Spelling suggestions: "subject:"dcac"" "subject:"dcmac""
31 |
Development of a Power Hardware-in-the-Loop Test Bench for Electric Machine and Drive EmulationNoon, John Patrick 15 December 2020 (has links)
This work demonstrates the capability of a power electronic based power hardware-inthe- loop (PHIL) platform to emulate electric machines for the purpose of a motor drive testbench with a particular focus on induction machine emulation. PHIL presents advantages over full-hardware testing of motor drives as the PHIL platform can save space and cost that comes from the physical construction of multiple electric machine test configurations. This thesis presents real-time models that were developed for the purpose of PHIL emulation. Additionally, real-time modeling considerations are presented as well as the modeling considerations that stem from implementing the model in a PHIL testbench. Next, the design and implementation of the PHIL testbench is detailed. This thesis describes the design of the interface inductor between the motor drive and the emulation platform. Additionally, practical implementation challenges such as common mode and ground loop noise are discussed and solutions are presented. Finally, experimental validation of the modeling and emulation of the induction machine is presented and the performance of the machine emulation testbench is discussed. / Master of Science / According to the International Energy Agency (IEA), electric power usage is increasing across all sectors, and particularly in the transportation sector [1]. This increase is apparent in one's daily life through the increase of electric vehicles on the road. Power electronics convert electricity in one form to electricity in another form. This conversion of power is playing an increasingly important role in society because examples of this conversion include converting the dc voltage of a battery to ac voltage in an electric car or the conversion of the ac power grid to dc to power a laptop. Additionally, even within an electric car, power converters transform the battery's electric power from a higher dc voltage into lower voltage dc power to supply the entertainment system and into ac power to drive the car's motor.
The electrification of the transportation sector is leading to an increase in the amount of electric energy that is being consumed and processed through power electronics. As was illustrated in the previous examples of electric cars, the application of power electronics is very wide and thus requires different testbenches for the many different applications. While some industries are used to power electronics and testing converters, transportation electrification is increasing the number of companies and industries that are using power electronics and electric machines.
As industry is shifting towards these new technologies, it is a prime opportunity to change the way that high power testing is done for electric machines and power converters. Traditional testing methods are potentially dangerous and lack the flexibility that is required to test a wide variety of machines and drives. Power hardware-in-the-loop (PHIL) testing presents a safe and adaptable solution to high power testing of electric machines. Traditionally, electric machines were primarily used in heavy industry such as milling, processing, and pumping applications. These applications, and other applications such as an electric motor in a car or plane are called motor drive systems. Regardless of the particular application of the motor drive system, there are generally three parts: a dc source, an inverter, and the electric machine. In most applications, other than cars which have a dc battery, the dc source is a power electronic converter called a rectifier which converts ac electricity from the grid to dc for the motor drive. Next, the motor drive converts the dc electricity from the first stage to a controlled ac output to drive the electric machine. Finally, the electric machine itself is the final piece of the electrical system and converts the electrical energy to mechanical energy which can drive a fan, belt, or axle. The fact that this motor drive system can be generalized and applied to a wide range of applications makes its study particularly interesting.
PHIL simplifies testing of these motor drive systems by allowing the inverter to connect directly to a machine emulator which is able to replicate a variety of loads. Furthermore, this work demonstrates the capability of PHIL to emulate both the induction machine load as well as the dc source by considering several rectifier topologies without any significant adjustments from the machine emulation platform.
This thesis demonstrates the capabilities of the EGSTON Power Electronics GmbH COMPISO System Unit to emulate motor drive systems to allow for safer, more flexible motor drive system testing. The main goal of this thesis is to demonstrate an accurate PHIL emulation of a induction machine and to provide validation of the emulation results through comparison with an induction machine.
