volontaire dans la prévention de l’augmentation de la compliance cérébrovasculaire s’est avérée proportionnelle à l’étendue des bénéfices sur la fonction endothéliale. La rigidification carotidienne n’a été prévenue que par les interventions qui réduisent vraiment la fréquence cardiaque, c’est-à-dire l’ivabradine et le métoprolol. Dans une deuxième étude, nous avons confirmé nos résultats en utilisant un traitement antioxydant dans le but de cibler plus directement l’endothélium. La catéchine ne réduit pas la fréquence cardiaque, mais elle est reconnue pour protéger l’endothélium cérébral en neutralisant le stress oxydant. Ainsi, la carotide est restée rigide alors que le remodelage cérébral a été prévenu. Une technique d’imagerie novatrice, la tomographie par cohérence optique, nous a permis de valider nos observations in vivo et de proposer que la catéchine prévient l’hypoperfusion du cerveau en protégeant la fonction endothéliale et l’intégrité de la paroi vasculaire cérébrale. Finalement, les deux études identifient la métalloprotéinase de type 9 comme un joueur potentiellement impliqué dans l’augmentation de la compliance cérébrovasculaire.
Nos études démontrent que les changements structuraux et biomécaniques affectant la paroi des artères cérébrales sont indubitablement dépendants de l’endothélium alors que dans la carotide, le stress mécanique est le paramètre le plus déterminant. Somme toute, en protégeant indirectement l’endothélium cérébral on empêche les processus de remodelage, telle que l’activation de la métalloprotéinase de type 9.
De nombreuses études ont suggéré l’implication des dysfonctions cérébrovasculaires dans la maladie d’Alzheimer. En effet, les affections vasculaires qui compromettent chroniquement le débit sanguin cérébral, telles la dysfonction endothéliale et la réduction de la lumière artérielle, vont entraîner un déficit métabolique des neurones à l’origine de la neurodégénérescence. Les traitements préventifs cardioprotecteurs, tels que l’ivabradine, l’exercice physique et la catéchine améliorent la fonction endothéliale, la structure et la biomécanique des artères cérébrales, et pourraient donc prévenir l’hypoperfusion chronique du cerveau et le déclin cognitif dans l’athérosclérose. / Large artery stiffness and endothelial dysfunction are markers of atherosclerosis. Stiffening of the carotid arteries contrast with the paradoxical increase in distensibility of cerebral arteries that was reported in the presence of risk factors for cardiovascular diseases, such as hypertension. However, our knowledge concerning the influence of atherosclerosis on cerebrovascular compliance and structure remains incomplete. By targeting the endothelium, atherosclerosis induces a severe cerebral endothelial dysfunction affecting chronically the cerebral blood flow and potentially leading to cognitive dysfunctions. Few studies have shown that the paradoxical increase in cerebrovascular distensibility is consistently reported in animal model of risk factors for cardiovascular diseases exhibiting a cerebral endothelial dysfunction. That being said, we hypothesized that the compliance and structure of cerebral arteries is essentially controlled by the endothelium.
To validate our hypothesis, in a first study, we selected three distinct therapeutic approaches that modulated the cerebral endothelial function and the mechanical stress imposed to the vascular wall by lowering heart rate in a mouse model of atherosclerosis, LDLr-/-; hApoB-100+/+ during three months. Ivabradine, metroprolol and voluntary physical training protected, with different efficiencies, the cerebral flow-mediated dilation and this was reflected by a prevention, or not, of the increase in compliance. A 13.5 % heart rate reduction with ivabradine and metoprolol limited carotid artery stiffening. Voluntary physical training did not induce an overall reduction of heart rate explaining the lack of effect on carotid mechanics and suggesting that carotids compliance is more influenced by the mechanical stress imposed to the vascular wall by the cardiac cycle.
