61 |
Fernerkundungsbasierte Modellierung und hydrologische Messungen zur Analyse und Bewertung der landwirtschaftlichen Wassernutzung in der Region Khorezm (Usbekistan) / Remote sensing based modeling and hydrological measurements for the assessment of agricultural water use in the Khorezm region (Uzbekistan)Conrad, Christopher January 2006 (has links) (PDF)
Die Bewässerungslandwirtschaft in Mittelasien ist geprägt von schwerwiegenden ökologischen und ökonomischen Problemen. Zur Verbesserung der Situation auf dem hydrologischen Sektor wird daher seitens der mittelasiatischen Interstate Commission for Water Coordination (ICWC) die Einführung des Integrated Water Resource Management (IWRM) gefordert. Wichtige Herausforderungen zur Optimierung der Wassernutzung im Aralsee-Becken sind dabei die Schaffung von Transparenz sowie von Möglichkeiten zur Überwachung der Landnutzung und der Wasserentnahme in den Bewässerungssystemen. Im Detail fokussierte diese Arbeit auf das Bewässerungssystem der Region Khorezm im Unterlauf des Amu Darya südlich des Aralsees. Die Arbeit zielte darauf ab, (1) objektive und konsistente Datengrundlagen zum Monitoring der Landnutzung und des Wasserverbrauchs innerhalb des Bewässerungslandes zu schaffen und (2) auf Basis dieser Ergebnisse die Funktionsweise des Bewässerungssystems zu verstehen sowie die Land- und Wassernutzung der Region zu bewerten. Um diese Ziele zu erreichen, wurden Methoden der Fernerkundung und der Hydrologie miteinander kombiniert. Fernerkundliche Schlüsselgrößen der Arbeit waren die Kartierung der agrarischen Landnutzung und die Modellierung der saisonalen tatsächlichen Evapotranspiration. Es wurde eine Methode vorgestellt, die eine Unterscheidung verschiedener Landnutzungen und Fruchtfolgen der Region durch die temporale Segmentierung von Zeitserien aus 8-tägigen Kompositen von 250 m-Daten des MODIS-Sensors ermöglicht. Durch die mehrfache Anwendung von Recursive Partitioning And Regression Trees auf deskriptive Statistiken von Zeitseriensegmenten konnte eine hohe Stabilität erzielt werden (overall accuracy: 91 %, Kappa-Koeffizient: 0,9). Täglich von MODIS aufgezeichnete Landoberflächentemperaturen (LST) bildeten die Basis zur fernerkundungsbasierten Modellierung der saisonalen tatsächlichen Evapotranspiration (ETact) für die sommerliche Vegetationsperiode. Aufgrund der hohen zeitlichen und groben räumlichen Auflösung der verwendeten MODIS-Daten von 1 km waren leichte Modifikationen des zur Modellierung eingesetzten Surface Energy Balance Algortihm for Land (SEBAL) erforderlich. Zur Modellierung von ETact wurden MODIS-Produkte (LST, Emissionsgrad, Albedo, NDVI und Blattflächenindex) und meteorologische Stationsdaten aus Khorezm verwendet. Die Modellierung des fühlbaren Wärmeflusses, einer Komponente der Energiebilanzgleichung an der Erdoberfläche, erfolgte mittels METRIC (High Resolution and Internalized Calibration), einer Variante des SEBAL. Die Landnutzungsklassifikation fungierte als zentraler Eingangsparameter, um eine automatisierte Auswahl der Ankerpunkte des Models sicherzustellen. Da innerhalb der MODIS-Auflösung aufgrund der Mischpixelproblematik keine homogen feuchten oder trockenen Bedingungen im Bewässerungsgebiet gefunden werden konnten, wurden die Landnutzungsklassifikation, der NDVI und die ASCE-Referenz-Evapotranspiration zur Abschätzung des tatsächlichen Zustands an den Ankerpunkten herangezogen. Weiterhin wurden umfassende Geländemessungen durchgeführt, um in der Vegetationsperiode 2005 die Zu- und Abflussmengen des Wasser von und nach Khorezm zu bestimmen. Die abschließende Bewertung der Land- und Wassernutzung basierte letztendlich auf der Bildung von Wasserbilanzen und der Berechnung anerkannter Performanceindikatoren wie der Ratio aus Drainage und Wasserentnahme oder der depleted fraction. Für die landwirtschaftliche Nutzung im Rayon Khorezm wurde für die Sommersaison 2005 eine Wasserentnahme von 5,38 km3 ermittelt. Damit übertrafen die Messergebnisse die offiziell verfügbaren Daten der ICWC um durchschnittlich 37 %. Auf die landwirtschaftliche Fläche bezogen ergab sich für Khorezm im Jahr 2005 eine mittlere Wasserentnahme von 22.782 m3/ha. In den Subsystemen schwankten diese Werte zwischen 17.000 m3/ha und 30.000 m3/ha. Allerdings konnte an den Systemgrenzen, an denen die Messungen durchgeführt werden, der aus den fernerkundungsbasierten Modellierungen auf WUA-Level erwartete abnehmende Gradient der Wasserentnahme zwischen Oberlauf und Unterlauf nicht nachvollzogen werden. Als Ursache für diese Diskrepanz sind vor allem die Versickerungsverluste im Kanalsystem zu nennen, die den Grundwasserkörper großräumig auffüllen und auf Feldebene nicht zur oberflächlichen Bewässerung zur Verfügung stehen. Monatliche Bilanzierungen und die Analyse der Performanceindikatoren führten zu denselben Ergebnissen. In dieser Arbeit konnte gezeigt werden, dass sich mit Methoden der Fernerkundung objektive und konsistente Daten der agrarischen Landnutzung und des Wasserverbrauchs für ein regionales Monitoring erstellen lassen. Da in den benachbarten Regionen gleiche atmosphärische Bedingungen und ähnliche Anbausorten anzutreffen sind, ist anzunehmen, dass beide Verfahren auch auf der Planungsebene in einem IWRM für die übrigen Mittel- und Unterläufe von Amu Darya und Syr Darya ein hohes Anwendungspotenzial besitzen. / The recently founded states of Middle Asia face serious economical and ecological problems in irrigated agriculture. Thus, the introduction of the Integrated Water Resource Management (IWRM) is one of the major aims of the Interstate Commission for Water Coordination (ICWC) of Middle Asia. This study focuses on the irrigation and drainage systems of Khorezm, located in the lower Amu Darya Basin. The scientific gaols were (1) to generate objective and consistent data to measure agricultural land use and water consumption in irrigated areas of the Khorezm region and (2) to analyze the functioning of the irrigation system to assess the use of land and water. Remote sensing in combination with hydrological measurements and irrigation performance indicators were found suitable to achieve these aims. A method was developed to classify agricultural land use for the entire Khorezm region by temporal segmentation of 8-day 250 m MODIS time series. The application of Recursive Partitioning And Regression Tree (RPART) on temporal segments of the time series enabled stable results and portability with 91% overall accuracy and a Kappa coefficient of 0.9. Daily MODIS 1 km Land Surface Temperature (LST) data were used for modeling seasonal actual evapotranspiration (ETact) of the summer vegetation period. The Surface Energy Balance Algorithm for Land (SEBAL) was slightly modified to account for the coarse spatial resolution of MODIS data and for semi-operational purposes. MODIS 1 km land products (LST, emissivity, albedo, NDVI, and leaf area index), and meteorological data were combined for modeling ETact. The sensible heat flux was calculated according to the METRIC (Mapping EvapoTranspiration at High Resolution and Internalized Calibration) variant of SEBAL. Aggregated to MODIS 1 km scale, the land use classification was the determining parameter to select hot and cold anchor points needed to model sensible heat fluxes automatically. The probability to find completely dry or wet conditions within a 1 km grid is very low. Thus, classification results, NDVI, and ASCE-EWRI reference evapotranspiration (ETref) were used to adjust the estimations of the vertical temperature gradient at the best fitting anchor points (similar to METRIC). Furthermore, flow measurements were recorded for 2005 to generate a hydrological data set for balancing. The water balance was achieved by integrating the remotely sensed evapotranspiration. Additionally, widely accepted irrigation performance indicators such as relative evapotranspiration, drainage over inflow ratio, and depleted fraction were calculated on a monthly base to investigate the functioning of the canal network in Khorezm on regional scale. For agricultural use, withdrawals of 5.38 km3 were measured in the vegetation period 2005. The values were on average 37% higher than the official data of the ICWC. Within the system boundaries water amounts of 22,782 m3/ha were available for irrigation. Comparisons between subsystems showed regional disparities of withdrawals ranging from 17,000 m3/ha to 30,000 m3/ha. The upstream-downstream gradient of irrigation water supply expected from the remote sensing modeling results could not be found at the regional water distribution level. In comparison with the remote sensing results it can be summarized that water consumption at the field level (MODIS pixel) or WUA level does not reflect the water intake at the upstream distribution nodes. Monthly water balances and performance indicators highlighted similar results. During the leaching and the main irrigation period in 2005, an increase of soil moisture and groundwater was recorded. The discharge of groundwater followed the irrigation phase in September. However, even in the main irrigation season (July and August), the average drainage over intake ratio is 45% and in the upper part of the irrigation system almost reaches 60%. This concludes a high potential for water saving. Although high discharges in the regional drainage system were found poor drainage systems are reported at the field level. Evidently the main drainage canals of the region work as large scale groundwater collectors rather than fulfill their designated use to collect saline water from the field level. The study proofed the importance to collect reliable and consistent data for hydrological analyses in Middle Asia. For the Khorezm region the presented remote sensing methods indicated their ability to supply data for hydrological monitoring on a regional scale. Remotely sensed crop rotation patterns and water consumption offered the view on field and WUA levels inside the irrigation water distribution administrations. Both methods are portable to regions with similar crops and good climatic conditions, for instance the middle and lower course of the Amu Darya and Syr Darya River.
