• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 79
  • 79
  • 59
  • 55
  • 22
  • 21
  • 17
  • 14
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Investigation of deep level defects in GaN:C, GaN:Mg and pseudomorphic AlGaN/GaN films

Armstrong, Andrew M., January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 232-237).
32

Analyzing The Effects Of Deep-level Diversity On Team Dynamics

Mete, Ipek 01 March 2013 (has links) (PDF)
This thesis intends to analyze the influence of diversity in deep-level characteristics of team members on team dynamics. Intragroup conflict (relationship and task conflict) and team cohesiveness are selected as the group dynamics to be studied. Deep-level diversity is investigated with respect to personality traits (extraversion and time-urgency) and values (individualism) of team members. In addition, the moderating effect of time on the diversity- team dynamic relationship is analyzed. For the purpose of testing the hypotheses, a questionnaire study was conducted with 297 individuals from 55 teams, employed in defense and IT companies in Ankara. All analyses were performed at the group level. The results indicated that deep-level diversity in individualism was positively associated with relationship conflict in groups. Contrary to the hypothesis, it was also found that time played a neutralizing role on the effects of deep-level diversity on team conflict
33

Fabrications and Characteristic of Nonvolatile Memory Devices with Zn and Sn nano Thin Film MIS Structure

Hsu, Kuan-Ting 01 August 2011 (has links)
Non-volatile memory can keep the data without supplying power, and it is suitable for portable electronic products due to the advantage of low power consumption. In current industrial production, high-temperature and long-time process are necessary for the fabrication of non-volatile memory, which are heavy loadings on production capacity and lots cost. Therefore, decreasing the temperature of the process is a trend. Recently using the oxidation treatment of supercritical carbon dioxide fluid can efficiently decrease the temperature of the process. In this thesis, the mixture layer of Zn, Sn, and SiO2 is applied to reduce the temperature of process, and to employ the defects of ZnO and SnO2 as floating gate for electron storage to fabricate the nonvolatile memory device. Zn and Sn are applied due to the low temperature melting points. To ensure the layer of cosputtering with Zn and Sn to be able to successfully fabricate as nano material device, the process of traditional rapid temperature annealing treatment was applied for first step. The co-sputtered Zn-Sn-SiO2 thin film was deposited on the tunneling oxide layer, and then the thin film was treated with varied annealing temperature to precipitate ZnO and SnO2 nanocrystals. After that, the C-V measurement is applied to analyze the change of the electrical and material properties. Using a positive bias, the electrons are injected into the oxide layer, by the threshold voltage the offset is occurred, which is defined as the memory window of the memory effect, and the property of nonvolatile memory will be applied. In addition, no matter the charge is injected from the gate oxide or tunnel oxide, the defects position of DLTS¡¦s peak is with the same property. The supercritical carbon dioxide fluid technology has been performed to study the memory effect. The capability of electron injection, storages and the defect, in the storage layer were studied by the C-V measurement and DLTS. The experiment confirmed that the Zn-Sn alloy has the memory property after it been treated by the supercritical carbon dioxide fluid technology. It has shown that Zn can promote to the storage capability ability due to the formation of deep level defects of SnO2 from the DLTS spectra. A new species is found at 0.93 eV with low activation energy and high capability of electron storage. The defect formation mechanism of Zn, ZnO, Zn-O-Si, Sn, and SnO are analyzed by found by the XPS and DLTS. The device fabrication using Zn-Si alloy and supercritical carbon dioxide fluid technology has the potential to reduce the process temperature and to improve the memory property of nonvolatile memory device.
34

Untersuchung tiefer Stoerstellen in Zinkselenid

Hellig, Kay 28 March 1997 (has links) (PDF)
Das Halbleitermaterial Zinkselenid (ZnSe) wurde mit Deep Level Transient Spectroscopy (DLTS) untersucht. Fuer planar N-dotierte, MO-CVD-gewachsene ZnSe-Schichten auf p-GaAs wurden vorwiegend breite Zustandsverteilungen, aber auch tiefe Niveaus gefunden. In kristallin gezuechtetem, undotiertem ZnSe wurden tiefe Stoerstellen nachgewiesen.
35

Fabrication and Characterization of ZnO Nanorods Based Intrinsic White Light Emitting Diodes (LEDs)

Bano, Nargis January 2011 (has links)
ZnO material based hetero-junctions are a potential candidate for the design andrealization of intrinsic white light emitting devices (WLEDs) due to several advantages overthe nitride based material system. During the last few years the lack of a reliable andreproducible p-type doping in ZnO material with sufficiently high conductivity and carrierconcentration has initiated an alternative approach to grow n-ZnO nanorods (NRs) on other ptypeinorganic and organic substrates. This thesis deals with ZnO NRs-hetero-junctions basedintrinsic WLEDs grown on p-SiC, n-SiC and p-type polymers. The NRs were grown by thelow temperature aqueous chemical growth (ACG) and the high temperature vapor liquid solid(VLS) method. The structural, electrical and optical properties of these WLEDs wereinvestigated and analyzed by means of scanning electron microscope (SEM), current voltage(I-V), photoluminescence (PL), cathodoluminescence (CL), electroluminescence (EL) anddeep level transient spectroscopy (DLTS). Room temperature (RT) PL spectra of ZnOtypically exhibit one sharp UV peak and possibly one or two broad deep level emissions(DLE) due to deep level defects in the bandgap. For obtaining detailed information about thephysical origin, growth dependence of optically active defects and their spatial distribution,especially to study the re-absorption of the UV in hetero-junction WLEDs structure depthresolved CL spectroscopy, is performed. At room temperature the CL intensity of the DLEband is increased with the increase of the electron beam penetration depth due to the increaseof the defect concentration at the ZnO NRs/substrate interface. The intensity ratio of the DLEto the UV emission, which is very useful in exploring the origin of the deep level emissionand the distribution of the recombination centers, is monitored. It was found that the deepcenters are distributed exponentially along the ZnO NRs and that there are more deep defectsat the root of ZnO NRs compared to the upper part. The RT-EL spectra of WLEDs illustrateemission band covering the whole visible range from 420 nm and up to 800 nm. The whitelightcomponents are distinguished using a Gaussian function and the components were foundto be violet, blue, green, orange and red emission lines. The origin of these emission lines wasfurther identified. Color coordinates measurement of the WLEDs reveals that the emitted lighthas a white impression. The color rendering index (CRI) and the correlated color temperature(CCT) of the fabricated WLEDs were calculated to be 80-92 and 3300-4200 K, respectively.
36

