• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 653
  • 155
  • 138
  • 104
  • 79
  • 22
  • 18
  • 18
  • 15
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 1502
  • 198
  • 195
  • 182
  • 173
  • 160
  • 141
  • 138
  • 136
  • 119
  • 108
  • 107
  • 101
  • 97
  • 93
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
871

Properties of Composites Containing Spherical Inclusions Surrounded by an Inhomogeneous Interphase Region

Lombardo, Nick, e56481@ems.rmit.edu.au January 2007 (has links)
The properties of composite materials in which spherical inclusions are embedded in a matrix of some kind, have been studied for many decades and many analytical models have been developed which measure these properties. There has been a steady progression in the complexity of models over the years, providing greater insight into the nature of these materials and improving the accuracy in the measurement of their properties. Some of the properties with which this thesis is concerned are, the elastic, thermal and electrical properties of such composites. The size of the spherical inclusion which acts as the reinforcing phase, has a major effect on the overall properties of composite materials. Once an inclusion is embedded into a matrix, a third region of different properties between the inclusion and matrix is known to develop which is called the interphase. It is well known in the composite community that the smaller the inclusion is, the larger the interphase region which develops around it. Therefore, with the introduction of nanoparticles as the preferred reinforcing phase for some composites, the interphase has a major effect on its properties. It is the aim of this thesis to consider the role of the interphase on the properties of composites by modeling it as an inhomogeneous region. There is much scientific evidence to support the fact that the interphase has an inhomogeneous nature and many papers throughout the thesis are cited which highlight this. By modeling the inhomogeneous properties by arbitrary mathematical functions, results are obtained for the various properties in terms of these general functions. Some specific profiles for the inhomogeneous region are considered for each property in order to demonstrate and test the models against some established results.
872

CVD and ALD of Group IV- and V-Oxides for Dielectric Applications

Forsgren, Katarina January 2001 (has links)
<p>Due to the constantly decreasing dimensions of electronic devices, the conventional dielectric material in transistors and capacitors, SiO<sub>2</sub>, has to be replaced by a material with higher dielectric constant. Some of the most promising candidates are tantalum oxide,Ta<sub>2</sub>O<sub>5</sub>, zirconium oxide, ZrO<sub>2</sub> and hafnium oxide, HfO<sub>2</sub>.</p><p>This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD) processes for deposition of Ta<sub>2</sub>O<sub>5</sub>, ZrO<sub>2</sub> and HfO<sub>2</sub> using the metal iodides as starting materials. The layer-by-layer growth in ALD was also studied in real time with a quartz crystal microbalance (QCM) to examine the process characteristics and to find suitable parameters for film deposition.</p><p>All the processes presented here produced high-purity films at low deposition temperatures. It was also found that films deposited on Pt substrates generally crystallise at lower temperature, or with lower thickness, than on silicon and single-crystalline oxide substrates. Films grown on MgO(001) and α-Al<sub>2</sub>O<sub>3</sub>(001) substrates were strongly textured or epitaxial. For example, monoclinic HfO<sub>2</sub> deposited on MgO(001) were epitaxial for deposition temperatures of 400-500 C in ALD and 500-600 C in CVD. Electrical characterisation showed that the crystallinity of the films had a strong effect on the dielectric constant, except in cases of very thin films, where the dielectric constant was more dependent on layer thickness.</p>
873

Designing and Tuning the Properties of Materials by Quantum Mechanical Calculations

Souza de Almeida, Jailton January 2006 (has links)
<p>In many materials, changes in chemical composition, pressure or temperature can induce metal to insulator transitions. It is recently observed in yttrium hydride, for example, changes from a shiny mirror (YH<sub>2</sub>) to a transparent window (YH<sub>3</sub>), which has important technological application in optical devices. We have tuned the above transition by choosing <i>pressure</i> instead of composition. Our predicted finding is confirmed by recent experiments and opens a new way to design optical switches.</p><p>The unique role that gold plays in society is to a large extent related to the fact that it is the most <i>noble</i> of all metals.We have studied the noble nature of gold by choosing <i>pressure</i> as tool. Our prediction shows that gold transforms from a face centered cubic to an hexagonal closed packed phase above 200 GPa whereas platinum, another noble metal, does not show any phase transition up to 500 GPa. This prediction has also been confirmed by experiments suggesting that platinum is more noble than gold.</p><p>The growing concern about climate change and fossil fuel availability, the direct conversion of solar irradiation into electricity appears to be an ideal alternative to conventional energy sources. Power generation by solar cells is a direct method of solar energy conversion. We report a new cubic phase of TiO<sub>2</sub> which can be stabilized at ambient conditions. This phase has an absorption three or four orders of magnitude larger than the conventional state-of-the-art solar cell based on anatase TiO<sub>2</sub>. Therefore, we are introducing a well established material with a new structure for future generation solar cells. The same effect is also observed in cubic SnO<sub>2</sub>.</p><p>Electronic and optical properties of other materials such as Be<sub>x</sub>Zn<sub>1-x</sub>Te, RuO<sub>2</sub> and IrO<sub>2</sub> are also studied in present thesis. In particular, for Be<sub>x</sub>Zn<sub>1-x</sub>Te, we have used composition as a tool to tune the optical properties.</p>
874