|
62 |
Kann Universität Heimat sein?Bente, Klaus 26 July 2013 (has links) (PDF)
Um sich der Universität mit dem Begriff der Heimat zu nähern, ist der Geist, der dahin weht, wohin er will, mit dem Begriff der Verortung des ihn Produzierenden zu flankieren.
|
63 |
Geomorphologisch-sedimentologische und satellitenbildbasierte Analyse der Einflüsse auf die Landschaftsentwicklung im Einzugsgebiet des Arroyo del Alforzo (Rio Turón), Provinz Málaga, SpanienTintrup gen. Suntrup, Angela January 2010 (has links) (PDF)
Diese Dissertationsarbeit liefert einen Beitrag zur Erfassung und Bewertung von Degradationsprozessen im semi-humiden Süden Spaniens. Der erste Teil der Arbeit widmet sich der detaillierten physisch-geographischen Charakterisierung des Großraumes, um danach in dem kleinräumigen Einzugsgebiet des Arroyo del Alforzo, einem Tributär des Río Turón, zwei unterschiedliche Ansätze zur Erfassung von die degradationsbeeinflussenden Fatoren wie Landnutzungswechsel und Starkniederschlagsereignissen in diesem Raum zu untersuchen. Anhand von drei Satellitenbildern wurde der Landnutzungswechsel ermittelt und im Untersuchungsgebiet die Abhängigkeit zu den Hangneigungen untersucht. Vor dem Hintergrund, daß unterschiedlich starke Hangneigungen einen unterschiedlich starken Einfluss auf die Abtragsdynamik bei Niederschlägen hat, wurden anhand der Landnutzungsklassifizierungen in Kombination mit den Hangneigungnen sensible Räume ermittelt. Ein weiterer Ansatz ist die Untersuchung von Tagesniederschlagsdaten auf Starkniederschlagsereignisse, mit dem Ziel, diese zu separieren. Es galt die Annahme, daß diese Starkniederschlagsereignisse im Einzugsgebiet des Arroyo del Alforzo oberflächlichen Abfluss generieren und somit ein bedeutender Sedimenteintrag aus den sensiblen Bereichen des Untersuchungsgebiet in den Stausee Conde de Guadalhorce stattfindet. Mittels sedimentstratigraphischer Untersuchungen an den Sedimenten des 2006 gewonnenen Bohrkerns aus dem Mündungsbereich des Arroyo del Alforzo in den Stausee Conde de Guadalhorce sollte dieser Sedimenteintrag identifierziert werden und somit ein zeitlicher und räumlicher Rückschluss auf die die Abtragung beeinflussenden faktoren Landnutzungswechsel, Hangneigung und Niederschlag efolgen. Die Annahme, dass sich diese Rückschlüsse ziehen lassen können auf der Grundlage des Bindeglieds „Sedimentbohrung“ erwies sich jedoch als zu eng. In einer abschliessenden Bewertung wurde erläutert, daß durch eine gezielte methodische Ergänzung jedoch die Möglichkeit besteht, die Unsicherheiten, die durch eine räumlich wie zeitlich inkonsistente Datenlage der Niederschlagsdaten und die in einem Stausee herrschende spezielle Akkumulationsdynamik hervorgerufen wurde, beseitigt werden kann. / not available
|
64 |
Potential of multi-temporal remote sensing data for modeling tree species distributions and species richness in Mexico / Eignung multi-temporaler Fernerkundungsdaten für die Modellierung von Artverbreitungsgebieten und Diversität von Baumarten in MexikoCord, Anna January 2012 (has links) (PDF)
Current changes of biodiversity result almost exclusively from human activities. This anthropogenic conversion of natural ecosystems during the last decades has led to the so-called ‘biodiversity crisis’, which comprises the loss of species as well as changes in the global distribution patterns of organisms. Species richness is unevenly distributed worldwide. Altogether, 17 so-called ‘megadiverse’ nations cover less than 10% of the earth’s land surface but support nearly 70% of global species richness. Mexico, the study area of this thesis, is one of those countries. However, due to Mexico’s large extent and geographical complexity, it is impossible to conduct reliable and spatially explicit assessments of species distribution ranges based on these collection data and field work alone. In the last two decades, Species distribution models (SDMs) have been established as important tools for extrapolating such in situ observations. SDMs analyze empirical correlations between geo-referenced species occurrence data and environmental variables to obtain spatially explicit surfaces indicating the probability of species occurrence. Remote sensing can provide such variables which describe biophysical land surface characteristics with high effective spatial resolutions. Especially during the last three to five years, the number of studies making use of remote sensing data for modeling species distributions has therefore multiplied. Due to the novelty of this field of research, the published literature consists mostly of selective case studies. A systematic framework for modeling species distributions by means of remote sensing is still missing. This research gap was taken up by this thesis and specific studies were designed which addressed the combination of climate and remote sensing data in SDMs, the suitability of continuous remote sensing variables in comparison with categorical land cover classification data, the criteria for selecting appropriate remote sensing data depending on species characteristics, and the effects of inter-annual variability in remotely sensed time series on the performance of species distribution models. The corresponding novel analyses were conducted with the Maximum Entropy algorithm developed by Phillips et al. (2004). In this thesis, a more comprehensive set of remote sensing predictors than in the existing literature was utilized for species distribution modeling. The products were selected based on their ecological relevance for characterizing species distributions. Two 1 km Terra-MODIS Land 16-day composite standard products including the Enhanced Vegetation Index (EVI), Reflectance Data, and Land Surface Temperature (LST) were assembled into enhanced time series for the time period of 2001 to 2009. These high-dimensional time series data were then transformed into 18 phenological and 35 statistical metrics that were selected based on an extensive literature review. Spatial distributions of twelve tree species were modeled in a hierarchical framework which integrated climate (WorldClim) and MODIS remote sensing data. The species are representative of the major Mexican forest types and cover a variety of ecological traits, such as range size and biotope specificity. Trees were selected because they have a high probability of detection in the field and since mapping vegetation has a long tradition in remote sensing. The result of this thesis showed that the integration of remote sensing data into species distribution models has a significant potential for improving and both spatial detail and accuracy of the model predictions. / Sämtliche aktuell zu beobachtenden Veränderungen in der Biodiversität lassen sich fast ausschließlich auf menschliche Aktivitäten zurückführen. In den letzten Jahrzehnten hat insbesondere die anthropogene Umwandlung bisher unberührter, natürlicher Ökosysteme zur sogenannten ‚Biodiversitätskrise‘ geführt. Diese umfasst nicht nur das Aussterben von Arten, sondern auch räumliche Verschiebungen in deren Verbreitungsgebieten. Global gesehen ist der Artenreichtum ungleich verteilt. Nur insgesamt 17 sogenannte ‚megadiverse‘ Länder, welche 10% der globalen Landoberfläche umfassen, beherbergen fast 70% der weltweiten Artenvielfalt. Mexiko, das Studiengebiet dieser Arbeit, ist eine dieser außerordentlich artenreichen Nationen. Aufgrund seiner großen Ausdehnung und geographischen Komplexität kann eine verlässliche und detaillierte räumliche Erfassung von Artverbreitungsgebieten in Mexiko jedoch nicht nur auf Basis dieser Datenbanken sowie von Feldarbeiten erfolgen. In den letzten beiden Jahrzehnten haben sich Artverbreitungsmodelle (Species distribution models, SDMs) als wichtige Werkzeuge für die räumliche Interpolation solcher in situ Beobachtungen in der Ökologie etabliert. Artverbreitungsmodelle umfassen die Analyse empirischer Zusammenhänge zwischen georeferenzierten Fundpunkten einer Art und Umweltvariablen mit dem Ziel, räumlich kontinuierliche Vorhersagen zur Wahrscheinlichkeit des Vorkommens der jeweiligen Art zu treffen. Mittels Fernerkundung können Umweltvariablen mit Bezug zu den biophysikalischen Eigenschaften der Landoberfläche in hohen effektiven räumlichen Auflösungen bereitgestellt werden. Insbesondere in den letzten drei bis fünf Jahren ist daher die Verwendung von Fernerkundungsdaten in der Artverbreitungsmodellierung sprunghaft angestiegen. Da es sich hierbei jedoch immer noch um ein sehr neues Forschungsfeld handelt, stellen diese meist nur Einzelstudien mit Beispielcharakter dar. Eine systematische Untersuchung zur Modellierung von Artverbreitungsgebieten mit Hilfe von Fernerkundungsdaten fehlt bisher. Diese Forschungslücke wurde in der vorliegenden Arbeit aufgegriffen. Hierzu wurden spezifische Untersuchungen durchgeführt, welche insbesondere folgende Aspekte betrachteten: die sinnvolle Verknüpfung von Klima- und Fernerkundungsdaten im Rahmen von Artverbreitungsmodellen, den quantitativen Vergleich von kontinuierlichen Fernerkundungsdaten und einer bestehenden kategorialen Landbedeckungsklassifikation, die Identifizierung von Kriterien zur Auswahl geeigneter Fernerkundungsprodukte, welche die Eigenschaften der Studienarten berücksichtigen, sowie der Einfluss inter-annueller Variabilität in fernerkundlichen Zeitreihen auf die Ergebnisse und Leistungsfähigkeit von Artverbreitungsmodellen. Die entsprechenden neuen Analysen wurden mit Hilfe des von Phillips et al. (2004) entwickelten Maximum Entropy Algorithmus zur Artverbreitungsmodellierung durchgeführt. Im Rahmen dieser Arbeit wurde ein umfangreicherer Datensatz an Fernerkundungsvariablen als in der bisherigen Literatur verwendet. Die entsprechenden Fernerkundungsprodukte wurden spezifisch aufgrund ihrer Eignung für die Beschreibung ökologisch relevanter Parameter, die sich auf die Verbreitungsgebiete von Arten auswirken, ausgewählt. Für den Zeitraum von 2001 bis 2009 wurden zwei Terra-MODIS Standardprodukte mit 1 km räumlicher und 16-tägiger zeitlicher Auflösung zu geglätteten, kontinuierlichen Zeitreihen zusammengefügt. Diese Produkte beinhalten den verbesserten Vegetationsindex (Enhanced Vegetation Index, EVI), Reflexionsgrade und die Landoberflächentemperatur (Land Surface Temperature, LST). Diese hochdimensionalen Zeitreihendaten wurden in insgesamt 18 phänologische sowie 35 statistische Maßzahlen überführt, welche auf der Basis einer umfassenden Sichtung der vorhandenen Literatur zusammengestellt wurden. Die Verbreitungsgebiete von zwölf Baumarten wurden mit Hilfe eines hierarchisch aufgebauten Ansatzes, welcher sowohl Klimadaten (WorldClim) als auch Fernerkundungsdaten des MODIS-Sensors berücksichtigt, modelliert. Die Studienarten sind repräsentativ für die in Mexiko vorkommenden Waldtypen und decken eine breite Spannweite ökologischer Eigenschaften wie Größe des Verbreitungsgebietes und Breite der ökologischen Nische ab. Als Studienobjekte wurden Bäume ausgewählt, weil sie im Feld mit hoher Wahrscheinlichkeit richtig erfasst werden und außerdem die fernerkundungsbasierte Kartierung von Vegetation bereits auf eine Vielzahl an Studien zurückgreifen kann. Durch die im Rahmen dieser Dissertation durchgeführten Untersuchungen konnte gezeigt werden, dass die Integration von Fernerkundungsdaten in Artverbreitungsmodelle ein signifikantes Potential zur Verbesserung der räumlichen Detailgenauigkeit und der Güte der Modellvorhersagen bietet.
