Spelling suggestions: "subject:"densitydependent"" "subject:"densitydependent""
31 |
EFFECTS OF IMPERVIOUS SURFACES ON OVERWINTERING SURVIVAL OF EVERGREEN BAGWORM AND ABUNDANCE OF SCALE INSECT PESTS IN THE URBAN ENVIRONMENTSujan Dawadi (12218648) 18 April 2022 (has links)
<p>Urban areas are warmer than
surrounding rural areas. During the cold of winter, warming increases
surrounding host temperature and may improve the overwintering survival of marginally
hardy insects like evergreen bagworms. Similarly, during the summer, it has the
potential to increase the fecundity and abundance of sap feeding insect pests
such as scale insects in ways that change the capacity of their natural enemies
to regulate their populations. </p>
<p>Although in parts of Indiana
winters can be cold enough to kill bagworm eggs, they thrive in cities. I
conducted field experiments to determine the extent to which impervious surface
near an infestation could keep temperatures warm enough to affect bagworm survival
during cold of winter. My results suggest that the percentage of live eggs
inside overwintering pupae decreased as ambient temperature drops. This
response was moderated by the presence of impervious surface around an infested
plant. Eggs found in bagworms collected from host trees surrounded by more
impervious surface had a higher chance of survival than those collected from
trees with low levels of hardscape. However, impervious surface has its limit
such that egg mortality was not buffered by impervious surfaces at temperatures
at or below -21.67°C. Similarly, I also conducted field experiments with sap
feeding insects on honeylocust trees, a commonly planted tree in cities. Hot
sites had a mean daily temperature more than 1.5 °C warmer than cool sites and
scale insects were more abundant and fecund on trees in the hottest part of
Indianapolis compared to cooler areas. No differences were observed in rates of
parasitism on the scale insect. However, I found strong density dependence
relation between parasitoids and scales abundance at scale density at or below
the levels present in cool sites. The top-down regulation was prevalent at or
below a critical density of scale hosts. Conversely, bottom-up regulation was
prevalent above this host density as pests benefit from bottom-up factors. This
suggests that urban habitats helped the scales to escape biological control by
resident natural enemies above critical density of scale hosts. </p>
<p>My findings can be useful to
landscape designers to design landscapes that are less prone to insect pests. My
finding adds to a growing body of evidence that suggests that planting urban
trees with lesser amount of impervious surface can help reducing the urban
warming effect and increase the regulation from natural enemies. </p>
|
32 |
自己間引き個体群における密度効果のロジスチック理論萩原, 秋男, HAGIHARA, Akio 12 1900 (has links) (PDF)
農林水産研究情報センターで作成したPDFファイルを使用している。
|
33 |
自己間引き個体群における平均個体重 - 密度の軌跡に関する理論的研究萩原, 秋男, HAGIHARA, Akio 12 1900 (has links) (PDF)
農林水産研究情報センターで作成したPDFファイルを使用している。
|
34 |
Variable-Density Flow Processes in Porous Media On Small, Medium and Regional ScalesWalther, Marc 03 November 2014 (has links) (PDF)
Nowadays society strongly depends on its available resources and the long term stability of the surrounding ecosystem. Numerical modelling has become a general standard for evaluating past, current or future system states for a large number of applications supporting decision makers in proper management. In order to ensure the correct representation of the investigated processes and results of a simulation, verification examples (benchmarks), that are based on observation data or analytical solutions, are utilized to evaluate the numerical modelling tool.
In many parts of the world, groundwater is an important resource for freshwater. While it is not only limited in quantity, subsurface water bodies are often in danger of contamination from various natural or anthropogenic sources. Especially in arid regions, marine saltwater intrusion poses a major threat to groundwater aquifers which mostly are the exclusive source of freshwater in these dry climates. In contrast to common numerical groundwater modelling, density-driven flow and mass transport have to be considered as vital processes in the system and in scenario simulations for fresh-saltwater interactions.
