• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 9
  • 9
  • 9
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic alpha-invariants of del Pezzo surfaces with boundary

Martinez Garcia, Jesus January 2013 (has links)
The global log canonical threshold, algebraic counterpart to Tian's alpha-invariant, plays an important role when studying the geometry of Fano varieties. In particular, Tian showed that Fano manifolds with big alpha-invariant can be equipped with a Kahler-Einstein metric. In recent years Donaldson drafted a programme to precisely determine when a smooth Fano variety X admits a Kahler-Einstein metric. It was conjectured that the existence of such a metric is equivalent to X being K-stable, an algebraic-geometric property. A crucial step in Donaldson's programme consists on finding a Kahler-Einstein metric with edge singularities of small angle along a smooth anticanonical boundary. Jeffres, Mazzeo and Rubinstein showed that a dynamic version of the alpha-invariant could be used to find such metrics. The global log canonical threshold measures how anticanonical pairs fail to be log canonical. In this thesis we compute the global log canonical threshold of del Pezzo surfaces in various settings. First we extend Cheltsov's computation of the global log canonical threshold of complex del Pezzo surfaces to non-singular del Pezzo surfaces over a ground field which is algebraically closed and has arbitrary characteristic. Then we study which anticanonical pairs fail to be log canonical. In particular, we give a very explicit classifiation of very singular anticanonical pairs for del Pezzo surfaces of degree smaller or equal than 3. We conjecture under which circumstances such a classifcation is plausible for an arbitrary Fano variety and derive several consequences. As an application, we compute the dynamic alpha-invariant on smooth del Pezzo surfaces of small degree, where the boundary is any smooth elliptic curve C. Our main result is a computation of the dynamic alpha-invariant on all smooth del Pezzo surfaces with boundary any smooth elliptic curve C. The values of the alpha-invariant depend on the choice of C. We apply our computation to find Kahler-Einstein metrics with edge singularities of angle β along C.
2

Counting points of bounded height on del Pezzo surfaces

Kleven, Stephanie January 2006 (has links)
del Pezzo surfaces are isomorphic to either P<sup>1</sup> x P<sup>1</sup> or P<sup>2</sup> blown up <i>a</i> times, where <i>a</i> ranges from 0 to 8. We will look at lines on del Pezzo surfaces isomorphic to P<sup>2</sup> blown up <i>a</i> times with <i>a</i> ranging from 0 to 6. We will show that when we count points of bounded height on one of these surfaces, the number of points on lines give us the primary growth order, but the secondary growth order calculates the number of points on the rest of the surface and hence is a better representation of the geometry of the surface.
3

Rational points on del Pezzo surfaces of degree 1 and 2

January 2011 (has links)
One of the fundamental problems in Algebraic Geometry is to study solutions to certain systems of polynomial equations in several variables, or in other words, find rational points on a given variety which is defined by equations. In this paper, we discuss the existence of del Pezzo surface of degree 1 and 2 with a unique rational point over any finite field [Special characters omitted.] , and we will give a lower bound on the number of rational points to each q. Furthermore, we will give explicit equations of del Pezzo surfaces with a unique rational point. Also we will discuss the rationality property of the del Pezzo surfaces especially in lower degrees.
4

Counting points of bounded height on del Pezzo surfaces

Kleven, Stephanie January 2006 (has links)
del Pezzo surfaces are isomorphic to either P<sup>1</sup> x P<sup>1</sup> or P<sup>2</sup> blown up <i>a</i> times, where <i>a</i> ranges from 0 to 8. We will look at lines on del Pezzo surfaces isomorphic to P<sup>2</sup> blown up <i>a</i> times with <i>a</i> ranging from 0 to 6. We will show that when we count points of bounded height on one of these surfaces, the number of points on lines give us the primary growth order, but the secondary growth order calculates the number of points on the rest of the surface and hence is a better representation of the geometry of the surface.
5