|
65 |
Potential of high resolution remote sensing data for leaf area index derivation using statistical and physical models / Potenzial hochaufgelöster Fernerkundungsdaten für die Ableitung des Blattflächenindex aus statistischen und physikalischen ModellenAsam, Sarah January 2014 (has links) (PDF)
Information on the state of the terrestrial vegetation cover is important for several ecological, economical, and planning issues. In this regard, vegetation properties such as the type, vitality, or density can be described by means of continuous biophysical parameters. One of these parameters is the leaf area index (LAI), which is defined as half the total leaf area per unit ground surface area. As leaves constitute the interface between the biosphere and the atmosphere, the LAI is used to model exchange processes between plants and their environment. However, to account for the variability of ecosystems, spatially and temporally explicit information on LAI is needed both for monitoring and modeling applications.
Remote sensing aims at providing such information. LAI is commonly derived from remote sensing data by empirical-statistical or physical models. In the first approach, an empirical relationship between LAI measured in situ and the corresponding canopy spectral signature is established. Although this method achieves accurate LAI estimates, these relationships are only valid for the place and time at which the field data were sampled, which hampers automated LAI derivation. The physical approach uses a radiation transfer model to simulate canopy reflectance as a function of the scene’s geometry and of leaf and canopy parameters, from which LAI is derived through model inversion based on remote sensing data. However, this model inversion is not stable, as it is an under-determined and ill-posed problem.
Until now, LAI research focused either on the use of coarse resolution remote sensing data for global applications, or on LAI modeling over a confined area, mostly in forest and crop ecosystems, using medium to high spatial resolution data. This is why to date no study is available in which high spatial resolution data are used for LAI mapping in a heterogeneous, natural landscape such as alpine grasslands, although a growing amount of high spatial and temporal resolution remote sensing data would allow for an improved environmental monitoring. Therefore, issues related to model parameterization and inversion regularization techniques improving its stability have not yet been investigated for this ecosystem.
This research gap was taken up by this thesis, in which the potential of high spatial resolution remote sensing data for grassland LAI estimation based on statistical and radiation transfer modeling is analyzed, and the achieved accuracy and robustness of the two approaches is compared. The objectives were an ecosystem-adapted radiation transfer model set-up and an optimized LAI derivation in mountainous grassland areas. Multi-temporal LAI in situ measurements as well as time series of RapidEye data from 2011 and 2012 over the catchment of the River Ammer in the Bavarian alpine upland were used. In order to obtain accurate in situ data, a comparison of the LAI derivation algorithms implemented in the LAI-2000 PCA instrument with destructively measured LAI was performed first. For optimizing the empirical-statistical approach, it was then analyzed how the selection of vegetation indices and regression models impacts LAI modeling, and how well these models can be transferred to other dates. It was shown that LAI can be derived
with a mean accuracy of 80 % using contemporaneous field data, but that the accuracy decreases to on average 51 % when using these models on remote sensing data from other dates. The combined use of several data sets to create a regression which is used for LAI derivation at different points in time increased the LAI estimation accuracy to on average 65 %. Thus, reduced field measurement labor comes at the cost of LAI error rates being increased by 10 - 30 % as long as at least two campaigns are conducted. Further, it was shown that the use of RapidEye’s red edge channel improves the LAI derivation by on average 5.4 %.
With regard to physical LAI modeling, special interest lay in assessing the accuracy improvements that can be achieved through model set-up and inversion regularization techniques. First, a global sensitivity analysis was applied to the radiation transfer model in order to identify the most important model parameters and most sensitive spectral features. After model parameterization, several inversion regularizations, namely the use of a multiple sample solution, the additional use of vegetation indices, and the addition of noise, were analyzed. Further, an approach to include the local scene’s geometry in the retrieval process was introduced to account for the mountainous topography. LAI modeling accuracies of in average 70 % were achieved using the best combination of regularization techniques, which is in the upper range of accuracies that were achieved in the few existing other grassland studies based on in situ or air-borne measured hyperspectral data. Finally, further physically derived vegetation parameters and inversion uncertainty measures were evaluated in detail to identify challenging modeling conditions, which was mostly neglected in other studies. An increased modeling uncertainty for extremely high and low LAI values was observed. This indicates an insufficiently wide model parameterization and a canopy deviation from model assumptions on some fields. Further, the LAI modeling accuracies varied strongly between the different scenes. From this observation it can be deduced that the radiometric quality of the remote sensing data, which might be reduced by atmospheric effects or unexpected surface reflectances, exerts a high influence on the LAI modeling accuracy.
The major findings of the comparison between the empirical-statistical and physical LAI modeling approaches are the higher accuracies achieved by the empirical-statistical approach as long as contemporaneous field data are available, and the computationally efficiency of the statistical approach. However, when no or temporally unfitting in situ measurements are available, the physical approach achieves comparable or even higher accuracies. Furthermore, radiation transfer modeling enables the derivation of other leaf and canopy variables useful for ecological monitoring and modeling applications, as well as of pixel-wise uncertainty measures indicating the robustness and reliability of the model inversion and LAI derivation procedure. The established look-up tables can be used for further LAI derivation in Central European grassland also in other years.
The use of high spatial resolution remote sensing data for LAI derivation enables a reliable land cover classification and thus a reduced LAI mapping error due to misclassifications. Furthermore, the RapidEye pixels being smaller than individual fields allow for a radiation transfer model inversion over homogeneous canopies in most cases, as canopy gaps or field parcels can be clearly distinguished. However, in case of unexpected local surface conditions such as blooming, litter, or canopy gaps, high spatial resolution data show corresponding strong deviations in reflectance values and hence LAI estimation, which would be reduced using coarser resolution data through the balancing effect of the surrounding surface reflectances. An optimal pixel size with regard to modeling accuracy hence depends on the canopy and landscape structure. Furthermore, a reduced spatial resolution would enable a considerable acceleration of the LAI map derivation.
This illustration of the potential of RapidEye data and of the challenges associated to LAI derivation in heterogeneous grassland areas contributes to the development of robust LAI estimation procedures based on new and upcoming, spatially and temporally high resolution remote sensing imagery such as Landsat 8 and Sentinel-2. / Informationen zum Zustand der Vegetation sind relevant für einige ökologische, ökonomische, und planerische Fragestellungen. Vegetationseigenschaften wie der Typ, die Vitalität oder die Dichte einer Pflanzendecke können dabei anhand von kontinuierlichen biophysikalischen Parametern beschrieben werden. Einer dieser Parameter ist der Blattflächenindex (engl. leaf area index, LAI), der als die halbe gesamte Blattoberfläche pro Bodenoberfläche definiert ist. Da die Blattfläche eine wichtige Schnittstelle zwischen der Biosphäre und der Atmosphäre darstellt, wird der LAI dazu verwendet, Austauschprozesse zwischen Pflanzen und ihrer Umwelt zu modellieren. Um die natürliche Variabilität von Ökosystemen berücksichtigen zu können, benötigt man für solche Monitoring- und Modellierungsanwendungen jedoch räumlich und zeitlich explizite LAI Informationen.
