• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 17
  • 11
  • 11
  • 11
  • 10
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 170
  • 53
  • 25
  • 23
  • 21
  • 19
  • 18
  • 17
  • 16
  • 16
  • 16
  • 15
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Biopolymer and Cation Release in Aerobic and Anaerobic Digestion and the Consequent Impact on Sludge Dewatering and Conditioning Properties

Rust, Mary Elizabeth 07 September 1998 (has links)
Sludge dewatering and chemical conditioning requirements were examined from the perspective of biopolymer and cation release from activated sludge flocs. Both aerobic and anaerobic digestion processes were considered from two different activated sludge sources at a temperature of 20° C. Polymer demand and specific resistance to filtration increased with an increase in total soluble biopolymer concentration for all temperature ranges. In anaerobic digestion, the protein release was three times greater than the polysaccharide release. Conversely, aerobic digestion of the same sludge resulted in a greater release of polysaccharides than proteins. Polymer conditioning requirements in the anaerobic digestors were an order of magnitude higher than in the aerobic digestors; proteins were considered to be the biopolymer fraction responsible for the high polymer conditioning requirements and poor dewatering properties. Biopolymer is released to the supernatant as colloids bound by divalent cations. Peptidase and glucosidase activity were used to monitor enzymatic activity relative to biopolymer release and degradation. The reasons for the increases and decreases in hydrolase activity are unknown. / Master of Science
62

Predicting dewatering equipment performance from laboratory tests

Murthy, Sudhir N. 07 1900 (has links)
This study was undertaken to evaluate the dewatering characteristics of a bench-scale belt filter press and a full-scale screw press, and to develop a suitable bench-scale test to simulate dewatering in a full-scale screw press. Tests were conducted to determine the effect of pressure and shear on dewatering of anaerobically digested, alum, waste activated, and pulp and paper sludges. The first part of the study involved tests conducted on a bench-scale belt filter press. Pressure was varied to develop performance characteristics with respect to cake and filtrate solids, and polymer demand. The second part of the study consisted of mixing intensity tests conducted to evaluate the effect of shear on dewatering in sludges. The third part of the study involved field evaluation of dewatering performance using a full-scale screw press. Tests were conducted to determine the shear produced in the dewatering process and to assess its effect on polymer conditioning requirements. The tests indicated that the polymer demand produced by the belt filter press simulator and the screw device was minimal. Rather, a substantial polymer demand was observed as a result of shear in the pipes and pumps during full-scale screw press dewatering operations. A combination of a high speed mixing device and a free drainage tester was capable of predicting polymer conditioning requirements for a full-scale screw press. Individual sludge performance characteristics varied with pressure producing changes in cake solids and filtrate quality. / M.S.
63

Anaerobic / Aerobic Digestion for Enhanced Solids and Nitrogen Removal

Banjade, Sarita 22 January 2009 (has links)
Anaerobic digestion of wastewater sludge has widely been in application for stabilization of sludge. With the increase in hauling cost and many environmental and health concerns regarding land application of biosolids, digestion processes generating minimized sludge with better effluent characteristics is becoming important for many public and wastewater utilities. This study was designed to investigate the performance of anaerobic-aerobic-anaerobic digestion of sludge and compare it to anaerobic-aerobic digestion and single stage mesophilic digestion of sludge. Experiments were carried out in three stages: Single-stage mesophilic anaerobic digestion (MAD) 20d SRT; Sequential Anaerobic/Aerobic digestion (Ana/Aer); and Anaerobic/Aerobic/Anaerobic digestion (An/Aer/An). The Anaerobic/Aerobic/Anaerobic digestion of sludge was studied with two options to determine the best option in terms of effluent characteristics. The two sludge withdrawal options were to withdraw effluent from the anaerobic digester (An/Aer/An – A) or withdraw effluent from the aerobic digester (An/Aer/An – B). Different operational parameters, such as COD removal, VS destruction, biogas production, Nitrogen removal, odor removal and dewatering properties of the resulting biosolids were studied and the results were compared among different processes. From the study, it was found that An/Aer/An – B (wastage from aerobic reactor) provided better effluent characteristics than An/Aer/An – A (wastage from anaerobic reactor), Ana/Aer or conventional MAD. The study also shows that the Anaerobic/Aerobic/Anaerobic (An/Aer/An, with wastage from the aerobic or anaerobic digester) digestion of the sludge can improve the biosolids quality by improving the dewatering capabilities, with lower optimum polymer dose, reduced CST and increased cake solid concentration, and reduce the odor generation from the biosolids. Both An/Aer/Ana – A and An/Aer/An – B gave 70% VS removal, compared to 50% with single MAD and 62% with only Ana/Aer. COD removal of both An/Aer/An – A and An/Aer/An – B was 70%, while it was 50% and 66% for single MAD and Ana/Aer respectively. In the aerobic reactors of Ana/Aer and An/Aer/An - B, nitrification and denitrification with removal of nitrogen was observed. The An/Aer/An – B system had more ammonia and TKN removal (70%) than Ana/Aer (64%). The effluent from each stage was analyzed for dewatering ability, cake solid concentration and odor production potential. Compared with a single Ana/Aer system, the extra anaerobic step in An/Aer/An – A and – B reduced polysaccharides in the effluent. The Ana/Aer system released less protein than the conventional MAD system and the addition of the second anaerobic step - especially with system An/Aer/An – B (discharge from aerobic reactor) - greatly reduced protein, resulting in improved dewaterability and less polymer demand. An/Aer/An (both of the options: A and B) had lower CST than single MAD (both 15d and 20d SRT) and Ana/Aer. Compared to Ana/Aer, a reduction of 52% for An/Aer/An – A and 20% for An/Aer/An – B in polymer dose requirement was observed, indicating improved dewatering characteristics. The An/Aer/An – B has higher biosolid cake concentration than MAD or Ana/Aer. The results showed that An/Aer/An (both options: A and B) biosolid had lower odor generation potential than single MAD (15d and 20d SRT) or Ana/Aer. Of all the stages,the An/Aer/An – A and – B system, generated odor which peaked at shorter time and lasted for shorter duration of time. / Master of Science
64