|
32 |
Sistema de fornecimento de potência a partir de célula a combustível utilizando conversor estático com modulação delta modificada / Power supply system from fuel cell using static converter with modified delta modulationGongora, Vicente de Lima 19 April 2017 (has links)
Este trabalho, constitui-se em uma contribuição para o estudo das estratégias de mo-dulação direta baseadas em histerese e que funcionam em frequência fixa de comutação. Tem como objetivo principal propor a estratégia delta modificada, que diferencia-se na forma de ajuste da largura de banda de histerese, alterando-se seus limites e em como executa o comando de bloqueio das chaves de potência, para que a corrente de saída se mantenha em frequência fixa de operação e apresente rápida resposta dinâmica no sistema controlado. Para tanto, não necessita da utilização de derivadas, nem de uma corrente média de referência, tão pouco, se utiliza dos tempos de comutação. A estratégia proposta, comprova que é possível produzir os adequados pulsos de comando para o processamento da energia proveniente de célula combustível, através do conversor estático de potência, utilizando-se, principalmente, dos valores de ultrapassagem nos limites estabelecidos de histerese. Como objetivo secundário desta pesquisa, desenvolve-se um conversor CC/CC auxiliar para adaptar e estabilizar a energia proveniente da CAC, compondo-se um sistema útil que serve de base para fornecer energia, aos mais diversos tipos de cargas em CC. Além disso, apresenta-se uma revisão das estratégias de modulação em modo direto para o controle da corrente de saída no conversor estático, tendo como base a tensão nos terminais de um indutor. Contudo, outras estratégias são naturalmente citadas, no transcorrer deste trabalho, devido haver combinações entre as diferentes estratégias moduladoras e controladoras comentadas. / This work, is a contribution to the study of direct modulation strategies based on hysteresis and that operate at fixed switching frequency. Its main objective is to propose the modified delta strategy, which differentiates from the others strategies in the form of adjustment of hysteresis bandwidth, changing its limits and in executing the locking command of the power keys, so that the output current is maintain at fixed frequency of operation and a rapid dynamic response in the controlled system. In order to do so, it does not require the use of derivatives or a reference average current and also the switching times are not used. This strategy shows that it is possible to produce the appropriate command pulses for the processing of fuel cell energy by the static power converter using mainly the exceedance limit values. As a secondary objective of this research, an auxiliary DC/DC converter is developed to adapt and stabilize the energy coming from the fuel cell, forming a useful system that serves as a base to supply power to the most diverse types of DC loads. In addition, we present a review of the direct-mode modulation strategies for the control of the output current in the static converter, updating data, and based on the voltage at the terminals of an inductor; how-ever, others strategies are naturally cited because there are combinations between the different modulating strategies and controllers commented on in the course of this work.
|
33 |
Conception d'un convertisseur de puissance pour véhicules électriques multi-sourcesBoucherit, Ahmed 16 December 2011 (has links) (PDF)
L'utilisation des plusieurs sources d'énergies de caractéristiques différentes, à bord du véhicule électrique VE) nécessite l'adoption de convertisseurs statiques. Ces derniers peuvent avoir la fonction de conditionneur 'énergie des différentes sources et/ou commander les machines électriques du véhicule.Généralement les VE disposent d'un bus continu " de quelques centaines de volts " dont la stabilité est assurée par un groupe de convertisseurs élévateurs de tension (du fait que les sources ont généralement un niveau de tension faible ; quelques dizaines de volts). Lors des démarrages/arrêts très fréquents du VE en mode urbain, les sources pourraient alimenter directement le moteur de traction sans avoir recours aux convertisseurs élévateurs de tension. Afin d'exploiter cette fonctionnalité, nous proposons d'explorer une deuxième architecture de convertisseur basée sur l'adoption d'un niveau de tension variable du bus continu. Dans cette approche, la tension minimale de ce dernier est fixée en fonction des niveaux de tensions disponibles du côté des sources et de la vitesse requise (niveau des f.