Die Fernerkundung stellt solche Informationen zur Verfügung. Fernerkundungsbasierte LAI-Kartierung basiert auf empirisch-statistischen und physikalischen Modellen. Im ersten Ansatz wird ein empirisches Verhältnis zwischen dem aufgezeichneten Reflexionssignal der Vegetationsdecke und in situ gemessenem LAI erstellt. Obwohl dieses Verfahren meist hohe Genauigkeiten erzielt, gilt das erstellte Verhältnis nur für den Ort und Zeitpunkt der Feldmessungen, was ein automatisiertes Verfahren behindert. Der physikalische Ansatz verwendet ein Strahlungstransfermodell um die spektrale Signatur einer Pflanzendecke in Abhängigkeit von der Szenengeometrie und verschiedenen Blatt- und Pflanzenparametern zu simulieren, von der LAI durch die Inversion des Modells basierend auf Fernerkundungsdaten abgeleitet wird. Die Modellinversion ist jedoch nicht stabil, da sie ein unterdeterminiertes und inkorrekt gestelltes Problem ist.
Bisher fokussierten LAI-Studien entweder auf die Verwendung räumlich grob ausgelöster Fernerkundungsdaten für globale Anwendungen, oder auf LAI-Modellierung für Wälder und Anbaufrüchte innerhalb eines räumlich eingeschränkten Gebiets basierend auf mittel und hoch aufgelösten Daten. Obwohl die Menge an räumlich und zeitlich hoch aufgelösten Fernerkundungsdaten für ein verbessertes Umweltmonitoring kontinuierlich zunimmt, führte dies dazu, dass es keine Studie gibt die sich mit der Ableitung des LAI in heterogenen Landschaften wie beispielsweise alpinem Grünland, basierend auf räumlich hoch aufgelösten Daten, beschäftigen. Dementsprechend wurden damit verbundene Aspekte wie die Modellparametrisierung und Regularisierungsmöglichkeiten der Inversion für dieses Ökosystem noch nicht untersucht.
Diesem Forschungsbedarf wird mit dieser Arbeit, in der das Potenzial räumlich hoch aufgelöster Fernerkundungsdaten für die Ableitung von Grünland-LAI basierend auf statistischen Modellen und Strahlungstransfermodellierung analysiert wird, und in der die Genauigkeiten und Stabilität beider Verfahren verglichen werden, begegnet. Die Ziele der Arbeit sind eine an das Grünlandökosystem angepasste Einrichtung des Strahlungstransfermodells und die Ableitung des LAI für Grünland im Gebirgsraum. Multitemporale in situ LAI-Messungen sowie RapidEye-Zeitreihen aus den Jahren 2011 und 2012 aus dem Ammereinzugsgebiet im bayrischen Voralpenland wurden dazu verwendet.
Um verlässliche in situ Messwerte zu erhalten, wurde zunächst ein Vergleich der im LAI-2000 PCA Messinstrument implementierten Algorithmen mit destruktiv erhobenen LAI Werten durchgeführt. Zur Optimierung des empirisch-statistischen Ansatzes wurde dann untersucht, in welchem Maße die Verwendung verschiedener Vegetationsindizes und Regressionsmodelle die LAI-Modellierung beeinflussen, und wie gut diese Modelle auf andere Zeitpunkte übertragen werden können. Es wurde gezeigt, dass unter Verwendung von zeitgleich erhobenen Felddaten der LAI mit einer mittleren Genauigkeit von 80 % abgeleitet werden kann, dass sich die Genauigkeit aber auf 51 % verringert, wenn die Modelle auf Fernerkundungsdaten anderer Zeitpunkte angewendet werden. Die gemeinsame Nutzung mehrerer Felddatensätze zur Erstellung einer Regression welche auf andere Zeitpunkte
angewendet wird, erhöhte die Genauigkeit der LAI-Ableitung wiederum auf durchschnittlich 65 %. Ein verringerter Arbeitsaufwand für Feldmessungen wird also durch erhöhte Fehlerraten von 10 - 30 % pro Szene ausgewogen, solange mindestens zwei Messkampagnen durchgeführt werden. Außerdem wurde gezeigt, dass die Verwendung des “red edge” Bandes des RapidEye Sensors die LAI-Ableitung um im Mittel 5.4 % verbessert.
Im Hinblick auf die physikalische LAI-Modellierung waren vor allem die Verbesserung der Genauigkeit, die anhand von Modelleinstellungen und Regularisierungstechniken erzielt werden konnten, von Interesse. Zunächst wurde eine globale Sensitivitätsanalyse des Strahlungstransfermodells durchgeführt, um die wichtigsten Modellparameter und die sensitivsten spektralen Bereiche zu identifizieren. Nach der darauf basierenden Modellparametrisierung wurden in den nächsten Schritten mehrere Verfahren zu Stabilisierung der Inversion, nämlich die Verwendung multipler Lösungen, von Vegetationsindizes als Inputdaten, und von simuliertem Datenrauschen, analysiert. Außerdem wurde ein Ansatz eingeführt, der die Berücksichtigung der lokalen Szenengeometrien, und damit der Topographie des Untersuchungsgebietes, erlaubt.
Genauigkeiten von im Mittel 70 % konnten für die LAI-Modellierung unter Verwendung der besten Modell- und Inversionseinstellungen erreicht werden. Diese sind mit den Ergebnissen anderer Grünland-Studien, die jedoch auf in situ oder flugzeuggetragen gemessenen hyperspektralen Daten beruhen, vergleichbar. Zuletzt wurden weitere physikalisch modellierte Vegetationsparameter sowie Inversionsunsicherheitsmaße evaluiert, um besonders schwierige Modellierungsbedingungen zu identifizieren, was in anderen Studien bisher meist vernachlässigt wurde. Erhöhte Modellierungsunsicherheiten wurden für die Ableitung besonders niedriger und hoher LAI Werte beobachtet, was auf eine ungenügend weit gefasste Modellparametrisierung und stellenweise Abweichungen der Vegetationsdecke von den Modellannahmen hinweist. Außerdem variieren die Genauigkeiten der LAI Modellierung stark zwischen den einzelnen Szenen woraus abgeleitet werden kann dass die radiometrische Qualität der Fernerkundungsdaten, welche beispielsweise durch
atmosphärische Effekte oder unerwartete Oberflächenreflexionen beeinfluss werten kann, einen großen Einfluss auf die Modellierungsgenauigkeit hat.
Im Vergleich der empirisch-statistischen und physikalischen LAI-Modellierung fiel der empirisch-statistische Ansatz mit höheren Genauigkeiten, solange zeitgleich aufgenommene Felddaten vorliegen, sowie mit einer geringeren Berechnungszeit auf. Wenn jedoch keine zeitlich passenden Felddaten vorhanden sind, erreicht die physikalische Modellierung vergleichbare oder sogar höhere Genauigkeiten. Des Weiteren ermöglicht das Strahlungstransfermodel die Ableitung weiterer Blatt- und Pflanzeneigenschaften, welche für ökologische Monitoring- und Modellierungsanwendungen nützlich sind. Außerdem werden pixelgenaue Unsicherheitsmaße generiert, welche die Stabilität und Verlässlichkeit der Modellinversion und des gewonnenen LAI-Wertes charakterisieren. Die erstellten Datenbanken können darüber hinaus für die LAI-Modellierung in anderen Mitteleuropäischen Grünländern auch in anderen Jahren verwendet werden.
Die Verwendung von hochaufgelösten Fernerkundungsdaten ermöglicht eine verlässliche Landbedeckungsklassifikation und verringert damit Fehler in der LAI-Modellierung die durch Fehlklassifikationen verursacht werden. Da die RapidEye-Pixel außerdem kleiner als einzelnen Felder sind, konnte das Strahlungstransfermodell in den meisten Fällen über homogenen Pflanzendecken invertiert werden. Angesichts unerwarteter lokaler Oberflächenreflexionen, hervorgerufen beispielsweise durch Blüten, Streu, oder Lücken, zeigen die hochaufgelösten Daten jedoch auch entsprechend starke Abweichungen, welche in gröber aufgelösten Daten durch die Reflexion der umgebenden Oberflächen verringert sind. Eine optimale Pixelgröße im Hinblick auf die Modellierungsgenauigkeit hängt also von der Struktur der Vegetationsdecke und der Landschaft ab. Eine verringerte Pixelgröße würde darüber hinaus die Ableitung von LAI-Karten deutlich beschleunigen.
