51 |
Geologia e petrogênese de corpos máficos-ultramáficos da faixa Brasília Sul, borda sul do Cráton São Francisco - MG.Pinheiro, Marco Aurélio Piacentini January 2013 (has links)
Programa de Pós-Graduação em Evolução Crustal e Recursos Naturais. Departamento de Geologia. Escola de Minas, Universidade Federal de Ouro Preto. / Submitted by Oliveira Flávia (flavia@sisbin.ufop.br) on 2014-11-05T19:11:53Z
No. of bitstreams: 1
TESE_GeologiaPetrogêneseCorpos.pdf: 34815703 bytes, checksum: 5f78a79a4781ba50adc900984452398f (MD5) / Rejected by Gracilene Carvalho (gracilene@sisbin.ufop.br), reason: Não conseguiu colocar o resumo? on 2014-11-06T11:15:29Z (GMT) / Submitted by Oliveira Flávia (flavia@sisbin.ufop.br) on 2014-11-06T16:55:29Z
No. of bitstreams: 1
TESE_GeologiaPetrogêneseCorpos.pdf: 34815703 bytes, checksum: 5f78a79a4781ba50adc900984452398f (MD5) / Approved for entry into archive by Gracilene Carvalho (gracilene@sisbin.ufop.br) on 2014-11-07T12:37:17Z (GMT) No. of bitstreams: 1
TESE_GeologiaPetrogêneseCorpos.pdf: 34815703 bytes, checksum: 5f78a79a4781ba50adc900984452398f (MD5) / Made available in DSpace on 2014-11-07T12:37:17Z (GMT). No. of bitstreams: 1
TESE_GeologiaPetrogêneseCorpos.pdf: 34815703 bytes, checksum: 5f78a79a4781ba50adc900984452398f (MD5)
Previous issue date: 2013
|
52 |
Mineralização de torita associada ao Depósito Madeira (Sn-Nb-Ta), Pitinga, Amazonas, BrasilHadlich, Ingrid Weber January 2017 (has links)
O depósito Madeira (Sn, Nb, Ta) está localizado na mina de Pitinga (norte do Brasil). O depósito é associado à fácies albita granito do Granito Madeira, de tipo A (~1,820 Ma). A mina extrai comercialmente Sn (cassiterita), Nb e Ta (U-Pb-pirocloro e zircão). Flúor (criolita), Y, REE (xenotima), Zr (zircão), U (U-Pb-pirocloro e zircão) e Th (torita) são subprodutos em potencial. Este trabalho apresenta um estudo detalhado da mineralização de torita nas subfacies do albita granito: albita granito de núcleo, albita granito de borda e pegmatitos associados. O depósito Madeira é apresentado neste trabalho como um dos maiores depósitos de Th do mundo, com 164 Mt de minério disseminado, teor médio de 759 ppm ThO2 na rocha, e concentrações maiores (de até 1,8 wt.% ThO2) em pegmatitos pequenos (média de ~0,51 wt.% ThO2). Composicionalmente, a torita deste estudo pode ocorrer próxima do polo da torita ou representar substituições relativamente limitadas no sistema de soluções sólidas torita-zircão-xenotima-coffinita. A concentração de Fe na torita varia entre 0,11 wt.% Fe2O3 e 29,56 wt.% Fe2O3 e, em muitos casos, é considerada de natureza estrutural, assim como o conteúdo de F (de até 6,02 wt.% F). A torita de todas as subfacies foram fortemente afetadas por alterações hidrotermais relacionadas a fluidos aquosos ricos em F de baixa temperatura. A hidratação da torita permitiu a introdução de M3+ cátions (Y, ETR, Fe e Al) e F, e causou perdas no conteúdo de Si e Th (média de ~0,51 wt.