Soft nanocomposites with enhanced electromechanical response for dielectric elastomer actuators

Stoyanov, Hristiyan January 2011 (has links)
Electromechanical transducers based on elastomer capacitors are presently considered for many soft actuation applications, due to their large reversible deformation in response to electric field induced electrostatic pressure. The high operating voltage of such devices is currently a large drawback, hindering their use in applications such as biomedical devices and biomimetic robots, however, they could be improved with a careful design of their material properties. The main targets for improving their properties are increasing the relative permittivity of the active material, while maintaining high electric breakdown strength and low stiffness, which would lead to enhanced electrostatic storage ability and hence, reduced operating voltage. Improvement of the functional properties is possible through the use of nanocomposites. These exploit the high surface-to-volume ratio of the nanoscale filler, resulting in large effects on macroscale properties. This thesis explores several strategies for nanomaterials design. The resulting nanocomposites are fully characterized with respect to their electrical and mechanical properties, by use of dielectric spectroscopy, tensile mechanical analysis, and electric breakdown tests. First, nanocomposites consisting of high permittivity rutile TiO2 nanoparticles dispersed in thermoplastic block copolymer SEBS (poly-styrene-coethylene-co-butylene-co-styrene) are shown to exhibit permittivity increases of up to 3.7 times, leading to 5.6 times improvement in electrostatic energy density, but with a trade-off in mechanical properties (an 8-fold increase in stiffness). The variation in both electrical and mechanical properties still allows for electromechanical improvement, such that a 27 % reduction of the electric field is found compared to the pure elastomer. Second, it is shown that the use of nanofiller conductive particles (carbon black (CB)) can lead to a strong increase of relative permittivity through percolation, however, with detrimental side effects. These are due to localized enhancement of the electric field within the composite, which leads to sharp reductions in electric field strength. Hence, the increase in permittivity does not make up for the reduction in breakdown strength in relation to stored electrical energy, which may prohibit their practical use. Third, a completely new approach for increasing the relative permittivity and electrostatic energy density of a polymer based on 'molecular composites' is presented, relying on chemically grafting soft π-conjugated macromolecules to a flexible elastomer backbone. Polarization caused by charge displacement along the conjugated backbone is found to induce a large and controlled permittivity enhancement (470 % over the elastomer matrix), while chemical bonding, encapsulates the PANI chains manifesting in hardly any reduction in electric breakdown strength, and hence resulting in a large increase in stored electrostatic energy. This is shown to lead to an improvement in the sensitivity of the measured electromechanical response (83 % reduction of the driving electric field) as well as in the maximum actuation strain (250 %). These results represent a large step forward in the understanding of the strategies which can be employed to obtain high permittivity polymer materials with practical use for electro-elastomer actuation. / Die Palette von elektro-mechanischen Aktuatoren, basierend auf dem Prinzip weicher dehnbarer Kondensatoren, scheint besonders für Anwendungen in der Medizin und für biomimetische Applikationen unbegrenzt. Diese Wandler zeichnen sich