é.m du moteur de traction). Ainsi, le rapport variable d'élévation de la tension est minimal à faible vitesse du véhicule en mode urbain et il est maximal à grande vitesse, en modes route et autoroute. Ceci apportera une amélioration du rendement énergétique de l'ensemble sources-moteurs notamment en mode urbain. Par ailleurs, l'utilisation grand public de ces véhicules exige des contraintes maximales de disponibilité (continuité de service) des fonctions principales notamment l'alimentation embarquée. A travers le travail de cette thèse nous proposons une nouvelle topologie du convertisseur de puissance entre les sources (une Pile à combustibles associée à un pack de super-condensateurs) et les charges (moteur de traction et réseau de bord alimentant les auxiliaires du véhicule). Ce convertisseur adopte une tension variable du bus continu et une redondance de l'alimentation du moteur de traction. Après la présentation du convertisseur proposé et son positionnement par rapport à la littérature, une analyse du fonctionnement et la modélisation de sa partie DC-DC est détaillée notamment à travers des résultats de simulation de ses différents modes. A ce titre un programme de simulation fine (à l'échelle des impulsions de commande) du système entier a été développé. Dans un deuxième temps, la commande automatique et rapprochée des interrupteurs de puissance a été développée en se basant respectivement sur la méthode de contrôle par petits signaux et la commande hystérésis de courant, triangulaire-rapport cyclique et triangulaire-sinus. Les résultats de simulation des fonctionnalités principales attendues mettent en évidence la faisabilité de l'architecture du convertisseur de puissance proposée. Enfin, une maquette expérimentale à échelle réduite a été développée dans le but de valider l'étude théorique. Les premiers tests expérimentaux de la partie DC-DC du convertisseur donnent des résultats satisfaisant et valident ainsi le processus de conception. Le travail futur sera la réalisation d'une maquette à échelle 1 dans laquelle la conception du refroidisseur sera intégrée en amont de la réalisation du plan de masse dudit convertisseur. Nous pensons que cela permettra une meilleure optimisation de l'espace à bord du véhicule et améliorera le rendement énergétique de la chaine de traction.
|
34 |
Ηλεκτρονικά συστήματα ισχύος για τη σύνδεση ανανεώσιμων πηγών ενέργειας στο δίκτυοΟρφανός, Γιώργος 19 October 2012 (has links)
Σκοπός της παρούσας εργασίας ήταν να γίνει μια εκτενής καταγραφή και παρουσίαση των ηλεκτρονικών μετατροπέων που χρησιμοποιούνται για τη διασύνδεση των Ανανεώσιμων Πηγών Ενέργειας (Α.Π.Ε) στο δίκτυο. Αφού γίνεται αρχικά μια αναφορά στις Α.Π.Ε και στα Ηλεκτρονικά Ισχύος, στη συνέχεια παρουσιάζονται οι διαφορετικές τοπολογίες των ηλεκτρονικών μετατροπέων που μπορούν να χρησιμοποιηθούν σε κάθε εφαρμογή. Για τους μετατροπείς, εξηγείται πρώτα η λειτουργία τους και στη συνέχεια αναφέρονται τα πλεονεκτήματα και μειονεκτήματα της κάθε τοπολογίας προκειμένου να παρέχεται στον αναγνώστη η δυνατότητα γρήγορης, εύκολης και άμεσης σύγκρισης. Επίσης, παρουσιάζονται κατάλληλα συστήματα για την αποθήκευση της ενέργειας προερχόμενη από Α.Π.Ε. Τέλος, προσομοιώνεται το ίδιο φωτοβολταϊκό σύστημα χρησιμοποιώντας τρεις διαφορετικούς μετατροπείς, διαφορετικής τοπολογίας ο κάθε ένας, προκειμένου να συγκριθούν και να αναλυθούν τα αποτελέσματα με βάση τη θεωρητική ανάλυση που έχει προηγηθεί. / The aim of this dissertation was to present the power-electronic systems for the grid integration of renewable energy sources. Once both the renewable energy sources and the power electronics are discussed, different topologies of power converters that can be used in such systems are presented. Converters’ operation is firstly explained, followed by a list of advantages and disadvantages of them so as the reader can make an easy, fast and direct comparison. Storage systems appropriate for renewable energy sources systems are also shown. At the end, a simulation of a photovoltaic system with three different kinds of inverter is performed in order to compare and analyze the results based on the theoretical analysis previously presented.