Growth and Process-Induced Deep Levels in Wide Bandgap Semiconductor GaN and SiC / 結晶成長及びプロセスにより導入されるワイドバンドギャップ半導体GaN及びSiC中の深い準位

Kanegae, Kazutaka 23 March 2022 (has links)
付記する学位プログラム名: 京都大学卓越大学院プログラム「先端光・電子デバイス創成学」 / 京都大学 / 新制・課程博士 / 博士(工学) / 甲第23909号 / 工博第4996号 / 新制||工||1780(附属図書館) / 京都大学大学院工学研究科電子工学専攻 / (主査)教授 木本 恒暢, 教授 川上 養一, 准教授 安藤 裕一郎 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
37

Deep level transient spectroscopy of heteroepitaxial polycrystalline diamond and aluminum nitride /

Karbasi, Hossein, January 1998 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1998. / Typescript. Vita. Includes bibliographical references (leaves 107-111). Also available on the Internet.
38

Deep level transient spectroscopy of heteroepitaxial polycrystalline diamond and aluminum nitride

Karbasi, Hossein, January 1998 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1998. / Typescript. Vita. Includes bibliographical references (leaves 107-111). Also available on the Internet.
39

Hall effect and photoconductivity lifetime studies of GaN, InN, and Hg₁-[subscript x]Cd[subscript x]Te

Swartz, Craig H. January 2005 (has links)
Thesis (Ph. D.)--West Virginia University, 2005. / Title from document title page. Document formatted into pages; contains ix, 72 p. : ill. Includes abstract. Includes bibliographical references (p. 68-72).
40

Effet électrique des contaminants métalliques dans les dispositifs microélectroniques avancés / Electric effect of metal contaminants in advanced microelectronic devices

Qin, Shiyu 02 February 2016 (has links)
Dans ce travail faisant partie du projet FUI COMET (AAP9), nous avons dans un premier temps réalisé volontairement des contaminations métalliques pour différents contaminants (Ni, Mo, Cr, Fe, Au) à des doses maîtrisées soit en surface par spin coating, soit dans le volume par implantation ionique de wafers de silicium. Puis divers composants (diodes, transistor MOS ...) ont été fabriqués sur ces plaquettes contaminées.Ensuit, pour bien étudier l’impact de la contamination métallique sur des performances des composants, des caractérisations électriques ont été menées sur ces échantillons : caractéristiques Courant-Tension I(V), Capacité-Tension C(V) et ZERBST. La contamination surfacique par le nickel a présenté un impact important sur la dégradation de la durée de vie de génération des porteurs minoritaires. L’étude des caractéristiques I(V) sur des échantillons implantés par le molybdène a révélé une augmentation nette du courant inverse d’une diode Schottky avec un effet de dose cohérent. Les nombreuses mesures électriques sur les dispositifs fabriqués dans l’industrie (procédé MOS) sur des wafers contaminés volontairement par dépôt en solution sur la surface de silicium de Ni, Mo et Cr juste avant le début du procédé de grille ont montré l’absence d’influence significative de dégradation des performances des composants.Enfin, le logiciel SYNOPSYS SENTAURUS TCAD a été utilisé pour développer des modèles spécifiques permettant de reproduire l’impact des contaminants métalliques sur les caractéristiques ou la fiabilité des composants. / In this work which is part of the FUI project COMET (AAP9), intentional metallic contaminations have been realized for different contaminants (Ni, Mo, Cr, Fe, Au) either on the surface of silicon wafers by a spin-coating technique or in the bulk of silicon wafers by ion implantation. Then various devices (diodes, MOS transistor ...) were fabricated on these wafers contaminated.Secondly, in order to study the impact of metallic contamination on the performance of devices, some electrical characterizations have been carried out on these samples: Current-voltage characteristics I(V), Capacitance-Voltage C(V) and ZERBST. Surface contamination by nickel resulted in a significant impact on the degradation of the generation lifetime of minority carriers. The study of the characteristics I(V) on implanted samples by molybdenum showed that the reverse current of a Schottky diode increased with the concentration of contamination. The numerous electrical measurements on devices manufactured in the industry (MOS process) on wafers which have been contaminated intentionally by deposition solution on the silicon surface of Ni, Mo and Cr before the MOS process showed the absence of significant influence of degradation on the performances of devices.Finally, the software SYNOPSYS Sentaurus TCAD was used to develop the models to reproduce the impact of metallic contaminants on the electrical characteristics or reliability of the devices.

Page generated in 0.0466 seconds