% ThO2). A alteração também foi responsável pela formação de uma auréola de Fe nos grãos de torita, com minerais secundários associados, provavelmente Th-Fe-hidroxifluoretos e Y-Th-Fe-fluorcarbonatos. A média da razão Th/U em rocha total é de 1,85 no albita granito de borda, 3,82 no albita granito de núcleo, e 19,85 nos pegmatitos associados. Esta variação reflete um padrão de evolução magmática, com maior disponibilidade de U em estágios precoces e empobrecimento de U em estágios tardios. Em Pitinga, as mineralizações de Th e U são divididas em diferentes minerais, formados em estágios distintos da evolução. Esta característica está relacionada à riqueza de flúor e à alta alcalinidade do magma, que inibiram a cristalização precoce de zircão, bem como de columbita, e favoreceu a formação precoce de U-Pb-pirocloro. Quando a cristalização de silicatos hidratados reduziu a alcalinidade do magma, a cristalização de zircão (de um magma previamente empobrecido em U, Nb, Ta e ETRL) se tornou intensa, acompanhado de torita e xenotima. / The world-class Sn-Nb-Ta Madeira deposit is located at the Pitinga mine (northern Brazil). The deposit is associated with the albite-enriched granite facies of the A-type Madeira Granite (~1,820 Ma). The mine commercially extracts tin (cassiterite), Nb and Ta (U-Pb-pyrochlore and columbite). Fluorine (cryolite), Y, REE (xenotime), Zr (zircon), U (U-Pb-pyrochlore and zircon) and Th (thorite) are potential byproducts. This work presents a detailed study on the thorite mineralization from the albite-enriched granite subfacies: the core albite-enriched granite, the border albite-enriched granite and the associated pegmatites. The Madeira deposit is revealed in this work to be among the largest Th deposits in the world, with 164 Mt of homogeneously dispersed ore, with an average grade of 759 ppm ThO2 in the rock, and higher concentrations (up to 1.8 wt.% ThO2) in small pegmatites (average of ~ 0.51 wt.% ThO2). Thorite compositions are either close to the thorite pole or correspond to relatively limited substitutions in the thorite-zircon-xenotime-coffinite solid solution system. The Fe concentration in thorite ranges from 0.11 wt.% to 29.56 wt.% Fe2O3 and in many cases is considered of structural nature, as well as part of the F content (up to 6.02 wt.% F). Thorites from all subfacies were strongly affected by hydrothermal alterations related to F-rich low-temperature aqueous fluids. The hydration of thorite allowed the introduction of M3+ cations (Y, REE, Fe, and Al) and F, and caused losses in Si and Th (average of ~48 wt.% ThO2). The alteration also created a Fe-rich halo in thorite, with associated secondary minerals, likely Th-Fe-hydroxyfluorides and Y-Th-Fe-fluorcarbonates. The Th/U average ratio values in bulk-rock are 1.85 in the border albite-enriched granite, 3.82 in the core albite-enriched granite, and 19.85 in the associated pegmatites. This variation reflects a magmatic evolution pattern, with higher availability of U in the earlier stages and depletion of U in late stages. At Pitinga, Th and U mineralization are divided into different minerals formed in different stages of the magma evolution. This feature is related to the richness of fluorine and the high alkalinity of the magma that greatly inhibited the early crystallization of zircon, as well of columbite, and favored the early appearance of U-Pb-pyrochlore. When the crystallization of hydrous silicates reduced the alkalinity, the crystallization of zircon (from a magma depleted in U, Nb, Ta and LREE) become intense, accompanied by thorite and xenotime.