sowohl durch hohe Reversibilität bei großer mechanischer Deformation als auch durch ihre Flexibilität aus, wobei die mechanischen Deformationen durch elektrische Felder induziert werden. Die Notwendigkeit von hoher elektrischer Spannung zur Erzeugung dieser mechanischen Deformationen verzögert jedoch die technisch einfache und breite Markteinführung dieser Technologie. Diesem Problem kann durch eine gezielte Materialmodifikation begegnet werden. Eine Modifikation hat das Ziel, die relative Permittivität zu erhöhen, wobei die Flexibilität und die hohe elektrische Durchbruchsfeldstärke beibehalten werden sollten. Durch eine Materialmodifikation kann die Energiedichte des Materials bedeutend erhöht und somit die notwendige Betriebsspannung des Aktuators herabgesetzt werden. Eine Verbesserung der funktionalen Materialeigenschaften kann durch die Verwendung von Nanokompositen erzielt werden, welche die fundamentalen Eigenschaften der Nanopartikel, d.h. ein gutes Verhältnis von Oberfläche zu Volumen nutzen, um eine gezielte makroskopische Materialmodifikation zu bewirken. Diese Arbeit behandelt die Anwendung innovativer Strategien für die Erzeugung von Nanomaterialien mit hoher Permittivität. Die so erzeugten Materialien und deren relevante Aktuatorkenngrößen werden durch elektrische und mechanische Experimente vollständig erfasst. Mittels der klassischen Mischansätze zur Erzeugung von Kompositmaterialen mit hoher Permittivität konnte durch nichtleitendes Titaniumdioxid TiO2 (Rutile) in einem Thermoplastischen-Block-Co-Polymer SEBS (poly-styrene-co-ethylene-cobutylene-co-styrene) die Permittivität bereits um 370 % erhöht und die elektrische Energiedichte um 570 % gesteigert werden. Diese Veränderungen führten jedoch zu einem signifikanten Anstieg der Steifigkeit des Materials. Aufgrund der positiven Rückkopplung von elektrischen und mechanischen Eigenschaften des Kompositmaterials ermöglicht bereits dieser einfache Ansatz eine Verbesserung der Aktuation, bei einer 27 %-igen Reduktion der Aktuatorbetriebsspannung. Eine direkte Verwendung von leitfähigen Nanopartikeln kann ebenso zu einem Anstieg der relativen Permittivität beitragen, wobei jedoch die Leitfähigkeit dieser Nanopartikel bedeutende Wechselwirkungen verursacht, welche somit die Energiedichte des Materials negativ beeinflusst und die praktische Verwendung dieses Kompositsystems ausschließt. Als ein völlig neuer Ansatz zur Steigerung der relativen Permittivität und Energiedichte und abweichend vom klassischen Mischverfahren, wird die Herstellung eines "Molekularen Komposits", basierend auf einem chemischen Propfverfahren, präsentiert. In diesem Ansatz wird ein π-konjugiertes leitfähiges Polymer (PANI) an die Hauptkette des Elastomers der Polymermatrix gebunden. Die daraus resultierende Ladungsverteilung entlang der Elastomerhauptkette bewirkt eine 470 %-ige Steigerung der Permittivität des "Molekularen Komposits" im Vergleich zur Permittivität des unbehandelten Elastomermaterials. Aufgrund der Verkapselung der chemischen Bindungen der PANI-Kette entstehen kaum negative Rückwirkungen auf die elektrischen und mechanischen Eigenschaften des so erzeugten Komposits. Diese Materialeigenschaften resultieren in einem signifikanten Anstieg der Energiedichte des Materials. Das mittels dieses Verfahrens erzeugte Komposit zeigt sowohl eine Steigerung der Sensitivität der elektromechanischen Antwort (Reduktion des elektrischen Felds um 83 %) als auch eine bedeutende Steigerung der maximalen Aktuation (250 %). Die Ergebnisse und Ideen dieser Arbeit stellen einen wesentlichen Sprung im Verständnis zur Permittivitätssteigerung in Polymermaterialien dar und werden deshalb in der Erforschung und Entwicklung von Elastomeraktuatoren Beachtung finden.
875