Sequential Anaerobic-Aerobic Digestion: A new process technology for biosolids product quality improvement

Kumar, Nitin 11 May 2006 (has links)
Anaerobic digestion is widely used for stabilization of solids in sewage sludges. Recent changes in the priorities and goals of digestion processes are focusing more attention on the efficiency of these processes. Increasing hauling cost and restrictions for land applications are two factors which are driving the increased attention to digestion efficiency. Noxious odor production from the land applied biosolids is another important issue related to digestion efficiency. Existing anaerobic digestion or aerobic digestion processes failed to provide simultaneous solution to biosolids related problems i.e. simultaneous VS reduction, better dewatering of biosolids and lesser odors from the biosolids. Studies done by Novak et al. (2004) using different activated sludges show that anaerobic-aerobic digestion and aerobic-anaerobic digestion both increase volatile solids reduction compared to a single digestion environment. They proposed that there are 4 VS fractions in sludges: (1) a fraction degradable only under aerobic conditions, (2) a fraction degradable only under anaerobic conditions, (3) a fraction degradable under both anaerobic and aerobic conditions, and (4) a non degradable fraction. It has also been found (Akunna et al., 1993) that anaerobic-aerobic sequential treatment of wastewater can help in achieving substantial nitrogen removal. These results suggest that sequential anaerobic-aerobic digestion can address multiple biosolid related problems. This study was designed to understand the effect of sequential anaerobic-aerobic digestion on the properties of resulting effluent biosolids. The study was carried out in two operation phases and during both phases one digester was maintained at thermophilic conditions and the other at mesophilic temperature conditions. In first operation phase (Phase-I) thermophilic digester was operating at 20 day SRT and mesophilic anaerobic digester was at 10 day SRT. The aerobic digesters following anaerobic digesters were operating at 6 day SRT. In second operation phase (Phase-II), both thermophilic and mesophilic anaerobic digesters were operating at 15 day SRT and both had two aerobic digesters operating in parallel at 3 day and 6 day SRTs. In addition, batch experiments were also conducted to measure the performance of aerobic-anaerobic digestion sequence. Another study was carried out to understand the nitrogen removal mechanism during aerobic digestion of anaerobic digested sludge. The feed sludge was spiked with four different concentrations of nitrate and nitrite. It was observed during the study that aerobic digestion of anaerobic sludge helps in achieving higher Volatile solid reduction (~65% vs ~ 46% for mesophilic digestion and ~52% for thermophilic digestion). This result supports the hypothesis concerning the different fractions in volatile solids. Experimental results also show that the increase in VSR upon increasing anaerobic digestion SRT (more than 15 days) is less than the increase in the VSR due to the same increment of aerobic digestion SRT. Reduction in COD and VFA were also measured to be more than 50% during aerobic digestion. Investigation of nitrogen fate during the sequential anaerobic-aerobic digestion show more than 50% total nitrogen removal. Higher nitrogen removal was in thermophilic anaerobic – aerobic digester combination than that in mesophilic anaerobic–aerobic combination. The most probable reason for the removal was simultaneous nitrification and denitrification. Higher concentration of readily available VFA from thermophilic anaerobic digested sludge provide advantage in denitrification in following aerobic digester. The resulting biosolids produced during sequential digestion process were also analyzed for dewatering properties and odor production. Proteins and polysaccharides concentrations were observed to decrease during aerobic digestion for thermophilic anaerobic - aerobic digestion combination, while in another combinations polysaccharide concentrations increases at aerobic phase with 3 day digestion. The concentration of polysaccharides decreases at higher digestion period of 6 and 9. The result of decrease in polysaccharide and protein was reflected by the reduction in the polymer dose consumption and decrease in the optimum CST for the biosolids resulting from the sequential anaerobic aerobic digestion. Experimental results from odor experiments show that odor production potential of the biosolids decreases with increase in both anaerobic phase SRT and aerobic phase SRT. Thermophilic biosolids produces comparatively low odors but for longer periods, while mesophilic biosolids produces higher magnitude of odors during storage but only for comparative shorter period. Aerobic digestion of anaerobic sludge helps in reducing more than 50% odor production, but freeze-thaw cycle experiment shows that in both anaerobic and sequential anaerobic – aerobic digested sludges have higher potential for odor production. Higher aerobic digestion SRTs (6 days and above) shows more potential of reducing odors, but more experimental work is required to be done. / Master of Science
65