|
53 |
Geologia e metalogênese do ouro do greenstone belt da Serra das Pipocas, Maciço de Troia, Província Borborema, NE - BrasilCOSTA, Felipe Grandjean da 13 December 2018 (has links)
Submitted by Cleide Dantas (cleidedantas@ufpa.br) on 2018-12-19T14:12:32Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Tese_GeologiaMetalogeneseOuro.pdf: 12317474 bytes, checksum: 2bc575886c11ee4638b4548c3611b3eb (MD5) / Approved for entry into archive by Cleide Dantas (cleidedantas@ufpa.br) on 2018-12-19T14:12:46Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Tese_GeologiaMetalogeneseOuro.pdf: 12317474 bytes, checksum: 2bc575886c11ee4638b4548c3611b3eb (MD5) / Made available in DSpace on 2018-12-19T14:12:46Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Tese_GeologiaMetalogeneseOuro.pdf: 12317474 bytes, checksum: 2bc575886c11ee4638b4548c3611b3eb (MD5)
Previous issue date: 2018-12-13 / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / O Maciço de Troia representa um dos principais domínios de embasamento arqueano/paleoproterozoico da Província Borborema, NE-Brasil, compondo-se principalmente de terrenos granito-greenstone riacianos e gnaisses TTGs de idades neoarqueanas. Os greenstone belts paleoproterozoicos do Maciço de Troia compartilham idades, características litoestratigráficas e mineralização aurífera, com aspectos similares de outros greenstone belts riacianos dos crátons adjacentes. Uma idade U-Pb em zircão de 2185 ± 4 Ma foi obtida para metatonalito pré-colisional (tonalitos Mirador) com afinidade geoquímica semelhante à adakitos. Para plutons potássicos colisionais (Suíte Bananeira) obteve-se as idades U-Pb em zircão de 2079 ± 4 Ma para um quartzo monzonito deformado e 2068 ± 5 Ma para um granito equigranular menos deformado. Ambos são cálcio-alcalinos de alto-K, derivados da fusão parcial de fonte crustal. As idades modelo Hf em zircão de todos os granitoides variam entre 2800 e 2535 Ma, evidenciando que componentes de crosta arqueana contribuíram para a gênese do magmatismo. No entanto, zircões herdados com c. 2.3 Ga mostraram valores de Ɛ<sub>Hf</sub>(t) de c. +4,9, indicando que crosta paleoproterozoica menos radiogênica (juvenil) também participou como fonte de magma. A mineralização de ouro no greenstone belt da Serra das Pipocas está associada a zona de cisalhamento, e a principal área mineralizada (o depósito de Pedra Branca) se estabeleceu no limite estratigráfico da unidade metavulcânica máfica e metassedimentar da sequência greenstone. O estágio principal da mineralização aurífera é encontrado em associação com veios de quartzo, alteração cálcio-silicática (diopsídio, feldspato potássico, anfibólio, titanita, biotita, pirita, albita, magnetita ± carbonatos) e abitização (albititos). Ouro livre comumente se precipita em estreita associação espacial com magnetita e teluretos de ouro e prata. Duas assembleias de inclusões fluidas foram identificadas em veios de quartzo associados à alteração cálcio-silicática. A assembleia 1 é caracterizada por trilhas pseudo-secundárias que mostram a coexistência de três tipos de inclusões fluidas (aquosas, aquo-carbônicas e carbônicas), sugerindo formação durante a separação de fases (imiscibilidade de fluidos). A intersecção das isócoras médias para inclusões aquosas e carbônicas coexistentes sugere condições de PT de 495°C e 2.83 kbar (10.5 km de profundidade), semelhante a condições de PT de depósitos de ouro orogênico hipozonal. A assembleia 2 é representada por inclusões fluidas secundárias, aquosas e de baixa temperatura (Th < 200°C), provavelmente não relacionadas à mineralização aurífera. Os valores de δ<sup>18</sup>O, δD e δ<sup>13</sup>C dos minerais hidrotermais (quartzo, calcita, biotita, hornblenda e magnetita) evidenciam valores de δ<sup>18</sup>O do fluido variando de +8,3 a +11,0 ‰ (n=59), δD do fluido de -98 a -32‰ (n=24) e valores de δ<sup>13</sup>C de calcita de -6,35 a -9,40 ‰ (n=3). A geotermometria por isótopos de oxigênio em pares de quartzo-magnetita forneceu temperaturas de 467 a 526°C (n=7, média de 503°C), que provavelmente, representa a temperatura de deposição de ouro. A associação de ouro com magnetita e teluretos sugere um fluido formador de minério proveniente de magmas oxidados, semelhante àqueles interpretados como “depósitos de ouro orogênico relacionado a intrusões oxidadas”, comumente descrito em outros greenstone belts pré-cambrianos (ex., Abitibi e Eastern Goldfields). Quatro eventos de deformação (Dn, Dn+1, Dn+2 e