In a second study, we confirmed our previous findings using a diatery approach that targeted more directly the endothelium, the polyphenol antioxidant catechin. Catechin was previously proven, by us and others, to reverse endothelial dysfunction, reduce inflammation and neutralize reactive oxygen species in diverse vascular beds from animal models of atherosclerosis. Accordingly, we found that catechin prevents adverse cerebral wall remodeling but, again, without a significant heart rate reduction, carotids remained stiff. We also integrated a new live imaging technology allowing us to confirm our findings in vivo and to demonstrate that endothelial, structural and mechanical protection by catechin can result in an improvement of basal cerebral blood flow.
Finally, both studies identified metalloproteinase -9 as a potential player in the process leading the weakening of the cerebral artery walls.
Taken together, our studies highlight that structural and biomechanical alterations are genuinely triggered by endothelial dysfunction. In carotids, mechanicals stress seems to be the main factor controlling remodeling. In essence, indirect protection of the endothelium impedes in cerebral vessels the remodeling processes, such as the activation of metalloproteinase -9.
Numerous studies have revealed that vascular, especially cerebral endothelial dysfunction is implicated in the pathogenesis of Alzheimer’s disease. When brain perfusion is compromised, the suboptimal energy delivery causes neuronal death. Deleterious cerebrovascular outcomes that promote the impairment of vasodilation and the encroachment of the lumen will limit cerebral blood flow in a chronic manner. Chronic treatment with ivabradine, voluntary physical training and catechin preserved the endothelial function, the structure and the mechanics of cerebral arteries, which guarantees a closer management of cerebral blow flow in atherosclerotic mice and a reduce propensity to develop cognitive deficiency.
|
7 |
Relation entre la structure et la fonction des artères cérébrales dans l’athérosclérose : impact des traitements cardioprotecteursBolduc, Virginie 12 1900 (has links)
Le processus de l’athérosclérose est associé à des changements vasculaires structuraux et mécaniques dont la rigidification carotidienne et aortique. Ce phénomème est bien connu et contraste avec l’augmentation paradoxale de la distensibilité cérébrovasculaire observée dans les artères cérébrales exposées aux facteurs de risque cardiovasculaire, tels que l’hypertension. L’impact de l’athérosclérose sur le remodelage, la compliance et la fonction des artères cérébrales est inconnu. En ciblant l’endothélium, l’athérosclérose induit une dysfonction endothéliale cérébrale sévère qui interfère avec le contrôle du débit sanguin cérébral et ultimement avec les fonctions cognitives. Dans les artères cérébrales, le remodelage de la paroi artérielle est toujours accompagné d’une perte des fonctions vasodilatatrices, ce qui suggère que ces deux évènements sont au cœur d’un cercle vicieux. Nos études visent à vérifier l’hypothèse selon laquelle le remodelage de la paroi est déterminé par la fonction endothéliale au niveau cérébrovasculaire alors qu’au niveau de la carotide, le stress mécanique du pouls sanguin régule les propriétés structurales et biomécaniques.
Afin de vérifier cette hypothèse, dans une première étude, nous avons sélectionné trois interventions thérapeutiques aux mécanismes d’action différents qui modulent la fonction endothéliale indirectement en diminuant le stress mécanique exercé sur la paroi via une diminution de la fréquence cardiaque. Suite à un traitement chronique de trois mois chez la souris athérosclérotique, LDLr-/-; hApoB-100+/+, l’efficacité de l’ivabradine, du métoprolol et de l’exercice physique volontaire dans la prévention de l’augmentation de la compliance cérébrovasculaire s’est avérée proportionnelle à l’étendue des bénéfices sur la fonction endothéliale. La rigidification carotidienne n’a été prévenue que par les interventions qui réduisent vraiment la fréquence cardiaque, c’est-à-dire l’ivabradine et le métoprolol. Dans une deuxième étude, nous avons confirmé nos résultats en utilisant un traitement antioxydant dans le but de cibler plus directement l’endothélium. La catéchine ne réduit pas la fréquence cardiaque, mais elle est reconnue pour protéger l’endothélium cérébral en neutralisant le stress oxydant. Ainsi, la carotide est restée rigide alors que le remodelage cérébral a été prévenu. Une technique d’imagerie novatrice, la tomographie par cohérence optique, nous a permis de valider nos observations in vivo et de proposer que la catéchine prévient l’hypoperfusion du cerveau en protégeant la fonction endothéliale et l’intégrité de la paroi vasculaire cérébrale. Finalement, les deux études identifient la métalloprotéinase de type 9 comme un joueur potentiellement impliqué dans l’augmentation de la compliance cérébrovasculaire.