Nonexistence of Rational Points on Certain Varieties

Nguyen, Dong Quan Ngoc January 2012 (has links)
In this thesis, we study the Hasse principle for curves and K3 surfaces. We give several sufficient conditions under which the Brauer-Manin obstruction is the only obstruction to the Hasse principle for curves and K3 surfaces. Using these sufficient conditions, we construct several infinite families of curves and K3 surfaces such that these families are counterexamples to the Hasse principle that are explained by the Brauer-Manin obstruction.
6

Smooth exceptional del Pezzo surfaces

Wilson, Andrew January 2010 (has links)
For a Fano variety V with at most Kawamata log terminal (klt) singularities and a finite group G acting bi-regularly on V , we say that V is G-exceptional (resp., G-weakly-exceptional) if the log pair (V,∆) is klt (resp., log canonical) for all G-invariant effective Q-divisors ∆ numerically equivalent to the anti-canonical divisor of V. Such G-exceptional klt Fano varieties V are conjectured to lie in finitely many families by Shokurov ([Sho00, Pro01]). The only cases for which the conjecture is known to hold true are when the dimension of V is one, two, or V is isomorphic to n-dimensional projective space for some n. For the latter, it can be shown that G must be primitive—which implies, in particular, that there exist only finitely many such G (up to conjugation) by a theorem of Jordan ([Pro00]). Smooth G-weakly-exceptional Fano varieties play an important role in non-rationality problems in birational geometry. From the work of Demailly (see [CS08, Appendix A]) it follows that Tian’s αG-invariant for such varieties is no smaller than one, and by a theorem of Tian such varieties admit G-invariant Kähler-Einstein metrics. Moreover, for a smooth G-exceptional Fano variety and given any G-invariant Kähler formin the first Chern class, the Kähler-Ricci iteration converges exponentially fast to the Kähler form associated to a Kähler- Einsteinmetric in the C∞(V)-topology. The termexceptional is inherited from singularity theory, to which this study enjoys strong links. We classify two-dimensional smooth G-exceptional Fano varieties (del Pezzo surfaces) and provide a partial list of all G-exceptional and G-weakly-exceptional pairs (S,G), where S is a smooth del Pezzo surface and G is a finite group of automorphisms of S. Our classification confirms many conjectures on two-dimensional smooth exceptional Fano varieties.
7

Deux points de vue sur les variétés de Fano : géométrie du diviseur anticanonique et classification des surfaces à singularités 1/3(1,1) / Two viewpoints on Fano varieties : geometry of the anticanonical divisor and classification of surfaces with 1/3(1,1) singularities

Heuberger, Liana 23 June 2016 (has links)
Cette thèse concerne l'étude des variétés de Fano, qui sont des objets centraux de la classification des variétés algébriques. La première question abordée concerne les variétés de Fano lisses de dimension quatre. On cherche a étudier les potentielles singularités d'un diviseur anticanonique de sorte qu'on puisse les écrire sous une forme locale explicite. En tant qu'étape intermédiaire, on démontre aussi que ces points sont au plus des singularités terminales, c'est-à-dire les singularités les plus proches du cas lisse du point de vue de la géométrie birationnelle. On montre ensuite que ce dernier résultat se généralise en dimension arbitraire en admettant une conjecture de non-annulation de Kawamata.De façon complémentaire, on s¿intéresse à des variétés de Fano de dimension plus petite, mais admettant des singularités. Il s¿agit des surfaces de del Pezzo ayant des singularités de type 1/3(1,1). Ceci est l'exemple le plus simple de singularité rigide, c'est-à-dire qui reste inchangée à une déformation Q-Gorenstein près. On classifie entièrement ces objets en trouvant 29 familles. On obtient ainsi un tableau contenant des modèles de ces surfaces, qui pour la plupart sont des intersections complètes dans des variétés toriques. Ce travail s'inscrit dans un contexte plus large, qui a pour cible de calculer leur cohomologie quantique pour ensuite vérifier si deux conjectures en symmetrie miroir. / This thesis concerns Fano varieties, which are central objects within the classification of algebraic varieties.The first problem we discuss involves smooth Fano varieties of dimension four. We study the potential singularities of an anticanonical divisor and determine their explicit local expression. As an intermediate step, we show that they are terminal points, that is the singularities which are closest to the smooth case from the point of view of birational geometry. We then show that the latter result generalizes in arbitrary dimension if we suppose that a nonvanishing conjecture of Kawamata holds.The second approach is to examine Fano varieties of smaller dimensions which admit singularities. The objects we consider are log del Pezzo surfaces with 1/3(1,1) points. This is the simplest example of a rigid singularity, that is it remains unchanged under Q-Gorenstein deformations. We give a complete classification of these surfaces, finding 29 families. We also provide a table describing almost all of them as complete intersections in toric varieties. This work belongs to an overarching project that aims at studying mirror symmetry for del Pezzo surfaces with cyclic quotient singularities.
8