Dn+3) são reconhecidos no greenstone belt da Serra das Pipocas. O evento Dn é responsável pela foliação Sn, paralela ao acamamento (So) da pilha metavulcanossedimentar. O evento Dn+1 é caracterizado pela foliação Sn+1, de mergulho principal para SE, sendo plano-axial a uma série de dobras assimétricas que evidenciam transporte tectônico para NW. O evento Dn+2 representa a fase de deformação transcorrente e o evento Dn+3 é caracterizado por deformação dúctil-rúptil. O estágio principal da mineralização de ouro é encontrado em veios de quartzo deformados, associados à alteração de alta temperatura (cálcio-silicática e albitização), no entanto, ocorrência de ouro (± Te, Ag) em estruturas Dn+3 (dúctil-rúptil) também foi observada. Uma idade U-Pb em titanita de 2029 ± 28 Ma foi obtida para a alteração de cálcio-silicática (e mineralização de ouro). No entanto, a forte perda de Pb dos grãos de titanita define uma idade de 574 ± 7 Ma no intercepto inferior da linha discórdia, evidenciando metamorfismo neoproterozoico. A idade U-Pb em zircão de 575 ± 3 Ma para diques sin-tectônicos à deformação Dn+3, sugere que a deformação progressiva (Dn+1, Dn+2 e Dn+3) é provavelmente de idade Neoproterozoica, com tensor de compressão máxima (σ1) na direção WNW-ESE. No entanto, em escala local, registros de deformação paleoproterozoica (Dn) ainda estão preservados. Como modelo genético para o depósito de ouro de Pedra Branca, é sugerido aqui, uma mineralização de ouro orogênico controlada por dois estágios de exumação tectônica; (1) mineralização de ouro orogênico hipozonal ocorreu em c. 2029 Ma, após pico do metamorfismo de alto grau e durante primeira exumação tectônica da sequência greenstone, e, posteriormente, em c. 575 Ma, (2) mineralização aurífera tardia (remobilização?) ocorreu em nível crustal mais raso, durante o segundo estágio de exumação tectônica, associado à orogênese Brasiliana/Pan-Africana. / At the Archean–Paleoproterozoic Troia Massif, in Borborema Province, NE–Brazil, two major Paleoproterozoic greenstone belts are recognized (Algodões and Serra das Pipocas). These share similar ages and lithostratigraphic characteristics with other 2.2–2.1 Ga greenstone belts of the surrounding cratonic domains (e.g. Guiana shield and São Luis–West Africa craton), and also host gold mineralization. In this thesis, a U–Pb zircon age of 2185 Ma was obtained for a pre–collisional metatonalite (Mirador tonalites) with geochemical affinity similar to adakites–like rocks. For syn– to post–collisional potassic plutons (Bananeira suite) we obtained U–Pb zircon ages of 2079 Ma for a deformed quartz monzonite and of 2068 Ma for the less–deformed equigranular granite. These granitoids of the Bananeira suite are both of high–K calc–alkaline affinity, and probably derived from partial melting of crustal sources. Zircon Hf crustal model ages of all granitoids range between 2800 and 2535 Ma, indicating that Archean crustal components contributed to their magma genesis. However, two analyzed c. 2.3 Ga old inherited zircon grains showing Ɛ<sub>Hf</sub> (t) values of c. +4.9, indicate that crustal reworking of less–radiogenic Paleoproterozoic sources also participated. Gold mineralization in the Serra das Pipocas greenstone belt is associated with a regional NE-trending shear zone. The mineralized areas (the Pedra Branca gold deposit) are located near–parallel to the stratigraphy, siting on shear zones, between metavolcanic and metasedimentary unit boundaries. The main stage of gold mineralization is found in association with quartz veins, high–temperature calc–silicate alteration (diopside, K–feldspar, amphibole, titanite, biotite, pyrite, albite, magnetite ± carbonates) and albitization. Free–milling gold commonly precipitates in close association with magnetite and gold/silver tellurides. Two fluid inclusion assemblages were identified in mineralized quartz veins. Assemblage 1 is characterized by pseudo–secondary trails that show the coexistence of CO<sub>2</sub>–rich and low salinity (0 to 8 wt% NaCl equiv.) CO<sub>2</sub>–H<sub>2</sub>O–NaCl and H<sub>2</sub>O–NaCl inclusions, suggesting formation during phase separation (fluid immiscibility). The mean isochores intersection of CO<sub>2</sub>–rich and H<sub>2</sub>O–NaCl inclusions of assemblage 1 suggests PT conditions of 495 °C and 2.83 kbar (c. 10.5 km depth), akin to hypozonal orogenic gold deposits. Assemblage 2 is represented by late secondary low–temperature (Th<200°C) H<sub>2</sub>O–NaCl