Nos études démontrent que les changements structuraux et biomécaniques affectant la paroi des artères cérébrales sont indubitablement dépendants de l’endothélium alors que dans la carotide, le stress mécanique est le paramètre le plus déterminant. Somme toute, en protégeant indirectement l’endothélium cérébral on empêche les processus de remodelage, telle que l’activation de la métalloprotéinase de type 9.
De nombreuses études ont suggéré l’implication des dysfonctions cérébrovasculaires dans la maladie d’Alzheimer. En effet, les affections vasculaires qui compromettent chroniquement le débit sanguin cérébral, telles la dysfonction endothéliale et la réduction de la lumière artérielle, vont entraîner un déficit métabolique des neurones à l’origine de la neurodégénérescence. Les traitements préventifs cardioprotecteurs, tels que l’ivabradine, l’exercice physique et la catéchine améliorent la fonction endothéliale, la structure et la biomécanique des artères cérébrales, et pourraient donc prévenir l’hypoperfusion chronique du cerveau et le déclin cognitif dans l’athérosclérose. / Large artery stiffness and endothelial dysfunction are markers of atherosclerosis. Stiffening of the carotid arteries contrast with the paradoxical increase in distensibility of cerebral arteries that was reported in the presence of risk factors for cardiovascular diseases, such as hypertension. However, our knowledge concerning the influence of atherosclerosis on cerebrovascular compliance and structure remains incomplete. By targeting the endothelium, atherosclerosis induces a severe cerebral endothelial dysfunction affecting chronically the cerebral blood flow and potentially leading to cognitive dysfunctions. Few studies have shown that the paradoxical increase in cerebrovascular distensibility is consistently reported in animal model of risk factors for cardiovascular diseases exhibiting a cerebral endothelial dysfunction. That being said, we hypothesized that the compliance and structure of cerebral arteries is essentially controlled by the endothelium.
To validate our hypothesis, in a first study, we selected three distinct therapeutic approaches that modulated the cerebral endothelial function and the mechanical stress imposed to the vascular wall by lowering heart rate in a mouse model of atherosclerosis, LDLr-/-; hApoB-100+/+ during three months. Ivabradine, metroprolol and voluntary physical training protected, with different efficiencies, the cerebral flow-mediated dilation and this was reflected by a prevention, or not, of the increase in compliance. A 13.5 % heart rate reduction with ivabradine and metoprolol limited carotid artery stiffening. Voluntary physical training did not induce an overall reduction of heart rate explaining the lack of effect on carotid mechanics and suggesting that carotids compliance is more influenced by the mechanical stress imposed to the vascular wall by the cardiac cycle.
In a second study, we confirmed our previous findings using a diatery approach that targeted more directly the endothelium, the polyphenol antioxidant catechin. Catechin was previously proven, by us and others, to reverse endothelial dysfunction, reduce inflammation and neutralize reactive oxygen species in diverse vascular beds from animal models of atherosclerosis. Accordingly, we found that catechin prevents adverse cerebral wall remodeling but, again, without a significant heart rate reduction, carotids remained stiff. We also integrated a new live imaging technology allowing us to confirm our findings in vivo and to demonstrate that endothelial, structural and mechanical protection by catechin can result in an improvement of basal cerebral blood flow.
Finally, both studies identified metalloproteinase -9 as a potential player in the process leading the weakening of the cerebral artery walls.
Taken together, our studies highlight that structural and biomechanical alterations are genuinely triggered by endothelial dysfunction. In carotids, mechanicals stress seems to be the main factor controlling remodeling. In essence, indirect protection of the endothelium impedes in cerebral vessels the remodeling processes, such as the activation of metalloproteinase -9.