In the beginning of this thesis, the capabilities of the modelling tool OpenGeoSys are verified with selected benchmarks to represent the relevant non-linear process coupling. Afterwards, variable-density application and process studies on different scales are presented. Application studies comprehend regional groundwater modelling of a coastal aquifer system extensively used for agricultural irrigation, as well as hydro-geological model development and parametrization. In two process studies, firstly, a novel method to model gelation of a solute in porous media is developed and verified on small scale laboratory observation data, and secondly, investigations of thermohaline double-diffusive Rayleigh regimes on medium scale are carried out.
With the growing world population and, thus, increasing pressure on non-renewable resources, intelligent management strategies intensify demand for potent simulation tools and development of novel methods. In that way, this thesis highlights not only OpenGeoSys’ potential of density-dependent process modelling, but the comprehensive importance of variable-density flow and transport processes connecting, both, avant-garde scientific research, and real-world application challenges.
|
35 |
Variable-Density Flow Processes in Porous Media On Small, Medium and Regional ScalesWalther, Marc 07 May 2014 (has links)
Nowadays society strongly depends on its available resources and the long term stability of the surrounding ecosystem. Numerical modelling has become a general standard for evaluating past, current or future system states for a large number of applications supporting decision makers in proper management. In order to ensure the correct representation of the investigated processes and results of a simulation, verification examples (benchmarks), that are based on observation data or analytical solutions, are utilized to evaluate the numerical modelling tool.
In many parts of the world, groundwater is an important resource for freshwater. While it is not only limited in quantity, subsurface water bodies are often in danger of contamination from various natural or anthropogenic sources. Especially in arid regions, marine saltwater intrusion poses a major threat to groundwater aquifers which mostly are the exclusive source of freshwater in these dry climates. In contrast to common numerical groundwater modelling, density-driven flow and mass transport have to be considered as vital processes in the system and in scenario simulations for fresh-saltwater interactions.
In the beginning of this thesis, the capabilities of the modelling tool OpenGeoSys are verified with selected benchmarks to represent the relevant non-linear process coupling. Afterwards, variable-density application and process studies on different scales are presented. Application studies comprehend regional groundwater modelling of a coastal aquifer system extensively used for agricultural irrigation, as well as hydro-geological model development and parametrization. In two process studies, firstly, a novel method to model gelation of a solute in porous media is developed and verified on small scale laboratory observation data, and secondly, investigations of thermohaline double-diffusive Rayleigh regimes on medium scale are carried out.
With the growing world population and, thus, increasing pressure on non-renewable resources, intelligent management strategies intensify demand for potent simulation tools and development of novel methods. In that way, this thesis highlights not only OpenGeoSys’ potential of density-dependent process modelling, but the comprehensive importance of variable-density flow and transport processes connecting, both, avant-garde scientific research, and real-world application challenges.:Abstract
Zusammenfassung
Nomenclature
List of Figures
List of Tables
I Background and Fundamentals
1 Introduction
1.1 Motivation
1.2 Structure of the Thesis
1.3 Variable-Density Flow in Literature
2 Theory and Methods
2.1 Governing Equations
2.2 Fluid Properties
2.3 Modelling and Visualization Tools
3 Benchmarks
3.1 Steady-state Unconfined Groundwater Table
3.2 Theis Transient Pumping Test
3.3 Transient Saltwater Intrusion
3.4 Development of a Freshwater Lens
II Applications
4 Extended Inverse Distance Weighting Interpolation
4.1 Motivation
4.2 Extension of IDW Method
4.3 Artificial Test and Regional Scale Application
4.4 Summary and Conclusions
5 Modelling Transient Saltwater Intrusion
5.1 Background and Motivation
5.2 Methods and Model Setup
5.3 Simulation Results and Discussion
5.4 Summary, Conclusion and Outlook
6 Gelation of a Dense Fluid
6.1 Motivation
6.2 Methods and Model Setup
6.3 Results and Conclusions
7 Delineating Double-Diffusive Rayleigh Regimes
7.1 Background and Motivation
7.2 Methods and Model Setup
7.3 Results
7.4 Conclusions and Outlook
III Summary and Conclusions
8 Important Achievements
9 Conclusions and Outlook
Bibliography
Publications
Acknowledgements
Appendix
|
Page generated in 0.068 seconds