inclusions, probably unrelated to gold mineralization. The δ<sup>18</sup>O, δD and δ<sup>13</sup>C values of hydrothermal minerals (quartz, calcite, biotite, hornblende and magnetite) define fluid δ<sup>18</sup>O values ranging from +8.3 to +11.0‰ (n=59), fluid δD from -98 to -32‰ (n=24) and δ<sup>13</sup>C values of calcite from -6.35 to -9.40‰ (n=3). Oxygen isotope thermometry for quartz–magnetite pairs gave temperatures from 467 to 526°C (n=7, average 503°C), which probably represents the temperature of gold deposition. The association of gold with magnetite and tellurides strongly suggests an ore–forming fluid sourced by oxidized magmas, similar to those interpreted as ‘orogenic oxidized intrusion– related gold deposits’ in other Precambrian greenstone belts (e.g. Abitibi and Eastern Goldfields). Four deformation events (Dn, Dn+1, Dn+2 and Dn+3) are recognized in the Serra das Pipocas greenstone belt. The Dn event is responsible for the early Sn foliation, parallel to bedding (So) of the greenstone pile. The Dn+1 event is characterized by a pervasive, southeasterly–dipping Sn+1 foliation that is axial–planar to a number of asymmetric, tight to isoclinal and recumbent folds. The Dn+2 event represents a transcurrent deformation phase and the late Dn+3 event is characterized by ductile–brittle deformation. The main stage of gold mineralization is found as deformed quartz veins and associated high–temperature alteration, but some lower temperature gold (±Te, Ag) occurrence along the late stage brittle structures (Dn+3 event) is also observed. The U–Pb titanite age of 2029 ± 28 Ma for the high– temperature calc–silicate alteration (and gold mineralization) is presented here. However, the strong Pb loss of titanite grains defines a 574 ± 7 Ma lower intercept age, evidencing that early gold mineralization were broadly affected by Neoproterozoic deformational events and metamorphism (Brasiliano/Pan–African orogeny). The U–Pb zircon age of 575 ± 3 Ma for syn–tectonic diques bracketed the age of late Dn+3 deformation event. Then, the progressive deformation recorded (Dn+1, Dn+2 and Dn+3) is probably of Neoproterozoic age, with the maximum compressive stress (ζ1) in the WNW–ESE direction. However, at local scale, Paleoproterozoic deformation records (Dn) still preserved. The genetic model for the Pedra Branca gold deposit is suggested here by a two–stage exhumation–drive gold mineralization; represented by a (1) early oxidized hypozonal orogenic gold mineralization (main stage) that occurred at c. 2029 Ma, shortly after the high–grade Paleoproterozoic metamorphism and first exhumation processes of the greenstone pile, and later on, at c. 580 Ma, a (2) late gold mineralization (remobilization?) occurred at shallow levels (second exhumation process) associated to late Neoproterozoic Brasiliano/Pan–African orogeny. / CPRM - Companhia de Pesquisa de Recursos Minerais / Serviço Geológico do Brasil
|
54 |
Estudo de inclusões fluidas e química mineral do depósito aurífero do alvo Jerimum de Baixo, campo mineralizado do Cuiú-Cuiú, província aurífera do Tapajós, ParáOLIVEIRA, Helder Thadeu de 06 March 2018 (has links)
Submitted by Socorro Albuquerque (sbarbosa@ufpa.br) on 2018-07-25T18:23:55Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_EstudoInclusõesFluidas.pdf: 5678353 bytes, checksum: 3ff0c36927d7effd01c01821294a0470 (MD5) / Approved for entry into archive by Socorro Albuquerque (sbarbosa@ufpa.br) on 2018-07-25T18:25:26Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_EstudoInclusõesFluidas.pdf: 5678353 bytes, checksum: 3ff0c36927d7effd01c01821294a0470 (MD5) / Made available in DSpace on 2018-07-25T18:25:27Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_EstudoInclusõesFluidas.pdf: 5678353 bytes, checksum: 3ff0c36927d7effd01c01821294a0470 (MD5)