Diese Darstellung des Potenzials von RapidEye Daten für LAI-Modellierung und der speziellen Herausforderungen an die genutzten Verfahren in heterogenen Grünländern kann zur Entwicklung von robusten LAI-Ableitungsverfahren beitragen, anhand welcher neue, räumlich und zeitlich hoch aufgelöste, Fernerkundungsdaten wie die der Landsat 8 oder Sentinel-2 Sensoren in Wert gesetzt werden können.
|
66 |
Future changes and signal analyses of climate means and extremes in the Mediterranean Area deduced from a CMIP3 multi-model ensemble / Zukünftige Veränderungen und Signalanalysen klimatischer Mittelwerte und Extremereignisse im Mittelmeerraum abgeleitet aus einem Multi-Modell Ensemble der CMIP3-DatenbankVogt, Gernot January 2014 (has links) (PDF)
Considering its social, economic and natural conditions the Mediterranean Area is a highly vulnerable region by designated affections of climate change. Furthermore, its climatic characteristics are subordinated to high natural variability and are steered by various elements, leading to strong seasonal alterations. Additionally, General Circulation Models project compelling trends in specific climate variables within this region. These circumstances recommend this region for the scientific analyses conducted within this study. Based on the data of the CMIP3 database, the fundamental aim of this study is a detailed investigation of the total variability and the accompanied uncertainty, which superpose these trends, in the projections of temperature, precipitation and sea-level pressure by GCMs and their specific realizations. Special focus in the whole study is dedicated to the German model ECHAM5/MPI-OM. Following this ambition detailed trends and mean values are calculated and displayed for meaningful time periods and compared to reanalysis data of ERA40 and NCEP. To provide quantitative comparison the mentioned data are interpolated to a common 3x3° grid.
The total amount of variability is separated in its contributors by the application of an Analysis of Variance (ANOVA). For individual GCMs and their ensemble-members this is done with the application of a 1-way ANOVA, separating a treatment common to all ensemble-members and variability perturbating the signal given by different initial conditions. With the 2-way ANOVA the projections of numerous models and their realizations are analysed and the total amount of variability is separated into a common treatment effect, a linear bias between the models, an interaction coefficient and the residuals.
By doing this, the study is fulfilled in a very detailed approach, by considering yearly and seasonal variations in various reasonable time periods of 1961-2000 to match up with the reanalysis data, from 1961-2050 to provide a transient time period, 2001-2098 with exclusive regard on future simulations and 1901-2098 to comprise a time period of maximum length. The statistical analyses are conducted for regional-averages on the one hand and with respect to individual grid-cells on the other hand. For each of these applications the SRES scenarios of A1B, A2 and B1 are utilized. Furthermore, the spatial approach of the ANOVA is substituted by a temporal approach detecting the temporal development of individual variables. Additionally, an attempt is made to enlarge the signal by applying selected statistical methods.
In the detailed investigation it becomes evident, that the different parameters (i.e. length of temporal period, geographic location, climate variable, season, scenarios, models, etc…) have compelling impact on the results, either in enforcing or weakening them by different combinations. This holds on the one hand for the means and trends but also on the other hand for the contributions of the variabilities affecting the uncertainty and the signal. While temperature is a climate variable showing strong signals across these parameters, for precipitation mainly the noise comes to the fore, while for sea-level pressure a more differentiated result manifests. In turn, this recommends the distinguished consideration of the individual parameters in climate impact studies and processes in model generation, as the affecting parameters also provide information about the linkage within the system.
Finally, an investigation of extreme precipitation is conducted, implementing the variables of the total amount of heavy precipitation, the frequency of heavy-precipitation events, the percentage of this heavy precipitation to overall precipitation and the mean daily intensity from events of heavy precipitation. Each time heavy precipitation is defined to exceed the 95th percentile of overall precipitation. Consecutively mean values of these variables are displayed for ECHAM5/MPI-OM and the multi-model mean and climate sensitivities, by means of their difference between their average of the past period of 1981-2000 and the average of one of the future periods of 2046-2065 or 2081-2100. Following this investigation again an ANOVA is conducted providing a quantitative measurement of the severity of change of trends in heavy precipitation across several GCMs.
Besides it is a difficult task to account for extreme precipitation by GCMs, it is noteworthy that the investigated models differ highly in their projections, resulting partially in a more smoothed and meaningful multi-model mean. Seasonal alterations of the strength of this behaviour are quantitatively supported by the ANOVA. / Bezüglich seiner sozialen, wirtschaftlichen und natürlichen Gegebenheiten ist der Mittelmeerraum eine Region, die in Anbetracht des zu erwartenden Klimawandels äußerst anfällig ist. Seine klimatischen Eigenschaften sind hoher natürlicher Variabilität, unterschiedlichen Antriebsmechanismen, sowie einer starken saisonalen Schwankung unterworfen. Zudem projizieren Globale Zirkulationsmodelle für diese Region aussagekräftige Trends für ausgewählte Klimavariablen. Diese Vorraussetzungen machen den Mittelmeerraum zu einem hervorragenden Studienobjekt für diese wissenschaftliche Arbeit. Auf der Basis der CMIP3 Datenbank ist das zu Grunde liegende Ziel dieser Arbeit eine detaillierte Untersuchung der Gesamtvariabilität und der damit einhergehenden Unsicherheit, die in den Projektionen der Globalen Zirkulationsmodelle und deren einzelnen Realisationen die Trends der Variablen Temperatur, Niederschlag und Druck überlagert. Besonderes Augenmerk liegt dabei auf dem deutschen Modell ECHAM5/MPI-OM. Für dieses Ziel werden Trends und Mittelwerte für aussagekräftige Zeitperioden berechnet und graphisch den Reanalysedatensätzen NCEP und ERA40 gegenübergestellt. Um quantitative Vergleiche zu ermöglichen werden die angesprochenen Datensätze auf ein gemeinsames geographisches Gitter von 3x3° interpoliert.
Der Gesamtanteil der Variabilität wird in seine Entstehungsquellen durch die Anwendung einer Varianzanalyse (ANOVA) aufgeteilt. Dies wird mit einer 1-Wege Varianzanalyse für einzelne Globale Zirkulationsmodelle und ihre Realisationen durchgeführt, wobei ein Anteil dem Signal entspricht, das in allen Realisationen vorhanden ist und ein Anteil dem Rauschen zugeordnet werden kann, das das Signal überlagert und unterschiedlichen Anfangsbedingungen des Modells geschuldet ist. Durch eine 2-Wege Varianzanalyse werden die unterschiedlichen Realisationen mehrerer Klimamodelle in eine Analyse eingebunden, wobei der Anteil der Gesamtvariabilität wiederum in einen gemeinsamen Signalanteil, einem Anteil des linearen Unterschieds zwischen den verschiedenen Klimamodellen, einem Interaktionskoeffizient und dem Rauschen aufgeteilt werden.
Die Anwendung dieser Verfahren wird detailliert ausgeführt, indem die Analysen auf jährlicher und saisonaler Grundlage für unterschiedliche Zeitperioden, nämlich 1961-1990 für den Vergleich mit den Reanalysedatensätzen, 1961-2050 als eine Übergangsperiode zwischen den Szenarien, 2001-2098 als reinen zukünftigen Betrachtungszeitraum und 1901-2098 um eine maximal umfassende Zeitperiode zu erhalten, betrachtet werden. Die statistischen Verfahren werden sowohl für regionale Mittelwerte als auch für einzelne Gitterpunkte berechnet. Für jede dieser Berechnungen werden die SRES Szenarien A1B, A2 und B1 herangezogen. Zudem wird der räumliche Ansatz der ANOVA ebenso durch einen zeitlichen ersetzt, wodurch die zeitliche Entwicklung der einzelnen Variabilitäten dargestellt wird. Des Weiteren wird durch gezielte statistische Methoden versucht, künstlich verstärkte Signale zu detektieren.
Durch die detaillierte Untersuchung wird offenkundig, dass die unterschiedlichen Randbedingungen (hier die Länge der Zeitperiode, der geographische Ort, die Bezugsvariable, die Saison, das Szenario, das Modell, etc…) eine entscheidende Rolle für das Ergebnis spielen, indem sie einerseits durch deren unterschiedlicher Kombination es sowohl verstärken als auch glätten können. Dies gilt sowohl für die Mittelwerte und die Trends als auch für die unterschiedlichen Partitionen der Variabilitäten, die wiederum die Unsicherheiten und das Signal beeinflussen. Während Temperatur starke Signale über alle dieser Randbedingungen aufweist, so zeigt sich für Niederschlag hauptsächlich ein starkes Rauschen, während für Druck eine sehr ambivalente Verteilung hervortritt. Dies wiederum beweist, dass dieser differenzierte Ansatz bezüglich der Betrachtung der Abhängigkeit dieser Randebedingungen unabdinglich in Klimafolgestudien und der Modellentwicklung ist, da diese Bedingungen auch Informationen über die Wechselbeziehungen im System beinhalten.
Schließlich wird noch die Entwicklung von Extremereignissen hinsichtlich der Niederschlagsmengen von Extremereignissen, der Häufigkeit der Ereignisse von extremen Niederschlagsmengen, dem prozentualen Anteil der Niederschlagsmenge aus Extremereignissen zu der Gesamtniederschlagsmenge und der mittleren täglichen Intensität von Niederschlagsextremereignissen untersucht. Hierbei wird ein Extremereignis als ein Ereignis definiert, das in seiner Menge oberhalb des 95.Perzentils der Menge der Gesamtereignisse liegt. So werden Mittelwerte dieser Variablen für ECHAM5/MPI-OM und über alle Modelle sowie deren Veränderungen zwischen ihren Mittelwerten aus den Zeiträumen der Vergangenheit 1981-2000 und den zukünftigen Perioden von 2046-2065 oder 2081-2100 gezeigt. Der Struktur dieser Studie folgend, wird wiederum eine ANOVA angewendet um eine quantitative Ermessung der Stärke der Veränderung im Erscheinungsbild von Extremniederschlagsereignissen über eine Vielzahl verschiedener Zirkulationsmodelle zu gewinnen.
