• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • Tagged with
  • 12
  • 8
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Impact des polluants gazeux du sol sur la qualité de l'air intérieur des bâtiments / Impact of soil gas pollutants on indoor air quality

Diallo, Thierno Mamadou Oury 10 October 2013 (has links)
L’entrée des polluants gazeux du sol (Radon, COV,…) dans les environnements intérieurs peut occasionner des risques sanitaires significatifs. Or les modèles d’évaluation de risques sanitaires liés à ces polluants gazeux du sol contiennent beaucoup d’incertitudes qui peuvent conduire à une mauvaise appréciation des risques. Dans un premier temps, cette thèse contribue à l’amélioration des modèles d’évaluation des risques. Dans un second temps, elle propose le développement d’un modèle de dimensionnement des Systèmes de Dépressurisation du Sol (SDS) passifs utilisés pour protéger les bâtiments des pollutions gazeuses venant du sol. L’amélioration des modèles a porté sur la prise en compte des principaux phénomènes de convection et diffusion à l’interface entre le sol et le bâtiment, en tenant compte des différentes typologies de soubassement. La première contribution porte sur le développement de modèles analytiques fournissant les débits d’air dus à la convection à travers le sol pour différents types de soubassement : dallage indépendant, dalle portée, vide sanitaire et cave. Les bâtiments avec des murs enterrés et les soubassements avec un lit de gravier sous le plancher bas sont également traités. Une méthodologie permettant la prise en compte de la fissuration et des points singuliers du plancher bas est aussi proposée. La deuxième contribution porte sur la prise en compte du transfert couplé des polluants des sols par convection et diffusion auprès des fondations. Une étude numérique a permis une meilleure compréhension du comportement des polluants à l’interface sol/bâtiment. Sur la base de cette compréhension, des lois semi-empiriques d’estimation des flux d’entrée de polluant dans les bâtiments sont proposées. Les différents modèles développés ont été validés numériquement avec un modèle CFD et expérimentalement avec des données issues de la littérature. La confrontation de ces modèles avec ceux existants a montré les améliorations apportées. L’impact de la typologie du soubassement sur le transfert de polluants gazeux des sols a été constaté. Une première application des modèles est illustrée par leur intégration dans un code de simulation thermo-aéraulique multizone afin de pouvoir étudier l’impact de ces polluants sur la qualité de l’air intérieur. Ce travail se termine par le développement d’un modèle de dimensionnement des Systèmes de Dépression du Sol (SDS) passifs. Ce modèle aéraulique de dimensionnement des SDS a été validé par des mesures effectuées au CSTB dans une maison expérimentale. Les premières applications du modèle de dimensionnement portent notamment sur l’impact de la météorologie (vent et tirage thermique) sur le fonctionnement du SDS passif et sur l’impact des stratégies de ventilation du bâtiment sur le fonctionnement du SDS passif. On voit ainsi l’intérêt de l’utilisation d’un tel modèle pour tester l’aptitude de ce système de protection des bâtiments dans des situations environnementales données. / Transfer of soil gas pollutants (Radon, VOC) into buildings can cause significant health risks. However, analytical models used today to estimate health risks associated with these pollutants contain many uncertainties which can lead to poor risk assessment. Initially, the main objective of this thesis is to contribute to the improvement of these models for risk assessment. Secondly, we propose the development of air flow model for passive Sub slab Depressurization Systems (SDS) design used to protect buildings. The improvement of models focused on the inclusion of the main phenomena of convection and diffusion at building/soil interface, taking into account different types of building substructures. The first improvement concerns the assessment of convection phenomenon through the development of analytical models to quantify air flow rates entering through many kinds of building substructures: floating slab, bearing slab, crawl space and basement. Buildings with buried walls and substructures with a sub slab gravel layer are also treated. A methodology taking into account the presence of cracks, holes and singular leakages of the slab is also proposed. The second improvement of the models is the inclusion of coupled transfer of convection and diffusion near foundations. A numerical study allowed a better understanding of the behavior of pollutants at soil / building interface. Based on this understanding, semi-empirical laws for estimating soil gas pollutants entry rate into buildings are proposed. The various models developed have been validated numerically using a CFD model and experimentally with data from the literature when available. The impact of building substructure on pollutant transfer has been highlighted. A first application of the model is illustrated by their integration into a multizone simulation code to study the impact of these transfers on indoor air quality. Finally, the work ends with the development of a model for designing passive sub slab depressurization systems. The design model developed is validated with in situ experimental data. Preliminary applications using this model focused at first on the impact of meteorological conditions (stack effect, wind) on the sub slab system running. At second, the impact of ventilation strategies on sub slab depressurization performance is studied. Thus, we see the potential interest of this model to test the effective running of passive sub slab depressurization systems in given configuration.
12