Previous issue date: 2018-03-06 / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / O alvo Jerimum de Baixo está localizado no Campo Mineralizado do Cuiú-Cuiú, região central da Província Aurífera do Tapajós, Cráton Amazônico. O alvo abrange rochas monzograníticas, essencialmente isotrópicas, que foram fraca a fortemente hidrotermalizadas e portadoras de biotita rica em Fe. Cloritização, sericitização, sulfetação, silicificação e carbonatação são tipos de alteração mais importantes. A clorita produzida é enriquecida em Fe do tipo chamosita e foi formada principalmente entre 280 e 315°C, enquanto que a mica branca assume composições muscovíticas. A mineralização é representada por vênulas de quartzo com baixo teor de sulfetos (pirita + pirrotita ± calcopirita ± galena ± esfalerita) em que o ouro ocorre livre e em zonas mais fragilizadas e alteradas, geralmente associado à pirrotita. O estudo petrográfico e microtermométrico de inclusões fluidas hospedadas quartzo de vênulas definiu inclusões aquocarbônicas, carbônicas e aquosas. Os fluidos com CO2 representam o provável fluido mineralizador e foram gerados por processos de separação de fases entre 280 e 380°C, principalmente. Uma posterior infiltração e processos de mistura são indicados para os fluidos aquosos mais tardios. Temperaturas <400°C e o caráter redutor do meio (pirrotita compondo o minério) apontam para o H2S como o principal ligante no fluido mineralizador e o Au(HS)-2 como o complexo transportador primário do ouro. Separação de fases, modificações nas condições do pH e interação fluido/rocha foram os mecanismos importantes para a precipitação do Au, que se deu em nível rúptil a localmente rúptil-dúctil da crosta (entre 2 e 6 km). Em linhas gerais, Jerimum de Baixo guarda similaridades com os outros depósitos/alvos previamente estudados no Campo Mineralizado do Cuiú-Cuiú no que tange à alteração hidrotermal, tipos de fluidos e mineralização. As feições observadas em Jerimum de Baixo não permitem um enquadramento classificatório absolutamente adequado a nenhum dos modelos tipológicos metalogenéticos clássicos. Características como tipo e estilo da alteração hidrotermal, tipo e teor de sulfetos, tipos de fluidos envolvidos, profundidade estimada para a mineralização, associação metálica (p. ex., S, Bi, Te), juntamente com a boa correspondência entres os dados levantados em outros depósitos/alvos no Campo Mineralizado do Cuiú-Cuiú indicam para o alvo Jerimum de Baixo um jazimento aurífero com filiação magmático-hidrotermal, com maior similaridade com aqueles depósitos relacionados a intrusões reduzidas (reduced intrusionrelated gold systems – RIRGS). / The Jerimum de Baixo gold target is located in the Cuiú-Cuiú golfield, central region of the Tapajós Gold Province, Amazonian Craton. The target comprises monzogranitic rocks, essentially isotropic, that were weak to strongly hydrothermal and carriers of Fe-rich biotite. Chloritization, sericitization, sulfidation, silicification and carbonatization are the most important types of alteration. The produced chlorite is enriched in Fe of the chamosite type and was formed mainly between 280 and 315°C, whereas the white mica assumes muscovitic compositions. The mineralization is represented by quartz veinlets with low sulfide content (pyrite + pyrrhotite ± chalcopyrite ± galena ± sphalerite) in which gold occurs as free-milling particles and in more fragil and altered zones, usually associated with pyrrhotite. The petrographic and microtermometric study of fluid inclusions hosted in quartz veinlets defined aqueou-carbonic, carbonic and aqueous inclusions. The fluids with CO2 represent the probable mineralizing fluid and were generated by phase separation processes between 280 and 380°C, mainly. Further infiltration and mixing processes are indicated for the later aqueous fluids. Temperatures <400°C and the reduced character of the environment (pyrrhotite compounding the ore) point to H2S as the major ligand in the mineralizing fluid and Au (HS)-2 as the primary gold transporting complex. Phase separation, changes in pH conditions, and fluid/rock interaction were the important mechanisms for Au precipitation, which occurred at the brittle to locally brittle-ductile level of the crust (between 2 and 6 km). In general terms, Jerimum de Baixo presents similarities among the other deposits/targets previously studied in terms of hydrothermal alteration, fluid types and mineralization. The features observed in Jerimum de Baixo do not allow a classificatory framework absolutely adequate to any of the classical metalogenetic typological models. Characteristics such as type and style of hydrothermal alteration, type and low content of sulfides, types of fluids involved, estimated depth for mineralization, metallic association (e.g., S, Bi, Te), together with the good correspondence between the data collected in other deposits/targets in the Cuiú-Cuiú goldfield indicate for the Jerimum de Baixo target a gold deposit with magmatic-hydrothermal affiliation, presenting greater similarity to those deposits classified as belonging to Reduced Intrusion-Related Gold Systems (RIRGS).