Ungeachtet der schwierigen Tatsache, Extremniederschlagsereignisse aus GCMs abzuleiten, ist es erwähnenswert, dass die betrachteten Modelle stark in ihren Projektionen abweichen, was wiederum zu einem in einem gemäßigten und aussagekräftigerem Multi-Modell Mittelwert führt. Saisonale Unterschiede in diesem Verhalten können durch die ANOVA quantitativ belegt werden.
|
67 |
The Yellow River Basin in Transition - Multi-faceted Land Cover Change Analysis in the Yellow River Basin in the Context of Global Change Using Multi-sensor Remote Sensing Imagery / Der Gelbe Fluss im Wandel - Multisensorale und multitemporale Analyse des Einzugsgebietes des Gelben Flusses in China mittels Fernerkundungsdaten vor dem Hintergrund des Globalen WandelsWohlfart, Christian January 2018 (has links) (PDF)
As a cradle of ancient Chinese civilization, the Yellow River Basin has a very long human-environment interrelationship, where early anthropogenic activities re- sulted in large scale landscape modifications. Today, the impact of this relationship
has intensified further as the basin plays a vital role for China’s continued economic
development. It is one of the most densely-populated, fastest growing, and most dynamic
regions of China with abundant natural and environmental resources providing a livelihood for almost 190 million people. Triggered by fundamental economic reforms, the
basin has witnessed a spectacular economic boom during the last decades and can be
considered as an exemplary blueprint region for contemporary dynamic Global Change
processes occurring throughout the country, which is currently transitioning from an
agrarian-dominated economy into a modern urbanized society. However, this resourcesdemanding growth has led to profound land use changes with adverse effects on the Yellow
River social-ecological systems, where complex challenges arise threatening a long-term
sustainable development.
Consistent and continuous remote sensing-based monitoring of recent and past land
cover and land use change is a fundamental requirement to mitigate the adverse impacts
of Global Change processes. Nowadays, technical advancement and the multitude of
available satellite sensors, in combination with the opening of data archives, allow the
creation of new research perspectives in regional land cover applications over heterogeneous landscapes at large spatial scales. Despite the urgent need to better understand the
prevailing dynamics and underlying factors influencing the current processes, detailed
regional specific land cover data and change information are surprisingly absent for this
region.
In view of the noted research gaps and contemporary developments, three major objectives are defined in this thesis. First (i), the current and most pressing social-ecological
challenges are elaborated and policy and management instruments towards more sustainability are discussed. Second (ii), this thesis provides new and improved insights on
the current land cover state and dynamics of the entire Yellow River Basin. Finally (iii),
the most dominant processes related to mining, agriculture, forest, and urban dynamics
are determined on finer spatial and temporal scales.
The complex and manifold problems and challenges that result from long-term abuse
of the water and land resources in the basin have been underpinned by policy choices,
cultural attitude, and institutions that have evolved over centuries in China. The tremendous economic growth that has been mainly achieved by extracting water and exploiting
land resources in a rigorous, but unsustainable manner, might not only offset the economic benefits, but could also foster social unrest. Since the early emergence of the first Chinese dynasties, flooding was considered historically as a primary issue in river management and major achievements have been made to tame the wild nature of the Yellow
River. Whereas flooding is therefore largely now under control, new environmental and
social problems have evolved, including soil and water pollution, ecological degradation,
biodiversity decline, and food security, all being further aggravated by anthropogenic
climate change. To resolve the contemporary and complex challenges, many individual
environmental laws and regulations have been enacted by various Chinese ministries.
However, these policies often pursue different, often contradictory goals, are too general
to tackle specific problems and are usually implemented by a strong top-down approach.
Recently, more flexible economic and market-based incentives (pricing, tradable permits,
investments) have been successfully adopted, which are specifically tailored to the respective needs, shifting now away from the pure command and regulating instruments.
One way towards a more holistic and integrated river basin management could be the
establishment of a common platform (e.g. a Geographical Information System) for data
handling and sharing, possibly operated by the Yellow River Basin Conservancy Commission (YRCC), where available spatial data, statistical information and in-situ measures
are coalesced, on which sustainable decision-making could be based. So far, the collected
data is hardly accessible, fragmented, inconsistent, or outdated.
The first step to address the absence and lack of consistent and spatially up-to-date
information for the entire basin capturing the heterogeneous landscape conditions was
taken up in this thesis. Land cover characteristics and dynamics were derived from
the last decade for the years 2003 and 2013, based on optical medium-resolution hightemporal MODIS Normalized Differenced Vegetation Index (NDVI) time series at 250 m.
To minimize the inherent influence of atmospheric and geometric interferences found in
raw high temporal data, the applied adaptive Savitzky-Golay filter successfully smoothed
the time series and substantially reduced noise. Based on the smoothed time series
data, a large variety of intra-annual phenology metrics as well as spectral and multispectral annual statistics were derived, which served as input variables for random
forest (RF) classifiers. High quality reference data sets were derived from very high
resolution imagery for each year independently of which 70 % trained the RF models. The
accuracy assessments for all regionally specific defined thematic classes were based on the
remaining 30 % reference data split and yielded overall accuracies of 87 % and 84 % for
2003 and 2013, respectively. The first regional adapted Yellow River Land Cover Products
(YRB LC) depict the detail spatial extent and distribution of the current land cover status
and dynamics. The novel products overall differentiate overall 18 land cover and use
classes, including classes of natural vegetation (terrestrial and aquatic), cultivated classes,
mosaic classes, non-vegetated, and artificial classes, which are not presented in previous
land cover studies so far.
Building on this, an extended multi-faceted land cover analysis on the most prominent
land cover change types at finer spatial and temporal scales provides a better and more
detailed picture of the Yellow River Basin dynamics. Precise spatio-temporal products
about mining, agriculture, forest, and urban areas were examined from long-trem Landsat
satellite time series monitored at annual scales to capture the rapid rate of change in four
selected focus regions. All archived Landsat images between 2000 and 2015 were used to
derive spatially continuous spectral-temporal, multi-spectral, and textural metrics. For
each thematic region and year RF models were built, trained and tested based on a stablepixels reference data set. The automated adaptive signature (AASG) algorithm identifies those pixels that did not change between the investigated time periods to generate a
mono-temporal reference stable-pixels data set to keep manual sampling requirements
to a minimum level. Derived results gained high accuracies ranging from 88 % to 98 %.
Throughout the basin, afforestation on the Central Loess Plateau and urban sprawl are
identified as most prominent drivers of land cover change, whereas agricultural land
remained stable, only showing local small-scale dynamics. Mining operations started in
2004 on the Qinghai-Tibet Plateau, which resulted in a substantial loss of pristine alpine
meadows and wetlands.
In this thesis, a novel and unique regional specific view of current and past land cover
characteristics in a complex and heterogeneous landscape was presented by using a
multi-source remote sensing approach. The delineated products hold great potential for
various model and management applications. They could serve as valuable components
for effective and sustainable land and water management to adapt and mitigate the
predicted consequences of Global Change processes. / Der Gelbe Fluss - in der Landessprache Huange He genannt - ist für die Ausprägung und Entwicklung der chinesischen Kultur von großer Bedeutung. Aufgrund der frühen Einflussnahme auf die natürlichen Ökosysteme in dieser Region durch
den Menschen, entwickelte sich dort eine ausgeprägte Interaktion zwischen Mensch und
Umwelt. Diese Wechselbeziehung hat sich infolge der gegenwärtigen rapiden sozioökonomischen Veränderungen in den letzten Jahrzehnten weiter intensiviert.
Das Einzugsgebiet des Gelben Flusses bildet die Lebensgrundlage für fast 190 Millionen
Menschen, die zum Großteil von natürlichen Ressourcen abhängig sind. Zudem gehört es
zu den wirtschaftlich bedeutendsten und am schnellsten wachsenden Regionen in ganz
China. Durch weitreichende Reformen wurde ein wirtschaftlicher Aufstieg forciert, um
den Agrarstaat China zu einem modernen Industrie- und Dienstleistungsstaat weiterzuentwickeln. Ein derartiges rasantes wie auch ressourcenintensives Wirtschaftswachstum
führte schließlich zu einem enormen Wandel in den Bereichen der Landbedeckung und
Landnutzung. Hinzu kamen neue und komplexere wirtschafts-, sozial- und umweltpolitische Herausforderungen, die bis heute eine langfristige und nachhaltige Entwicklung
der Region gefährden. Aus diesem Blickwinkel kann das Becken des Gelben Flusses
als regionales Spiegelbild der durch den Globalen Wandel bedingten, gegenwärtigen
Veränderungsprozesse in ganz China gelten.
Eine wichtige Voraussetzung für den adäquaten Umgang mit den Herausforderungen
des Globalen Wandels sind kontinuierliche Informationen über aktuelle sowie historische
Veränderungen von Landbedeckung und Landnutzung. Infolge der technologischen Entwicklung steht heute eine Vielfalt an Satellitenbildsystemen mit immer höherer zeitlicher
und räumlicher Auflösung zur Verfügung. In Verbindung mit kostenfreien und offenen
Datenzugriffen ist es möglich, daraus neue Forschungsperspektiven im Bereich der Landoberflächenkartierung - insbesondere für heterogene Landschaften - zu entwickeln. Zur
Generierung thematischer Karten werden häufig Klassifikationen entlang verschiedener
räumlicher und zeitlicher Skalen vollzogen. Daraus können zusätzlich die nötigen Informationen für lokale wie auch regionale Entscheidungsträger abgeleitet werden. Trotz
dieser neuen Möglichkeiten sind regionalspezifische Informationen, die einem besseren
Verständnis der Dynamiken von Landoberflächen im Bereich des Gelben-Fluss-Beckens
dienen, noch rar.