Numerous studies have revealed that vascular, especially cerebral endothelial dysfunction is implicated in the pathogenesis of Alzheimer’s disease. When brain perfusion is compromised, the suboptimal energy delivery causes neuronal death. Deleterious cerebrovascular outcomes that promote the impairment of vasodilation and the encroachment of the lumen will limit cerebral blood flow in a chronic manner. Chronic treatment with ivabradine, voluntary physical training and catechin preserved the endothelial function, the structure and the mechanics of cerebral arteries, which guarantees a closer management of cerebral blow flow in atherosclerotic mice and a reduce propensity to develop cognitive deficiency. / Thèse réalisée en cotutelle avec Dre Christine Des Rosiers
|
8 |
Development of an Awake Behaving model for Laser Doppler Flowmetry in MiceObari, Dima 08 1900 (has links)
No description available.
|
9 |
Development and application of quantitative imaging to study cerebral blood flow in a mouse model of obesity / Développement et application de l'imagerie quantitative du débit sanguin cérébral pour l'étude de modèles de l'obésitéSoleimanzad, Haleh 19 December 2018 (has links)
Selon l’organisation mondiale de la santé, dans les pays en développement, la proportion de personnes obèses a presque triplé depuis 1980 et presque doublé dans les pays à revenu élevé. Parmi ces statistiques, en France, 16,8% des hommes et 17,4% des femmes sont obèses. Les taux mondiaux d'obésité devraient monter au cours de la prochaine décennie pour atteindre un cinquième des adultes en 2025. L'obésité est due à de multiples facteurs, dont la consommation excessive d’aliments riches en gras et en sucres, ainsi que des facteurs génétiques, psychosociaux et environnementaux. L'incidence de maladies telles que le cancer, le diabète et les maladies cardiovasculaires est supérieure chez les personnes obèses. L’obésité a également un impact néfaste sur le fonctionnement du cerveau, ce qui entraîne davantage d’accidents vasculaires cérébraux et des maladies neurodégénératives chez les personnes obèses. Une activité cérébrale normale impose des besoins énergétiques dynamiques qui sont satisfaits par le flux sanguin cérébral (Cerebral Blood Flow, CBF). La perfusion adéquate des tissus cérébraux au bon moment et au bon endroit parmi les quelques 160 milliards de cellules qui composent le cerveau adulte humain est vital. Malgré des données obtenues sur des tranches de cerveau concernant les problèmes de barrière hémato-encéphalique chez les personnes obèses, le devenir du CBF au cours de l'obésité n'a pas encore été étudié. Une des raisons à cela est la difficulté à enregistrer le CBF in vivo et de le suivre dans le temps, pendant une activation cérébrale et sur une large échelle avec une résolution spatio-temporelle appropriée. Afin d'évaluer l'influence de l'obésité sur le CBF, au repos et pendant la stimulation sensorielle, nous avons développé une technique optique appelée l'imagerie de contraste laser par exposition multiple (MESI). La technique repose sur le calcul du contraste de speckle, qui est lié à la vitesse des diffuseurs (globules rouges). Il permet une imagerie superficielle à large champ des variations relatives de flux sanguin dans le cortex de la souris. Nous avons caractérisé les performances du système en utilisant des fantômes microfluidiques. L’acquisition du contraste pour différentes durées d’exposition permet de discriminer les diffuseurs statiques et dynamiques (en mouvement) et donc d’obtenir une image quantitative des variations du CBF. Nous avons étudié l'activation cérébrale en utilisant la stimulation olfactive par des flux d'odeurs contrôlés présentés à la souris anesthésiée. Le bulbe olfactif est une structure sensorielle essentielle des mammifères pour le codage des odeurs et il est bien adapté à l'imagerie optique car l’activité neuronale et vasculaire est détectée dans les régions superficielles de cette structure. Nous avons observé une diminution significative du CBF évoqué par stimulation odorante chez les souris obèses (sous régime hyperlipidique) par