Real algebraic curves in real del Pezzo surfaces / Courbes algébriques réelles dans les surfaces de del Pezzo réelles

Manzaroli, Matilde 28 June 2019 (has links)
L’étude topologique des variétés algébriques réelles remonte au moins aux travaux de Harnack, Klein, et Hilbert au 19éme siecle; en particulier, la classification des types d’isotopie réalisés par les courbes algébriques réelles d’un degré fixé dans RP2 est un sujet qui a connu un essor considérable jusqu'à aujourd'hui. En revanche, en dehors des études concernants les surfaces de Hirzebruch et les surfaces de degré au plus 3 dans RP3, à peu près rien n’est connu dans le cas de surfaces ambiantes plus générales. Cela est du en particulier au fait que les variétés construites en utilisant le "patchwork" sont des hypersurfaces de variétés toriques. Or, il existe de nombreuses autre surfaces algébriques réelles. Parmi celles-ci se trouvent les surfaces rationnelles réelles, et plus particulièrement les surfaces rèelles minimales. Dans cette thèse, on élargit l’étude des types d’isotopie réalisés par les courbes algébriques réelles aux surfaces réelles minimales de del Pezzo de degré 1 et 2. En outre, on termine la classification des types topologiques réalisés par les courbes algébriques réelles séparantes et non-séparantes de bidegré (5,5) sur la quadrique ellipsoide. / The study of the topology of real algebraic varieties dates back to the work of Harnack, Klein and Hilbert in the 19th century; in particular, the isotopy type classification of real algebraic curves with a fixed degree in RP2 is a classical subject that has undergone considerable evolution. On the other hand, apart from studies concerning Hirzebruch surfaces and at most degree 3 surfaces in RP3, not much is known for more general ambient surfaces. In particular, this is because varieties constructed using the patchworking method are hypersurfaces of toric varieties. However, there are many other real algebraic surfaces. Among these are the real rational surfaces, and more particularly the $mathbb{R}$-minimal surfaces. In this thesis, we extend the study of the topological types realized by real algebraic curves to the real minimal del Pezzo surfaces of degree 1 and 2. Furthermore, we end the classification of separating and non-separating real algebraic curves of bidegree $(5,5)$ in the quadric ellipsoid.
9

Real-Fibered Morphisms of del Pezzo Surfaces and Conic Bundles

Kummer, Mario, Le Texier, Cédric, Manzaroli, Matilde 30 May 2024 (has links)
It goes back to Ahlfors that a real algebraic curve admits a real-fibered morphism to the projective line if and only if the real part of the curve disconnects its complex part. Inspired by this result, we are interested in characterising real algebraic varieties of dimension n admitting real-fibered morphisms to the n-dimensional projective space. We present a criterion to classify real-fibered morphisms that arise as finite surjective linear projections from an embedded variety which relies on topological linking numbers. We address special attention to real algebraic surfaces. We classify all real-fibered morphisms from real del Pezzo surfaces to the projective plane and determine which such morphisms arise as the composition of a projective embedding with a linear projection. Furthermore, we give some insights in the case of real conic bundles.

Page generated in 0.0632 seconds