|
35 |
Modeling and Simulation Tools for Aging Effects in Scaled CMOS DesignJanuary 2014 (has links)
abstract: The aging process due to Bias Temperature Instability (both NBTI and PBTI) and Channel Hot Carrier (CHC) is a key limiting factor of circuit lifetime in CMOS design. Threshold voltage shift due to BTI is a strong function of stress voltage and temperature complicating stress and recovery prediction. This poses a unique challenge for long-term aging prediction for wide range of stress patterns. Traditional approaches usually resort to an average stress waveform to simplify the lifetime prediction. They are efficient, but fail to capture circuit operation, especially under dynamic voltage scaling (DVS) or in analog/mixed signal designs where the stress waveform is much more random. This work presents a suite of modelling solutions for BTI that enable aging simulation under all possible stress conditions. Key features of this work are compact models to predict BTI aging based on Reaction-Diffusion theory when the stress voltage is varying. The results to both reaction-diffusion (RD) and trapping-detrapping (TD) mechanisms are presented to cover underlying physics. Silicon validation of these models is performed at 28nm, 45nm and 65nm technology nodes, at both device and circuit levels. Efficient simulation leveraging the BTI models under DVS and random input waveform is applied to both digital and analog representative circuits such as ring oscillators and LNA. Both physical mechanisms are combined into a unified model which improves prediction accuracy at 45nm and 65nm nodes. Critical failure condition is also illustrated based on NBTI and PBTI at 28nm. A comprehensive picture for duty cycle shift is shown. DC stress under clock gating schemes results in monotonic shift in duty cycle which an AC stress causes duty cycle to converge close to 50% value. Proposed work provides a general and comprehensive solution to aging analysis under random stress patterns under BTI.
Channel hot carrier (CHC) is another dominant degradation mechanism which affects analog and mixed signal circuits (AMS) as transistor operates continuously in saturation condition. New model is proposed to account for e-e scattering in advanced technology nodes due to high gate electric field. The model is validated with 28nm and 65nm thick oxide data for different stress voltages. It demonstrates shift in worst case CHC condition to Vgs=Vds from Vgs=0.5Vds. A novel iteration based aging simulation framework for AMS designs is proposed which eliminates limitation for conventional reliability tools. This approach helps us identify a unique positive feedback mechanism termed as Bias Runaway. Bias runaway, is rapid increase of the bias voltage in AMS circuits which occurs when the feedback between the bias current and the effect of channel hot carrier turns into positive. The degradation of CHC is a gradual process but under specific circumstances, the degradation rate can be dramatically accelerated. Such a catastrophic phenomenon is highly sensitive to the initial operation condition, as well as transistor gate length. Based on 65nm silicon data, our work investigates the critical condition that triggers bias runaway, and the impact of gate length tuning. We develop new compact models as well as the simulation methodology for circuit diagnosis, and propose design solutions and the trade-offs to avoid bias runaway, which is vitally important to reliable AMS designs. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2014
|
36 |
Sistema de fornecimento de potência a partir de célula a combustível utilizando conversor estático com modulação delta modificada / Power supply system from fuel cell using static converter with modified delta modulationVicente de Lima Gongora 19 April 2017 (has links)
Este trabalho, constitui-se em uma contribuição para o estudo das estratégias de mo-dulação direta baseadas em histerese e que funcionam em frequência fixa de comutação. Tem como objetivo principal propor a estratégia delta modificada, que diferencia-se na forma de ajuste da largura de banda de histerese, alterando-se seus limites e em como executa o comando de bloqueio das chaves de potência, para que a corrente de saída se mantenha em frequência fixa de operação e apresente rápida resposta dinâmica no sistema controlado. Para tanto, não necessita da utilização de derivadas, nem de uma corrente média de referência, tão pouco, se utiliza dos tempos de comutação. A estratégia proposta, comprova que é possível produzir os adequados pulsos de comando para o processamento da energia proveniente de célula combustível, através do conversor estático de