rapport aux souris témoins (sous régime standard). Chez les souris contrôles, les variations de CBF sont élevées dans les vaisseaux sanguins de grand diamètre et diminuent dans les vaisseaux sanguins de petit calibre. Cette variation dépendant du diamètre est perdue chez les souris obèses qui présentent même un CBF significativement réduit au repos, au cours d'une activité vasculaire spontanée. De plus, afin de mieux comprendre la morphologie du système vasculaire, nous avons commencé l’étude par iDISCO de la densité et la distribution des vaisseaux dans l’ensemble du cerveau in vitro chez des souris obèses comparées aux contrôles. En conclusion, les résultats obtenus sur le CBF chez les souris obèses par la mise au point d’une technique d’imagerie optique à large champ MESI, indiquent que l'obésité impacte le fonctionnement vasculaire en dérégulant le débit sanguin cérébral. / Obesity is a global health threat. Since 1980 the proportion of obese or overweight individuals tripled in developing countries and doubled in high-income countries. In France 16.8% of men and 17.4% of women are obese. In the actual tendency persists, one-fifth of adults worldwide will be obese by 2025. Obesity is characterized by exaggerated weight gain and accumulation of fat tissue and is due to multiple factors including excessive consumption of high fat-sweet food and genetic, psychosocial and environmental factors. It is linked to an increase in the incidence of diseases such as cancer, diabetes and cardiovascular disease. Obesity has also a detrimental impact on brain function leading to higher rate of stroke and neurodegenerative diseases. Normal brain activity imposes dynamic energy requirements. Energy needs are fulfilled by Cerebral Blood Flow (CBF) to perfuse the brain tissue at the right time and the right place among the hundred of billons of cells that compose the human adult brain. Although dysfunction of the blood brain barrier was observed in brain slices, the fate of CBF during obesity in vivo is unknown. One reason for this is the difficulty to record CBF over time in vivo and to follow the time course of activation of large populations of cells with an appropriate spatiotemporal resolution. In order to evaluate the influence of obesity on CBF, at rest and during sensory stimulation, we have developed an optical technique termed multi-exposure speckle contrast imaging (MESI). In the last years, MESI has been validated for imaging relative changes in CBF at the surface of the rodent brain in vivo, the standard mammalian model for brain studies. The technique relies on the calculation of the spatial speckle contrast, which is related to the velocity of scatterers (red blood cells), and allows wide-field imaging of CBF at the mesoscopic level. We have characterized the performances of the system using microfluidic phantoms. We further demonstrated the ability of our MESI system to discriminate the moving and static diffusers contribution and therefore to provide accurate estimate of CBF changes in vivo. The olfactory bulb is a major hub for the processing of olfactory information in the brain of all mammals. It is well suited for optical imaging of brain activation since neuronal and vascular activities are detected very superficial at the surface of this structure. Using MESI, we have studied brain activation in control and obese mice. We have performed olfactory activation by delivering controlled odorants fluxes to anesthetized mice. We observed a significant decrease in odor-evoked CBF with a loss of diameter-dependent regulation of CBF in obese mice (high fat diet) compared to control lean mice (standard diet). We showed that CBF regulation was lost in obese mice even at rest without any stimulation. Furthermore, to gain insights into the morphology of the vascular network, we started the study of the vessels density and distribution in the entire brain using an in vitro iDISCO approach in obese mice compared to control mice. Overall, these findings indicate that obesity can adversely affect CBF at rest and in response to neuronal activation in vivo.