|
55 |
APLICAÇÃO DE TÉCNICAS DE APRENDIZADO DE MÁQUINA PARA CLASSIFICAÇÃO DE DEPÓSITOS MINERAIS BASEADA EM MODELO TEOR-TONELAGEM / APPLICATION OF MACHINE LEARNING TECHNIQUES FOR CLASSIFICATION OF MINERAL DEPOSITS CONTENT-BASED MODEL TONNAGERocha, Jocielma Jerusa Leal 01 July 2010 (has links)
Made available in DSpace on 2016-08-17T14:53:11Z (GMT). No. of bitstreams: 1
Jocielma Jerusa Leal Rocha.pdf: 3008647 bytes, checksum: 785c07837e5e5bb39cb7685000c9d145 (MD5)
Previous issue date: 2010-07-01 / Classification of mineral deposits into types is traditionally done by experts. Since there are reasons to believe that computational techniques can aid this classification process and make it less subjective, the research and investigation of different methods of clustering and classification to this domain may be appropriate. The way followed by researches in this domain has directed for the use of information available in large public databases and the application of supervised machine learning techniques. This work uses information from mineral deposits available in grade-tonnage models published in the literature to conduct research about the suitability of these three techniques: Decision Tree, Multilayer Perceptron Network and Probabilistic Neural Network. Altogether, 1,861 mineral deposits of 18 types are used. The types refer to grade-tonnage models. Initially, each of these three techniques are used to classify mineral deposits into 18 types. Analysis of these results suggested that some deposits types could be treated as a group and also that the classification could be divided into two levels: the first level to classify deposits considering groups of deposits and the second level to classify deposits previously identified on a group into some of specific type belonging to that group. A series of experiments was carried out in order to build a two levels model from the combination of the techniques used, which resulted in an average accuracy rate of 85% of cases. Patterns of errors occurrence were identified within groups in types of deposits less representative in the database. This represents a promising way to achieve improvement in the process of mineral deposits classification that does not mean increasing in the amount of deposits used or in the amount of characteristics of the deposits. / A classificação de depósitos minerais em tipos tradicionalmente é feita por especialistas no assunto. A possibilidade de que técnicas computacionais auxiliem o processo de classificação e o torne menos subjetivo incentiva a pesquisa e aplicação de diferentes métodos de agrupamento e classificação sobre esse domínio de análise. A evolução das pesquisas nesse domínio tem direcionado os estudos para a utilização de informações disponíveis em grandes bases de dados publicadas e a aplicação de técnicas de aprendizado de máquina supervisionado. Este trabalho utiliza informações de depósitos minerais disponibilizadas em modelos teor-tonelagem publicados na literatura para proceder a investigação da adequabilidade de três dessas técnicas: Árvore de Decisão, Rede Percéptron Multicamadas e Rede Neural Probabilística. Ao todo, são 1.861 depósitos distribuídos em 18 tipos identificados pelo modelo teor-tonelagem. Inicialmente verificou-se o resultado apresentado por cada uma das três técnicas para a classificação dos depósitos em 18 tipos. A análise desses resultados sugeriu a possibilidade de agrupar esses tipos e dividir a classificação em dois níveis: o primeiro nível para classificar os depósitos considerando o agrupamento de tipos e o segundo nível para classificar os depósitos que resultaram em um grupo em um dos tipos específicos daquele grupo. Uma série de experimentos foi realizada no sentido de construir um modelo de classificação em dois níveis a partir da combinação das técnicas utilizadas, o que resultou em uma taxa de acerto média de 85% dos casos e as principais ocorrências de erros foram identificadas dentro de grupos em tipos de depósitos menos representativos na base de dados. Isso representa uma maneira promissora de conseguir melhoria no processo de classificação de depósitos minerais que não implica no aumento da quantidade de depósitos utilizada ou na quantidade de características dos depósitos.
|
Page generated in 0.0841 seconds