potência, utilizando-se, principalmente, dos valores de ultrapassagem nos limites estabelecidos de histerese. Como objetivo secundário desta pesquisa, desenvolve-se um conversor CC/CC auxiliar para adaptar e estabilizar a energia proveniente da CAC, compondo-se um sistema útil que serve de base para fornecer energia, aos mais diversos tipos de cargas em CC. Além disso, apresenta-se uma revisão das estratégias de modulação em modo direto para o controle da corrente de saída no conversor estático, tendo como base a tensão nos terminais de um indutor. Contudo, outras estratégias são naturalmente citadas, no transcorrer deste trabalho, devido haver combinações entre as diferentes estratégias moduladoras e controladoras comentadas. / This work, is a contribution to the study of direct modulation strategies based on hysteresis and that operate at fixed switching frequency. Its main objective is to propose the modified delta strategy, which differentiates from the others strategies in the form of adjustment of hysteresis bandwidth, changing its limits and in executing the locking command of the power keys, so that the output current is maintain at fixed frequency of operation and a rapid dynamic response in the controlled system. In order to do so, it does not require the use of derivatives or a reference average current and also the switching times are not used. This strategy shows that it is possible to produce the appropriate command pulses for the processing of fuel cell energy by the static power converter using mainly the exceedance limit values. As a secondary objective of this research, an auxiliary DC/DC converter is developed to adapt and stabilize the energy coming from the fuel cell, forming a useful system that serves as a base to supply power to the most diverse types of DC loads. In addition, we present a review of the direct-mode modulation strategies for the control of the output current in the static converter, updating data, and based on the voltage at the terminals of an inductor; how-ever, others strategies are naturally cited because there are combinations between the different modulating strategies and controllers commented on in the course of this work.
|
37 |
Impact Study: Photo-voltaic Distributed Generation on Power SystemSahoo, Smrutirekha January 2016 (has links)
The grid-connected photo-voltaic (PV) system is one of the most promising renewable energy solutions which offers many benefits to both the end user and the utility network and thus it has gained the popularity over the last few decades. However, due to the very nature of its invariability and weather dependencies, the large scale integration of this type of distributed generation has created challenges for the network operator while maintaining the quality of the power supply and also for reliable and safe operations of the grids. In this study, the behavioral impact of large scale PV system integration which are both steady and dynamic in nature was studied. An aggregate PV model suited to study the impacts was built using MATLAB/Simulink. The integration impacts of PV power to existing grids were studied with focus on the low voltage residential distribution grids of Mälarenergi Elnät AB (10/0.4 kV). The steady state impacts were related to voltage profile, network loss. It was found that the PV generation at the load end undisputedly improves the voltage profile of the grid especially for the load buses which are situated at farther end of the grid. Further, with regard to the overvoltage issue, which is generally a concern during the low load demand period it was concluded that, at a 50% PV penetration level, the voltage level for the load buses is within the limit of 103% as prescribed by the regulator excepting for few load buses. The voltage level for load buses which deviate from the regulatory requirement are located at distance of 1200 meter or further away from the substation. The dynamic impact studied were for voltage unbalancing in the grid, which was found to have greater impact at the load buses which is located farther compared to a bus located nearer to the substation. With respect to impact study related to introduction of harmonics to the grid due to PV system integration, it was found that amount of harmonic content which was measured as total harmonic distortion (THD) multiplies with integration of more number of PV system. For a 50 % penetration level of PV, the introduced harmonics into the representative network is very minimal. Also, it was observed from the simulation study that THD content are be less when the grid operates at low load condition with high solar irradiance compared to lower irradiance and high load condition.