Energi- och miljöeffekter av mekanisk avvattning som försteg till torkning av träflis vid pelletsproduktion / Energy and environmental effects of mechanical dewatering as a pre-stage to thermal drying of wood chips in a pellets production

Lingman, Oskar January 2018 (has links)
Med rådande klimathot i form av ökande koldioxidhalter i vår jords atmosfär krävs stora gemensamma insatser för att minska utsläppen. Genom att välja bort fossila bränslen och istället använda miljövänliga energikällor skapar vi tillsammans en hållbar framtid. Träpellets är ett biobränsle tillverkat på biomassa i form av träflis och dess förbränning kan i princip ses som koldioxidneutral. Tillverkningen av bränslepellets är emellertid en energikrävande process där termisk torkning av råvaran står för en majoritet av energianvändningen under pelletstillverkningen, där träflisen torkas från 55–10% fukthalt genom kondensering. I och med den ökande efterfrågan av pellets kommer även större möjligheter till effektivisering, där torksteget i produktionen har stort fokus. Syftet med denna studie har varit att undersöka energi- och miljöeffekter av en ny tvåstegsteknik bestående av mekanisk avvattning som försteg till termisk torkning av träflis i en pelletsproduktion. Den mekanisk avvattningsteknik som undersökts är Drinor CDP - Continuous Dewatering Press. Det primära målet med arbetet har varit att undersöka Drinors CDP som försteg till en bandtork och pneumatisk tork för att slutligen svara på vilken av kombinationerna som ger lägst energianvändning och miljöpåverkan i form av utsläpp. Som referens kommer torkprocessen hos Stora Enso Timber Gruvön användas, där en bandtork i dag används som torksteg. Som delmål kommer två olika partikelstorlekar undersökas vid pneumatisk torkning bestående av spån och flis, detta för att utreda partikelstorlekars påverkan på pneumatisk torkning och om det ens är möjligt att pneumatiskt transportera större flis. Resultaten visar att mekanisk avvattning är en bra lösning för pelletsindustrin. Fallet med CDP i kombination med bandtork ledde till en energireducering med ca 50% och 35% minskade utsläpp som en följd, jämfört med referensfallet bestående av endast bandtork. Resultaten visade även att stora träflispartiklar kunde transporteras pneumatiskt vid en lufthastighet på drygt 23 m/s. Pneumatisk torkning bidrog till en hög användning av el på grund av höga temperaturer, vilket i sin tur leder till stora mängder koldioxidutsläpp. / With the occurring climate threats in the form of increasing levels of carbon dioxide in our Earth's atmosphere, major joint efforts are needed to reduce our emissions. By opting out of fossil fuels and instead using environmentally friendly energy sources, we help create a sustainable future. Wood pellets are a biofuel made from biomass in the form of woodchips and its combustion can in principle be seen as neutral. However, the production of wood pellets is an energy-consuming process where thermal drying of the wet wood chips accounts for a majority of the total energy use during pellet production, where wood chips are typically dried from 55 – 10% moisture by condensation. With an increasing demand for pellets, there will also be more opportunities for efficiency, where the drying stage in production has a large focus. The purpose of this study has been to investigate the energy and environmental effects of a new two-stage technique consisting of mechanical dewatering as a prestage to thermal drying of woodchips in a pellet production. The mechanical dewatering technology studied is the Drinor CDP - Continuous Dewatering Press. The primary goal of the work has been to investigate the Drinors CDP as a pre-stage to a packed moving bed and a pneumatic dryer to finally answer to which of the combinations provides the lowest energy use and environmental impact in terms of emissions. As a reference, the drying process of Stora Enso Timber Gruvön is used, where a packed moving bed is used as a single-stage dryer. As a secondary goal, two different particle sizes will be examined for pneumatic drying consisting of saw dust and wood chips, to investigate the impact of particle sizes on pneumatic drying, and whether it is even possible to pneumatically transport larger wood chips. The results show that mechanical dewatering is a good solution for the pellet industry. The case with a CDP in combination with a packed moving bed led to an energy reduction of about 50% and 35% reduced emissions as a result, compared to the reference case consisting only of a packed moving bed. The results also showed that large wood chip particles could be transported pneumatically at an air velocity of just over 23 m/s. Pneumatic drying contributed to a high use of electricity due to high temperatures, which in turn leads to large quantities of emissions.
66