Dieses Forschungsdesiderat wurde im Rahmen dieser Arbeit aufgegriffen, wobei folgende
Schwerpunkte gesetzt werden: (i) Zunächst werden die vorherrschenden sozioökologischen Herausforderungen für das gesamte Einzugsgebiet des Gelben Flusses dargestellt
sowie verschiedene Management- sowie Politikmodelle für eine nachhaltigere Ressourcennutzung diskutiert. (ii) Darauf aufbauend wird die fernerkundliche Ableitung von Landbedeckungs- und Landnutzungsveränderungen der letzten Dekade im Gebiet des
gesamten Gelben Flusses flächendeckend durchgeführt und anschließend interpretiert.
(iii) Im letzten Schritt werden basierend auf den zuvor abgeleiteten Informationsprodukten die dominierenden Landoberflächendynamiken in höherer zeitlicher und räumlicher
Auflösung detailliert untersucht. Insbesondere die dynamischen Prozesse der Minenausbreitung, Landwirtschaft, Waldgebiete und der urbanen Räume rücken in den Fokus.
Aufgrund jahrzehntelanger Übernutzung der natürlichen Ressourcen im Gebiet des
Gelben Flusses in Verbindung mit politischen Entscheidungen, der vorherrschenden
kulturellen Prägung wie auch der Entwicklung der dort ansässigen Institutionen ist eine
vielschichtige Problematik entstanden, die für die gesamte Region eine große Herausforderung darstellt. Durch frühzeitige Maßnahmen der Flutbekämpfung und Flussregulierung
konnte den zahlreichen Überflutungen der Vergangenheit entgegengewirkt und das Risiko großflächiger Überschwemmungen minimiert werden. Trotz dieser Erfolge ergeben
sich laufend neue, komplexere Herausforderungen mit verheerenden Auswirkungen auf
Ökologie und Gesellschaft, wie zum Beispiel Boden- und Wasserdegradation, Entwaldung,
Rückgang der Artenvielfalt, Ernährungsunsicherheiten und ein steigendes soziales Ungleichgewicht. Durch den anthropogenen Klimawandel werden diese negativen Probleme
noch weiter verstärkt. Zwar wurden sie von der chinesischen Regierung als solche erkannt, dennoch scheiterten die Versuche, mit zahlreichen Gesetzen und Verordnungen
die genannten Folgen einzudämmen, an unkonkreten Formulierungen, so dass diese der
Komplexität der Herausforderungen nicht gerecht wurden. Die in jüngster Zeit verfolgten
modernen und deutlich flexibleren, marktorientierten Ansätze (z.B. Subventionen, Wasserzertifikate), die speziell an die lokalen Gegebenheiten angepasst wurden, zeigen bereits
Erfolge. Mit Hilfe einer gemeinsamen Daten- und Informationsplattform, beispielsweise
in Form eines Geographischen Informationssystems (GIS), wäre eine integrierte und
holistische Flussmanagementstrategie für den Gelben Fluss leichter realisierbar. Auf
diese Weise könnten alle verfügbaren statistischen-, räumlichen- und Feldaufnahmen
gespeichert, harmonisiert und geteilt und so die bisher noch unvollständigen und veralteten Daten laufend aktualisiert werden. Die Flussbehörde des Gelben Flusses (Yellow
River Conservancy Commission) böte sich an, ein solches System zu verwalten.
In dieser Arbeit wird die heterogene Landbedeckungsstruktur für das gesamte Einzugsgebiet des Gelben Flusses für die Jahre 2003 und 2013 erfasst und interpretiert. Die
fernerkundlichen Eingangsdaten für die einzelnen Klassifikationen bestehen aus optischen MODIS NDVI-Zeitserien, aus denen jährlich phänologische Parameter berechnet
werden. Da die Qualität optischer Satellitenbilder häufig durch Wolken und Schatten
beeinträchtigt ist, müssen die betroffenen Flächen maskiert und entfernt werden. Die so
entstandenen Lücken in der Zeitserie werden durch einen Filteralgorithmus (SavitskyGolay) aufgefüllt und geglättet. Die verwendeten RandomForest-Klassifikationsverfahren
ermöglichen die Ableitung von Landbedeckungen und -dynamiken. Diese neuen und räumlich detaillierten Produkte unterscheiden insgesamt 18 verschiedene Landbedeckungsund Landnutzungsklassen. Erstmals liefern diese eine regional spezifische Charakterisierung der vorherrschenden Landbedeckung im Gebiet des Gelben Flusses.
Darauf aufbauend erfolgt eine sowohl zeitlich als auch räumlich detailliertere Untersuchung der wichtigsten Veränderungen im Bereich der Landbedeckung, die auf dichten
Landsat-Zeitserien basiert. Jährliche Informationen über Dynamiken von Minenabbaugebieten, Landwirtschaft, Waldgebieten und urbanen Räumen zeigen präzise lokale Veränderungen im Einzugsgebiet des Gelben Flusses. Die daraus abgeleiteten Ergebnisse
lassen insbesondere auf dem Lössplateau die Auswirkungen ökologischer Restorationsmaßnahmen erkennen, bei denen degradierte Flächen in Waldsysteme umgewandelt
wurden. Auf dem Qinghai-Tibet-Plateau zeigt sich eine dramatische Ausbreitung von
Kohletagebau zu Lasten der besonders anfälligen alpinen Matten und Feuchtgebiete.
Auch der anhaltende Trend zur Urbanisierung spiegelt sich in den hier gewonnenen
Ergebnissen deutlich wider.
Durch die Kombination von Fernerkundungsdaten unterschiedlicher räumlicher und
zeitlicher Auflösungen liefert diese Arbeit neue und bisher einzigartige Einblicke in
historische und aktuelle Landbedeckungsdynamiken einer heterogenen Landschaft. Die
regionalen Analysen wie auch die thematischen Informationsprodukte besitzen somit
großes Potential zur Verbesserung der Informationsgrundlage. Die Ergebnisse dienen
außerdem als aussagekräftige Entscheidungsgrundlage mit dem Ziel eines angemessenen
und nachhaltigen Land- und Wassermanagements für die natürlichen Ökosysteme im
Becken des Gelben Flusses.
|
68 |
Massenbewegungen im Elbursgebirge, Iran - im Spannungsfeld zwischen natürlicher Stabilität und anthropogener Beeinflussung / Mass Movements in Alborz Mountains, Iran - an area of conflict between natural stability and human impactFekete, Alexander January 2004 (has links) (PDF)
Massenbewegungen (in englischer Literatur landslides, in französischer Literatur glissements de terre) sind das Symptom von Hanginstabilitäten in einem Naturraum. Die Wahl des Überbegriffs Massenbewegungen und die Untergliederung der einzelnen Stadien des Prozessablaufs wurden im Rahmen eines pragmatischen Ansatzes dieser Arbeit neu festgelegt. Im Untersuchungsgebiet im Elbursgebirge im Norden des Iran stellen Massenbewegungen ein Phänomen dar, welches die Kulturlandschaft bedroht, aber auch durch sie selbst bedingt ist. In dieser Arbeit wurden Abhängigkeitsbeziehungen zwischen menschlichem Eingriff und natürlichem Stabilitätspotential untersucht. In einem heuristischen Ansatz wurden Faktoren analysiert, welche Massenbewegungen bedingen oder auslösen. Faktoren wie geologischer Untergrund, Bodenauflage, Hangneigung, Exposition, Hydrologie, Vegetationsbedeckung oder Straßenbau wirken in unterschiedlicher Weise auf die Verursachung von Massenbewegungen ein. Die Analyse der Tragweite und Relevanz dieser Faktoren erfolgte mittels einer Faktorenüberlagerung in einem Geographischen Informationssystem (GIS). Das GIS bildete die Schnittstelle für Fernerkundungsdaten, Kartenmaterial, Geländeaufnahme und das digitale Geländemodell (DEM, bzw. DTM). Neben Photos, Beschreibungen, GPS-Punkten und Bodenproben aus der Geländeaufnahme im Iran wurden CORONA- und LANDSAT-ETM+ - Satellitendaten sowie Klimaaufzeichnungen, Topographische und Geologische Karten auf ihre Aussagekraft hin analysiert. Durch Verschneidung der Datenebenen konnten Gefährdungszonen hinsichtlich Massenbewegungen ausgewiesen werden. Die Ergebnisse wurden mit den vorhandenen Befunden über aufgetretene Massenbewegungen überprüft. Die Übereinstimmung der Gefährdungszonen mit der Verteilung vorgefundener Massenbewegungsformen bestätigte die Richtigkeit des methodischen Vorgehens. Bei der Auswahl und Bearbeitung von Daten und Methodik lagen die Schwerpunkte im Anwendungsbezug und in der Qualitätssicherung. Zur Erstellung des digitalen Höhenmodells wurde ein eigener Ansatz zur Extraktion von Höhenlinien aus Topographischen Karten verfolgt. Das Ergebnis der Arbeit ist ein kostengünstiger, pragmatischer und übertragbarer Ansatz zur Bewertung des Gefährdungspotentials von Massenbewegungen. / Mass movements (in English literature often referred to as landslides, in French Literature as glissements de terre) are symptoms of instability in natural environments. Within the scope of a pragmatic approach the key word 'mass movements' and its processual steps were newly defined. Mass movements are a phenomenon in the study area in Alborz mountains, Iran. They threaten human environments while at the same time they display results of human activity. The focus of this paper is directed on interdependences between human impact and areas that are prone to slope instability. In a heuristic approach factors that influence or trigger mass movements were analysed. These determining factors include the geology, soil cover, slope, aspect, hydrology, vegetationcover and roads. Analysis of intensity, extent and relevance was compiled by factor overlay technique in a Geographical Information System (GIS). Under the GIS environment, CORONA and LANDSAT-ETM+ satellite images, climatic data, topographical and geological maps, ground truth data and the digital elevation model (DEM) could be integrated. This resulted in a hazard zonation map of mass movements. The hazard zonation map was cross referenced with a sample of real occurences of mass movements. This step served to validate the derived model for mass movement hazard. Data and methods were selected and tested on the basis of quality and application ability. Extraction of contour lines from topographical maps was used as a faster and better way of creating the digital elevation model compared to digitalization. All methodical ways resulted into a pragmatic cost-effective and transferable approach of evaluating the hazard of mass movements.