|
38 |
Impact of high penetration of renewable energy sources on the relay coordination of distribution systemOlatoke, Abraham Oladele January 2016 (has links)
The rate at which the integration of distributed generation (DG) penetrates the public power supply has started to put various demands on the distribution system, since they are directly connected to the network. Distribution level protection is based on a time-overcurrent design. The design is to clear faults with as little impact and minimum time on the equipment and the customer. The increasing demands placed by grid services on the DGs, especially the PV types have a serious impact on the distribution system. For example, special protective devices are required to prevent the risk of danger in the event of mains interference. In this thesis, the main focus was on the contribution of fault currents to the distribution networks, and how the high penetration of DGs especially the renewable energy resources (R.E.S.) types affect the coordination of overcurrent (O.C.) protection. In view of the changes in the international regulations, the DGs are expected to stay connected and perform grid-related control functions, instead of shutting down at the first sign of a fault. This problem becomes more acute when the DGs stay connected during faults, known as voltage ride through (VRT). This thesis presented its findings on the impact of the DGs of various types of DGs (synchronous generator, asynchronous and power electronic) on the protection coordination by the high increase of fault currents, and the mitigation techniques of the impact of the inverter interfaced DGs (whose fault current contribution was not so high) on the overcurrent protection. The impact on system’s over-current protection coordination in such hybrid AC and DC microgrid, how the fault current changes by the high penetration of DGs in the hybrid microgrid and their effects on the protection over-current coordination were presented, as the name microgrid was adopted for networks having a point of common connection (PCC). The inverter interfaced-equipment were never in the conventional systems, the few that were there were all on the load side of the distribution system. The inverter interfacing DGs (PVs) and the synchronous types are the types of DGs that affect over-current protection of the distribution system and these were mitigated accordingly, considering the first few cycles of the fault events of the ride through capabilities. The analysis of the different penetration levels of the DGs in an existing 33kV in the Nigerian distribution network, (CocaCola-Challenge Industrial feeder) was thoroughly analysed, for less than 20%, more than 60% and 100% of the feeder load. Most of the DGs, presently existing in that network are the synchronous types, but they are only used as standby sources of power, and the renewables (RES) like the photovoltaics (PV), run of flow (RoF) Hydo and the wind turbine generators (WTG) are proposed additions. The objective of this thesis was to explain the fundamentals of distribution generation (DG) and especially the RES, in relation to distribution protection relay coordination to see why there should be urgency in carrying out the study especially in a developing environment where the grid is unstable, the load is rapidly expanding and RES is intermittent. The radial distribution system (DS) with high penetration of DG was introduced. The motive was to critically investigate protection coordination problems and the solutions to the problems. The main objective was to optimally recommend the type, size and location of the DG for an actual distribution feeder in an unstable environment where the grid supply is not steady. The effect of 100% and above of feeder load penetration on such feeders formed the objective of this research. The literature review which was for investigating in greater details the technical aspects of the operation and control of the high penetration of RES in the distribution system were thoroughly analysed. The review of the existing radial distribution protection system and the effects of high penetration of DG on the protective relaying were thoroughly investigated. The issues of power electronic based inverters and the protection coordination problems, were investigated. The protection coordination as regards to fault level changes and grounding, intentional and un-intentional islanding were major important aspects which were treated in the technical review.
|
39 |
Model trojfázové umělé sítě / Model of Three-phase Power MicrogridMacík, Tomáš January 2020 (has links)
The Diploma thesis deals with control of three-phase active rectifier and a three-phase DC/AC converter. It also explains phase-locked loop principle. The theoretical part including first three chapters lists several control approaches to three phase active rectifier and three phase DC/AC converter. Described control approaches to the active rectifier are control in dq frame and control in dq UVW frame. Listed control approaches to the DC/AC converter include cascaded control structure and a full state feedback control. The practical part is divided into last three chapters and includes mathematical description of phase-locked loop principle, model of active rectifier controlled in dq frame and a model of DC/AC converter controlled both by a cascaded control and a full¬ state feedback. The models are created in Matlab Simulink.
|
40 |
Trakční pohon elektromobilu napájený vodíkovým palivovým článkem / Electrocar traction drive supplied with the hydrogen fuel cellPokálený, Jan January 2008 (has links)
The topic of this diploma thesis is a traction drive of electrocar with fuel cell. The drive is supplied with hydrogen fuel cell with power of 2 kW. The traction drive consists of the three-phase DC/AC converter and the asynchronous machine. The main part of this work is a creation of the mathematical model of the traction drive in program Matlab–Simulink.
|
Page generated in 0.0572 seconds