Experimental Investigation of superheated liquid jet atomization due to flashing phenomena

Yildiz, Dilek 19 September 2005 (has links)
The present research is an experimental investigation of the atomization of a superheated pressurized liquid jet that is exposed to the ambient pressure due to a sudden depressurization. This phenomena is called flashing and occurs in several industrial environments.<p><p>Liquid flashing phenomena holds an interest in many areas of science and engineering. Typical examples one can mention: a) the accidental release of flammable and toxic pressure-liquefied gases in chemical and nuclear industry; the failure of a vessel or pipe in the form of a small hole results in the formation of a two-phase jet containing a mixture of liquid droplets and vapor, b) atomisation improvement in the fuel injector technology, c) flashing mechanism occurrence in expansion devices of refrigerator cycles etc. The interest in flashing events is especially true in the safety field where any unexpected event is undesirable. In case of an accident, flammable or toxic gas clouds are anticipated in close regions of the release because of the sudden phase change .Due to the non-equilibrium nature of the flow in these near field regions, conducting accurate data measurements for droplet size and velocity is a challenging task resulting in scarce data in the very close area.<p><p>This research has been carried out at the von Karman Institute (VKI) within the 5th framework of European Commission to fulfill the goal of understanding of source processes in flashing liquids in accidental releases. The program is carried out under name of FLIE (Flashing Liquids in Industrial Environments)(Contract no: EVG1-CT-2000-00025). The specific issues that are presented in this thesis study are the following:a) a comprehensive state of art of the jet break up patterns, spray characteristics and studies related to flashing phenomena; b)flashing jet breakup patterns and accurate characterization of the atomized jet such as droplet diameter size, velocity and temperature evolution through carefully designed laboratory-scale experiments; c) the influence of the initial storage conditions on the final atomized jet; d) a physical model on the droplet transformation and rapid evaporation in aerosol jets.<p><p>In order to characterize the atomization of the superheated liquid jet, laser-based optical techniques like Particle Image Velocimetry (PIV), Phase Doppler Anemometry (PDA) are used to obtain information for particle diameter and velocity evolution at various axial and radial distances. Moreover, a high-speed video photography presents the possibility to understand the break-up pattern changes of the simulating liquid namely R-134A jet in function of driving pressure, superheat and discharge nozzle characteristics. Global temperature measurements with an intrusive technique such as thermocouples, non-intrusive measurements with Infrared Thermography are performed. Cases for different initial pressures, temperatures, orifice diameters and length-to-diameter ratios are studied. The break-up patterns, the evolution of the mean droplet size, velocity, RMS, turbulence<p>intensity and temperature along the radial and axial directions are presented in function of initial parameters. Highly populated drop size and velocity count distributions are provided. Among the initial storage conditions, superheat effect is found to be very important in providing small droplets. A 1-D analytical rapid evaporation model is developed in order to explain the strong temperature decrease during the measurements. A sensitivity analysis of this model is provided.<p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished

Page generated in 0.1859 seconds