Modeling and characterization of novel MOS devices

Persson, Stefan January 2004 (has links)
Challenges with integrating high-κ gate dielectric,retrograde Si1-xGexchannel and silicided contacts in future CMOStechnologies are investigated experimentally and theoreticallyin this thesis. ρMOSFETs with either Si or strained Si1-xGex surface-channel and different high-κgate dielectric are examined. Si1-xGex ρMOSFETs with an Al2O3/HfAlOx/Al2O3nano-laminate gate dielectric prepared by means ofAtomic Layer Deposition (ALD) exhibit a great-than-30% increasein current drive and peak transconductance compared toreference Si ρMOSFETs with the same gate dielectric. Apoor high-κ/Si interface leading to carrier mobilitydegradation has often been reported in the literature, but thisdoes not seem to be the case for our Si ρMOSFETs whoseeffective mobility coincides with the universal hole mobilitycurve for Si. For the Si1-xGexρMOSFETs, however, a high density ofinterface states giving riseto reduced carrier mobility isobserved. A method to extract the correct mobility in thepresence of high-density traps is presented. Coulomb scatteringfrom the charged traps or trapped charges at the interface isfound to play a dominant role in the observed mobilitydegradation in the Si1-xGexρMOSFETs. Studying contacts with metal silicides constitutes a majorpart of this thesis. With the conventional device fabrication,the Si1-xGexincorporated for channel applications inevitablyextends to the source-drain areas. Measurement and modelingshow that the presence of Ge in the source/drain areaspositively affects the contact resistivity in such a way thatit is decreased by an order of magnitude for the contact of TiWto p-type Si1-xGex/Si when the Ge content is increased from 0 to 30at. %. Modeling and extraction of contact resistivity are firstcarried out for the traditional TiSi2-Si contact but with an emphasis on the influenceof a Nb interlayer for the silicide formation. Atwo-dimensional numerical model is employed to account foreffects due to current crowding. For more advanced contacts toultra-shallow junctions, Ni-based metallization scheme is used.NiSi1-xGex is found to form on selectively grown p-typeSi1-xGexused as low-resistivity source/drain. Since theformed NiSi1-xGex with a specific resistivity of 20 mWcmreplaces a significant fraction of the shallow junction, athree-dimensional numerical model is employed in order to takethe complex interface geometry and morphology into account. Thelowest contact resistivity obtained for our NiSi1-xGex/p-type Si1-xGexcontacts is 5´10-8Ωcm2, which satisfies the requirement for the 45-nmtechnology node in 2010. When the Si1-xGexchannel is incorporated in a MOSFET, it usuallyforms a retrograde channel with an undoped surface region on amoderately doped substrate. Charge sheet models are used tostudy the effects of a Si retrograde channel on surfacepotential, drain current, intrinsic charges and intrinsiccapacitances. Closed-form solutions are found for an abruptretrograde channel and results implicative for circuitdesigners are obtained. The model can be extended to include aSi1-xGexretrograde channel. Although the analytical modeldeveloped in this thesis is one-dimensional for long-channeltransistors with the retrograde channel profile varying alongthe depth of the transistor, it should also be applicable forshort-channel transistors provided that the short channeleffects are perfectly controlled. Key Words:MOSFET, SiGe, high-k dielectric, metal gate,mobility, charge sheet model, retrograde channel structure,intrinsic charge, intrinsic capacitance, contactresistivity.
876

CVD and ALD of Group IV- and V-Oxides for Dielectric Applications

Forsgren, Katarina January 2001 (has links)
Due to the constantly decreasing dimensions of electronic devices, the conventional dielectric material in transistors and capacitors, SiO2, has to be replaced by a material with higher dielectric constant. Some of the most promising candidates are tantalum oxide,Ta2O5, zirconium oxide, ZrO2 and hafnium oxide, HfO2. This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD) processes for deposition of Ta2O5, ZrO2 and HfO2 using the metal iodides as starting materials. The layer-by-layer growth in ALD was also studied in real time with a quartz crystal microbalance (QCM) to examine the process characteristics and to find suitable parameters for film deposition. All the processes presented here produced high-purity films at low deposition temperatures. It was also found that films deposited on Pt substrates generally crystallise at lower temperature, or with lower thickness, than on silicon and single-crystalline oxide substrates. Films grown on MgO(001) and α-Al2O3(001) substrates were strongly textured or epitaxial. For example, monoclinic HfO2 deposited on MgO(001) were epitaxial for deposition temperatures of 400-500 C in ALD and 500-600 C in CVD. Electrical characterisation showed that the crystallinity of the films had a strong effect on the dielectric constant, except in cases of very thin films, where the dielectric constant was more dependent on layer thickness.
877

Preparation Of Lead-free Bzt-bct Thin Films By Chemical Solution Deposition And Their Characterization

Celtikci, Baris 01 October 2012 (has links) (PDF)
In the presented thesis, lead-free Ba(Ti0.8Zr0.2)O3-(Ba0.7Ca0.3)TiO3 (BZT-BCT) thin films were deposited on Pt/TiO2/SiO2/Si substrates using chemical solution deposition method and then the effect of process parameters were investigated to obtain optimum parameters of these lead-free thin films. The phase was selected near to the morphotropic phase boundary (MPH) to increase the number of polarization directions where rhombohedral and tetragonal phases exist together. In this study, the effect of sintering temperatures on microstructure, dielectric and ferroelectric properties were studied systematically. Among the various high-quality BZT-BCT thin films with uniform thickness, the optimum dielectric and ferroelectric responses were observed for films annealed at 800 oC for 1 h sintering time. The thickness was kept constant for all measurements as 500 nm (triple layered films). Therefore, the average grain sizes were found around 60 nm for samples sintered at 700,750 and 800 oC. BZT-BCT thin films sintered at 800 oC showed effective remnant polarization and coercive field values of 2.9 &micro / C/cm2 and 49.4 kV/cm, together with a high dielectric constant and low loss tangent of 365.6 and 3.52 %, respectively, at a frequency of 600 kHz due to pure perovskite phase showing full crystallization and minimum surface porosity obtained at this temperature.
878