|
69 |
Measuring burn severity in forests of South-West Western Australia using MODISWalz, Yvonne January 2004 (has links) (PDF)
Burn severity was measured within the Mediterranean sclerophyll forests of south-west Western Australia (WA) using remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The region of south-west WA is considered as a high fire prone landscape and is managed by the state government’s Department of Conservation and Land Management (CALM). Prescribed fuel reduction burning is used as a management tool in this region. The measurement of burn severity with remote sensing data focused on monitoring the success and impact of prescribed burning and wildfire in this environment. The high temporal resolution of MODIS with twice daily overpasses in this area was considered highly favourable, as opportunities for prescribed burning are temporally limited by climatic conditions. The Normalised Burn Ratio (NBR) was investigated to measure burn severity in the forested area of south-west WA. This index has its heritage based on data from the Landsat TM/ETM+ sensors (Key and Benson, 1999 [1],[2]) and was transferred from Landsat to MODIS data. The measurement principally addresses the biomass consumption due to fire, whereas the change detected between the pre-fire image and the post-fire image is quantified by the ÄNBR. The NBR and the Normalised Difference Vegetation Index (NDVI) have been applied to MODIS and Landsat TM/ETM+ data. The spectral properties and the index values of the remote sensing data have been analysed within different burnt areas. The influence of atmospheric and BRDF effects on MODIS data has been investigated by comparing uncorrected top of atmosphere reflectance and atmospheric and BRDF corrected reflectance. The definition of burn severity classes has been established in a field trip to the study area. However, heterogeneous fire behaviour and patchy distribution of different vegetation structure made field classification difficult. Ground truth data has been collected in two different types of vegetation structure present in the burnt area. The burn severity measurement of high resolution Landsat data was assessed based on ground truth data. However, field data was not sufficient for rigorous validation of remote sensing data. The NBR index images of both sensors have been calibrated based on training areas in the high resolution Landsat image. The burn severity classifications of both sensors are comparable, which demonstrates the feasibility of a burn severity measurement using moderate spatial resolution 250m MODIS data. The normalisation through index calculation reduced atmospheric and BRDF effects, and thus MODIS top of at-mosphere data has been considered suitable for the burn severity measurement. The NBR could not be uniformly applied, as different structures of vegetation influenced the range of index values. Furthermore, the index was sensitive to variability in moisture content. However, the study concluded that the NBR on MODIS data is a useful measure of burn severity in the forested area of south-west WA.
|
70 |
Hydrogeology of the Kalahari in north-eastern Namibia / Die Hydrogeologie der Kalahari im Nordosten NamibiasKlock, Heike January 2001 (has links) (PDF)
This study has focused on hydrogeological and hydrochemical settings of the Northern Namibian Kalahari Catchment which is the Namibian part of the Makgadikgadi-Kalahari-Catchment. Recharge has been the subject of process-understanding, quantification and regionalisation. Within the semiarid study area a bimodal surface constitution is prominent: hardrocks areas allow for fast infiltration along karsts and joints, whereas areas covered by unconsolidated sediments receive minor diffuse recharge and locally some preferred flow path recharge develops along shrinkage cracks and rootlets. Five substratum classes have been soil physically studied: Pans and vleis, brown to red soils, dune sand, soil with an aeolian influence, and calcrete. Aeolian sands are most promising for the development of direct diffuse recharge. Recharge by preferred flow might occur in all soil classes either due to joints in calcrete or structures and rootlets in soils. All soil classes contribute to indirect recharge because even the dune sand allows, albeit very locally, the generation of runoff. The occurrences of recharge through the unconsolidated soil and the hardrocks have been confirmed by hydrograph interpretation and by a study of hydrochemical data which identified groundwater of flood water and flood water after soil passage composition. Other prominent hydrochemical processes in the Kalahari are associated with the carbonate-equilibrium-system, mixing with highly mineralised water that is either sulphate (central area) or chloride dominated (fringe area) and development of sodium hydrogencarbonate water types. The latter is mostly generated by feldspar weathering. Variations of the hydrochemical compositions were observed for shallow groundwaters. They do not only reflect the recharge amount but also the recharge conditions, e.g. a wetter year is allowing more vegetation which increases the hydrogencarbonate content. Inverse determination of recharge by the chloride mass balance method gives recharge amounts between 0.2 and locally more than 100 mm/a. The least favoured recharge conditions are found for Kalahari covered areas, the largest amount occurs in the Otavi area. The distribution of recharge areas within the catchment is rather complex and regionalisation of recharge for the entire catchment was done by a forward approach using satellite images and by an inverse approach using hydrochemical data. From the inverse hydrochemical approach a basin-wide balanced recharge amount of 1.39 mm/a is achieved. The forward approach gave a basin-wide figure of 0.88 (minimum assumption) to 4.53 mm/a (maximum assumption). A simplistic groundwater flow model confirmed the results from the minimum recharge regionalisation by satellite images and the result from the hydrochemical approach. Altogether a mutually verified basin-wide recharge figure of ca. 1 mm/a turns out. / Diese Studie hat sich mit den hydrogeologischen und hydrochemischen Gegebenheiten im nordnamibischen Kalahari-Einzugsgebiet befaßt. Dabei sind Prozeßverständnis, Quantifizierung und Regionalisierung für die Grundwassserneubildung erarbeitet worden. Das semiaride Arbeitsgebiets ist durch eine bimodale Oberflächenbeschaffenheiten gekennzeichnet: Festgesteinsgebiete erlauben schnelle Infiltration entlang von Klüften und Karsthohlräumen, während Gebiete die mit Lockersedimenten überdeckt sind, wenig Neubildung über die Matrix erfahren und Makroporen nur lokal eine schnellere Neubildung erlauben. Fünf Bodenklassen sind bodenphysikalisch untersucht worden: Pfannen und Vleis, Rote und Braune Böden, Dünensande, Böden mit äolischem Einfluß und Kalkkrusten. Äolische Sand sind am vielversprechendsten für die Entwicklung von direkter Neubildung über die Matrix. Alle Bodenklassen tragen zur indirekten Neubildung bei, da sie -lokal allerdings sehr begrenzt- zum oberflächlichen Abfluß beitragen. Durch die Interpretation von Grundwasserganglinien und hydrochemischer Daten ist die Neubildungserscheinung bestätigt worden. Die dominanten hydrochemischen Prozesse in der Kalahari stehen im Zusammenhang mit dem Kalk-Kohlensäure-Gleichgewicht, der Mischung mit stärker mineralisierten Wässern (im zentralen Einzugsgebiet sulfatreich, am Rand eher chloridreich) und der Entwicklung von Natriumhydrogenkarbonatwässern (häufig durch Feldspatverwitterung). Die zeitlichen Variationen der hydrochemischen Parameter in flachen Grundwasser spiegeln nicht nur die Neubildungsmenge, sondern auch die Neubildungsbedingungen wider; in relative niederschlagsreichen Jahren steigt der Hydrogenkarbonatgehalt deutlich an in folge der üppigeren Vegetation. Die inverse Bestimmung der Grundwasserneubildung mit der Chloridbilanzmethode ergibt Neubildungswerte zwischen 0,2 und 100 mm/a. Die geringsten Werte treten dabei in Kalahari-Lockersedminet bedeckten Bereichen auf, die größten Werte treten im Otavi-Gebiet auf. Die Verteilung der Neubildung innerhalb des Arbeitsgebiets ist sehr komplex. Die Regionalisierung erfolgte mit einem fernerkundlichen und einem hydrochemischen Ansatz. Die Ergebnisse liegen für den hydrochemischen Ansatz bei 1,39 m/a und der fernerkundliche Ansatz gibt eine einzugsgebietsweite Neubildung von 0,89 (Minimumansatz) bis 4,53 mm/a (Maximumansatz). Ein vereinfachtes Grundwasserströmungsmodell bestätigt die Ergebnisse der hydrochemischen Regionalisierung und des minimalen fernerkundlichen Ansatzes. Daraus ergibt sich abschließend eine Gebietsneubildung von ca. 1 mm/a für das Arbeitsgebiet.
|
Page generated in 0.0423 seconds