|
10 |
Altération du couplage neurovasculaire par l'interleukine-17A : implication dans l'hypertension artérielle et en fonction du statut sexuel et hormonalYouwakim, Jessica 08 1900 (has links)
Les maladies cardiovasculaires et neurodégénératives sont associées à un déséquilibre entre les cellules immunitaires pro et anti-inflammatoires, en faveur d'une plus grande production de cytokines pro-inflammatoires. Plus spécifiquement, l’interleukine (IL)-17A semble jouer un rôle essentiel dans le développement et la progression de ces pathologies, notamment par des niveaux plus élevés d’IL-17A circulants. Toutefois, les mécanismes précis de son action demeurent en grande partie méconnus. De plus, l’influence du sexe et du statut hormonal sur l'action de l'IL-17A dans ces pathologies demeurent un domaine peu exploré. Cette lacune soulève plusieurs questions quant à la manière dont l'IL-17A influence le développement et la progression de ces maladies, et ce, peu importe le sexe. Les vaisseaux sanguins servent d’interface entre le système immunitaire périphérique et le cerveau et un débit sanguin cérébral optimal est indispensable au maintien de l’homéostasie cérébrale. Un des principaux mécanismes de régulation du débit sanguin cérébral est le couplage neurovasculaire, qui relie l’augmentation du débit sanguin à l’activité neuronale. De ce fait, l’objectif principal de cette thèse consiste à approfondir nos connaissances concernant l’impact de l’IL-17A sur l’altération du couplage neurovasculaire causée par un modèle d’hypertension artérielle induite par l’angiotensine (Ang) II. Nous avons ensuite évalué l’impact de l’IL-17A sur le couplage neurovasculaire en tenant compte de l’influence du sexe et du statut hormonal. Nous avons aussi cherché à approfondir nos connaissances sur les mécanismes qui sous-tendent l’action de l’IL-17A sur la fonction cérébrovasculaire.
Nos travaux mettent en évidence le rôle essentiel de l'IL-17A en tant que médiateur de l’altération du couplage neurovasculaire par l’Ang II chez les souris mâles. L’action de l’IL-17A passe par la production d’anions superoxydes issus de la NADPH oxydase de type 2. De façon intéressante, les souris femelles, contrairement aux mâles, semblent bénéficier d’une protection contre l’altération du couplage neurovasculaire et de l’augmentation de la production d’anions superoxydes induites par l’IL-17A. Cette protection découle des propriétés anti-inflammatoires et antioxydantes de l’estradiol et de son interaction avec les récepteurs à l’œstrogènes ERβ et GPER.
Les résultats démontrés dans cette thèse ont permis d’élargir notre compréhension de la relation entre les cytokines inflammatoires, la circulation cérébrale, et l'influence du sexe et du statut hormonal, ouvrant ainsi la porte à un domaine de recherche jusqu’à maintenant peu exploré. / Cardiovascular and neurodegenerative diseases are linked to an imbalance between pro- and anti-inflammatory immune cells in favor of a greater production of pro-inflammatory cytokines. Specifically, interleukin (IL)-17A appears to play a crucial role in the development and progression of these conditions, characterized by elevated circulating levels of IL-17A. However, the precise mechanisms underlying its action remain largely unknown. Furthermore, the influence of sex and hormonal status on the function of IL-17A in these diseases has yet to be investigated. This raises several questions concerning the impact of IL-17A in the development and progression of these diseases in both sexes. Blood vessels serve as the interface between the peripheral immune system and the brain, and optimal cerebral blood flow is essential for maintaining cerebral homeostasis. One of the main mechanisms of cerebral blood flow regulation is neurovascular coupling, which links blood flow to neuronal activity. Thus, the primary objective of this thesis is to deepen our understanding of the impact of IL-17A on neurovascular coupling impairment induced by angiotensin (Ang) II in the context of arterial hypertension while taking into consideration sex and hormonal status. Lastly, we gained a more comprehensive understanding of the mechanisms underlying IL-17A's actions on the cerebrovascular function.
Our discoveries highlight the crucial role of IL-17A as a mediator in Ang II-induced neurovascular coupling impairment in male mice. The action of IL-17A involves the production of superoxide anions derived from type 2 NADPH oxidase. Interestingly, female mice, unlike males, appear to be protected from the IL-17A-induced neurovascular coupling impairment and increased superoxide anions production. This protection stems from the anti-inflammatory and antioxidant properties of estradiol acting via the estrogen receptors ERβ and GPER.
In conclusion, the discoveries presented in this thesis broadened our comprehension of the relationship between inflammatory cytokines, cerebral circulation, and the influence of sex and hormonal status, thus paving the way for previously underexplored field of research.
|
Page generated in 0.0565 seconds