Plasma Enhanced Chemical Vapor Deposition on Living Substrates: Development, Characterization, and Biological Applications

Tsai, Tsung-Chan 1982- 14 March 2013 (has links)
This dissertation proposed the idea of “plasma-enhanced chemical vapor deposition on living substrates (PECVD on living substrates)” to bridge the gap between the thin film deposition technology and the biological and living substrates. This study focuses on the establishment of the knowledge and techniques necessary to perform “PECVD on living substrates” and contains three main aspects: development, characterization, and biological applications. First, a PECVD tool which can operate in ambient air and at low temperature was developed using a helium dielectric barrier discharge jet (DBD jet). It was demonstrated that various materials, such as polymeric, metallic, and composite films, can be readily synthesized through this technique. Second, the PMMA and copper films deposited using DBD jets were characterized. High-rate (22 nm/s), low-temperature (39 ºC) PMMA deposition was achieved and the film surface morphology can be tailored by altering the discharge power. Conductive copper films with an electrical resistivity lower than 1×10-7 ohm-m were obtained through hydrogen reduction. Both PMMA and copper films can be grown on temperature-sensitive substrates, such as plastics, pork skin, and even fingernail. The electrical, optical, and imaging characterization of the DBD jets was also conducted and several new findings were reported. Multiple short-duration current pulses instead of only one broad pulse per half voltage cycle were observed when a dielectric substrate was employed. Each short-duration current pulse is induced by a leading ionization wave followed by the formation of a plasma channel. Precursor addition further changed the temporal sequence of the pulses. An increase in the power led to a mode change from a diffuse DBD jet to a concentrated one. This mode change showed significant dependence on the precursor type, tube size, and electrode configuration. These findings regarding the discharge characteristics can thus facilitate the development of DBD-jet operation strategies to improve the deposition efficacy. Finally, this technique was used to grow PMMA films onto agar to demonstrate one of its potential biological applications: sterile bandage deposition. The DBD jet with the film depositing ability enabled the surface to be not only efficiently sanitized but also protected by a coating from being reached by bacteria.
879

Studying Electrostatic Polarization Forces at the Nanoscale. Dielectric constant of supported biomembranes measured in air and liquid environment