Desalination of seawater using a high-efficiency jet ejector

Vishwanathappa, Manohar D. 29 August 2005 (has links)
The ability to produce potable water economically is the primary focus of seawater desalination research. There are numerous methods to desalinate water, including reverse osmosis, multi-stage flash distillation, and multi-effect evaporation. These methods cost more than potable water produced from natural resources; hence an attempt is made in this research project to produce potable water using a modified high-efficiency jet ejector in vapor-compression distillation. The greater efficiency of the jet ejector is achieved by properly mixing propelled and motive streams. From experiments conducted using air, the pressure rise across the jet ejector is better in case of one or two mixing vanes and the highest back pressure (pinch valve closed 83.33%). At other pinch valve closings, the air velocity through the jet ejector was high, so the extra surface area from the mixing vanes caused excessive friction and lowered the efficiency.
67

Desalination of seawater using a high-efficiency jet ejector

Vishwanathappa, Manohar D. 29 August 2005 (has links)
The ability to produce potable water economically is the primary focus of seawater desalination research. There are numerous methods to desalinate water, including reverse osmosis, multi-stage flash distillation, and multi-effect evaporation. These methods cost more than potable water produced from natural resources; hence an attempt is made in this research project to produce potable water using a modified high-efficiency jet ejector in vapor-compression distillation. The greater efficiency of the jet ejector is achieved by properly mixing propelled and motive streams. From experiments conducted using air, the pressure rise across the jet ejector is better in case of one or two mixing vanes and the highest back pressure (pinch valve closed 83.33%). At other pinch valve closings, the air velocity through the jet ejector was high, so the extra surface area from the mixing vanes caused excessive friction and lowered the efficiency.
68

Dewatering aspects at the forming section of the paper machine : Rewetting and forming fabric structure

Sjöstrand, Björn January 2017 (has links)
The underlying motives of the research undertaken here are twofold: to obtain a deeper understanding of the dewatering mechanisms at the forming section of a papermaking machine and to develop numerical models that describe the flow through forming fabrics. More comprehensive knowledge of dewatering in the forming section allows suggestions to be made for improvements that reduce the amount of energy used in the process without affecting the quality of the end product.   The objective of this thesis is to answer the following questions: How and why does rewetting occur at the high vacuum suction boxes? How does the structure of the forming fabric affect dewatering at the forming section? Is it possible to create accurate numerical models for forming fabrics, and can these be used to predict the dewatering behaviour of new types of fabrics?   Laboratory and pilot studies simulating high vacuum suction boxes were performed together with numerical modelling of the flow of air and water through both the forming fabric and the paper sheet.   The conclusion drawn from the pilot study is that rewetting significantly lowers the dryness of the paper sheet exiting the suction boxes. The phenomenon is extremely rapid and is most likely driven by capillary forces. The high speed at which this rewetting occurs makes it difficult to impede by placing the suction boxes closer to the couch pick-up: the solution is more likely to be the use of new and improved designs of the forming fabric. The structure of the forming fabric has been shown to affect the dewatering rate at certain conditions of vacuum dewatering, and can possibly be connected partly to the fact that fibres penetrate the surface of the fabric to varying degrees and partly to the flow resistance of the different fabric structures. Numerical models of high accuracy can be constructed and used to predetermine how new fabric designs would affect dewatering at the forming section.   This thesis quantifies aspects of dewatering such as rewetting and the influence of the forming fabric. Understanding these dewatering aspects further provides for the potential enhancement of energy efficiency in the forming section, and thereby the entire papermaking process. The forming fabric can play an important role in improving energy efficiency: rewetting after the high vacuum suction boxes occurs more rapidly than was previously known, so its design might be the only possible way of impeding it. The forming fabric can also improve the rate of dewatering: it is therefore likely that its design will be important in the next stage of developing energy efficiency and thereby play a part in achieving a more sustainable future. / This thesis quantifies aspects of dewatering such as rewetting and the influence of the forming fabric. Understanding these dewatering aspects further provides for the potential enhancement of energy efficiency in the forming section, and thereby the entire papermaking process. The forming fabric can play an important role in improving energy efficiency: rewetting after the high vacuum suction boxes occurs more rapidly than was previously known, so its design might be the only possible way of impeding it. The forming fabric can also improve the rate of dewatering: it is therefore likely that its design will be important in the next stage of developing energy efficiency and thereby play a part in achieving a more sustainable future.
69

Evaluation of Flocculation, Sedimentation, and Filtration for Dewatering of Algal Biomass

Rhea, Nicholas A. 01 January 2016 (has links)
Algae can be used as a feedstock for agricultural fertilizers, livestock/poultry feeds, anaerobic digestion, and biofuel production. Regardless of the end product, water removal is necessary and difficult to do cost effectively. For each product the requirements for moisture content (or solids content) vary, such that a desirable water removal strategy would need to be adaptable to varying levels of water removal. Flocculation, with sedimentation and drying was evaluated as a possible strategy for algae dewatering. Anionic and nonionic flocculants are known to be ineffective at flocculating algal culture, which was confirmed for this case by electro-osmotic flow testing of the algae and jar tests with three flocculant charge types. Electrophoretic mobility of the algae indicated that it has a negative charge and no flocs were present in the jars. The effectiveness of the cationic flocculant was determined by measuring settling rates, supernatant turbidity, and filtration rates. Sedimentation and filtration rates of Scenedesmus acutus were measured with varying dosages (0-25 ppm) of a synthetic cationic polymeric flocculant. The results of this study should assist in predicting the time it takes to thicken algae at a concentration range of 0.4-1.0 g/L to a product at a concentration range of 15-250 g/L.
70

Methods for Reducing the Complexity of Geometrical Structures Based on CFD Programming : Time Efficient Simulations Based on Volume Forces Coupled with Single and Two-phase Flow

Rezk, Kamal January 2014 (has links)
Throughout recent years, computer based programs have been applied to solve and analyse industrial problems encountered global fields such as automobile design for reduction of CO2-gas, designing wind parks aimed at increasing power output etc. One of these developed programs is Computational Fluid Dynamics (CFD) which numerically solves complex flow behaviour based on computer power. As there is an ongoing expansion of CFD usage in industry, certain issues need to be addressed as they are becoming more frequently encountered. The general demand for the simulation of larger control volumes and more advanced flow processes result in an extensive requirement of computer resources. Moreover, the implementation of commercial CFD codes in small-scaled industrial companies seems to generally be utilised as a black box based on the knowledge of fluid mechanic theory. Increased partnerships between industry and the academic world involving various CFD based design processes generally yield to a verbal communication interface, which is a crucial step in the process given the level of dependency between both sides. Based on these notions, a method for establishing time efficient CFD-models with implementation of volume forces as sink terms in the momentum equation is presented. The internal structure, or parts of the structure, in the simulation domain is removed which reduces the geometrical complexity and along with it, computational demand.  These models are the basis of assessing the benefits of utilizing a numerical based design process in industry in which the CFD code is used as a communication tool for knowledge sharing with counterparts in different fields. / As there is an ongoing expansion of CFD usage in industry, certain issues need to be addressed as they are becoming more frequently encountered. The general demand for the simulation of larger control volumes and more advanced flow processes result in an extensive requirement of computer resources. Moreover, the implementation of commercial CFD codes in small-scaled industrial companies seems to generally be utilised as a black box based on the knowledge of fluid mechanic theory. Increased partnerships between industry and the academic world involving various CFD based design processes generally yield to a verbal communication interface, which is a crucial step in the process given the level of dependency between both sides. Based on these notions, a method for establishing time efficient CFD-models with implementation of volume forces as sink terms in the momentum equation is presented. The internal structure, or parts of the structure, in the simulation domain is removed which reduces the geometrical complexity and along with it, computational demand.  These models are the basis of assessing the benefits of utilizing a numerical based design process in industry in which the CFD code is used as a communication tool for knowledge sharing with counterparts in different fields.

Page generated in 0.3035 seconds