Gramse, Georg 19 June 2012 (has links)
The objective of my thesis was to develop novel techniques and methods to probe the dielectric properties of biomembranes in air and their natural environment - liquid solution. The dielectric constant ε(r) of biomembranes is a parameter especially important in cell electrophysiology as it ultimately determines the ion membrane permeability, the membrane potential formation or the action potential propagation velocity, among others. However, no technique is able to provide this quantity with the required nanoscale spatial resolution and in electrolyte solution. AFM is an extremely versatile tool to investigate electric properties at the nanoscale, and hence constitutes a good candidate technique to approach the quantification of the nanoscale dielectric properties of biomembranes. Although a few AFM techniques exist, capable of investigating polarization properties, it remains difficult to extract quantitative values of εr from the measurements, especially in liquid environment. One reason for this is on the instrumental side, since for studies at the nanoscale very small quantities have to be measured, that can be easily overwhelmed by electronic noise as it maybe for example the case in current sensing based techniques. Electrostatic Force sensing techniques may in principle have an advantage here, since the used cantilevers for force detection are extremely sensitive and naturally, undesired nonlocal electrical signals from the cantilever are suppressed. Another important aspect is attributed to a lack of sufficiently precise quantitative models to relate measured force with the dielectric constant value of the sample. Indeed, for measurements on insulating substrates like mica or glass that are sometimes required for biological samples, still no quantitative model is available. Moreover, successful measurements of dielectric properties in liquid media, that is fundamental for the functionality of some biological samples, has not been shown until now. As consequence of the existing limitations for quantitative dielectric imaging the objectives of this work were to extend the quantitative capabilities of Electrostatic Force Microscopy to image the dielectric constant of biomembranes with nanoscale spatial resolution. In particular, the three objectives I addressed in the work are: 1. To evaluate the possibility to perform quantitative dielectric measurement on biomembranes on metallic substrates and in air with Electrostatic Force Microscopy that may offer higher precision with respect to current sensing techniques. 2. To extend the applicability of quantitative dielectric measurement to the case of thick insulating substrates in order to facilitate its use with biomembranes that cannot be prepared on metallic substrates. 3. To develop a setup for dielectric imaging in liquid environment based either on current detection or on the principles of electrostatic force microscopy. Finally to perform nanoscale dielectric measurements on bio-membranes in their natural liquid environment. How each of these objectives could be reached is detailed in my thesis. / El objetivo de mi tesis era desarrollar nuevas técnicas y métodos para medir las propiedades dieléctricas de biomembranas en aire y en su medio natural, es decir, en solución líquida. La constante dieléctrica (εr) de las biomembramas es un parámetro especialmente importante en la electrofisiología celular, ya que fundamentalmente determina la permeabilidad iónica de la membrana, la formación del potencial de membrana o la velocidad de propagación del potencial de acción, entre otros. El AFM es una herramienta extremadamente versátil para investigar propiedades eléctricas a nanoescala, y por ello constituye una buena técnica candidata para la cuantificación de las propiedades dieléctricas de las biomembranas a nanoescala. Aunque existen algunas técnicas basadas en el AFM capaces de investigar las propiedades de polarización, continúa siendo difícil extraer valores cuantitativos de εr de las medidas, especialmente en medio líquido. Una de las razones radica en la parte instrumental, ya que para los estudios en la nanoescala tienen que medirse cantidades muy pequeñas, y este proceso puede verse entorpecido por ruido electrónico como puede ser el caso, por ejemplo, en las técnicas basadas en la detección de corriente eléctrica. En principio, las técnicas de detección de fuerza electroestática disponen aquí de una ventaja, ya que las sondas utilizadas para la detección de la fuerza son extremadamente sensibles y naturalmente se suprimen señales eléctricas no locales y no deseadas. Otro aspecto importante se atribuye a la falta de modelos cuantitativos suficientemente precisos para relacionar la fuerza medida con el valor de la constante dieléctrica de la muestra. En realidad, para realizar medidas en sustratos aislantes como son la mica o el vidrio, que a veces son necesarios para muestras biológicas, todavía no se dispone de ningún modelo cuantitativo. Por otra parte, hasta ahora no se han publicado medidas de propiedades dieléctricas en medio líquido, que para algunas muestras biológicas es fundamental para mantener la funcionalidad. Como consecuencia de las limitaciones existentes de las medidas dieléctricas, el objetivo de este trabajo fue extender las capacidades cuantitativas de la Microscopía de Fuerzas Eletroestáticas para hacer imágenes dieléctricas de biomembranas con resolución espacial a nanoescala en substratos conductores, aislantes y en medio líquido.
880

Designing and Tuning the Properties of Materials by Quantum Mechanical Calculations

Souza de Almeida, Jailton January 2006 (has links)
In many materials, changes in chemical composition, pressure or temperature can induce metal to insulator transitions. It is recently observed in yttrium hydride, for example, changes from a shiny mirror (YH2) to a transparent window (YH3), which has important technological application in optical devices. We have tuned the above transition by choosing pressure instead of composition. Our predicted finding is confirmed by recent experiments and opens a new way to design optical switches. The unique role that gold plays in society is to a large extent related to the fact that it is the most noble of all metals.We have studied the noble nature of gold by choosing pressure as tool. Our prediction shows that gold transforms from a face centered cubic to an hexagonal closed packed phase above 200 GPa whereas platinum, another noble metal, does not show any phase transition up to 500 GPa. This prediction has also been confirmed by experiments suggesting that platinum is more noble than gold. The growing concern about climate change and fossil fuel availability, the direct conversion of solar irradiation into electricity appears to be an ideal alternative to conventional energy sources. Power generation by solar cells is a direct method of solar energy conversion. We report a new cubic phase of TiO2 which can be stabilized at ambient conditions. This phase has an absorption three or four orders of magnitude larger than the conventional state-of-the-art solar cell based on anatase TiO2. Therefore, we are introducing a well established material with a new structure for future generation solar cells. The same effect is also observed in cubic SnO2. Electronic and optical properties of other materials such as BexZn1-xTe, RuO2 and IrO2 are also studied in present thesis. In particular, for BexZn1-xTe, we have used composition as a tool to tune the optical properties.

Page generated in 0.0646 seconds