• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 653
  • 155
  • 138
  • 104
  • 79
  • 22
  • 18
  • 18
  • 15
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 1502
  • 198
  • 195
  • 182
  • 173
  • 160
  • 141
  • 138
  • 136
  • 119
  • 108
  • 107
  • 101
  • 97
  • 93
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
881

Estudio teórico y experimental de la guía dieléctrica en banda invertida

Prieto Gala, Andrés 01 October 1979 (has links)
Se discute la guía dieléctrica en banda invertida como modificación capaz de aumentar el factor de calidad de la guía dieléctrica rectangular. En su configuración abierta se emplea para su estudio el método de la constante dieléctrica efectiva; se optimiza la geometría para conseguir el mayor ancho de banda posible y se discute la posibilidad de naturaleza espuerea para una parte de los modos encontrados. Se comprueba que el sistema de excitación clásico para guías dieléctricas no resulta valido para la guía en banda invertida y se optimiza un sistema de tipo cornete. Mediante un sistema de sonda móvil se mide la constante de propagación en la guía obteniéndose un buen acuerdo con las predicciones teóricas. Se estudia la guía dieléctrica cerrada en una caja mediante el método de Schelkunoff comprobándose la existencia de modos EH. / The inverted band dielectric waveguide is proposed as an alternative to the classical open dielectric waveguide, providing a higher quality factor. The dielectric effective constant method is used to study the open waveguide. In order to get the highest bandwith, the geometry is optimised, finding not real modes in the waveguide. It has been necessary to use a new excitation method of waveguide using a horn as transition. The measurement of the propagation constant has been made by means of an electric probe. The agreement with the theoretical predictions is very good. Finally the closed guide is studied by the Schelkunoff's method: modes EH were observed.
882

Novel Quadruple-mode, Dual-mode and Dual-band Dielectric Resonator Filters and Multiplexers

Memarian, Mohammad January 2009 (has links)
Dielectric resonators offer high-Q (low loss) characteristics which make them ideal for filters with narrow bandwidth and low insertion loss specifications. They are mainly used in satellite and wireless system applications. Such applications desire the highest performance filters with the lowest amount of size and mass, which has been the main motivation for size reduction techniques invented over the past three decades for these filters. In addition with the emergence of different communication system technologies, several bands are now required to be supported by a single front-end, calling for emergence and development of dual-band and multi-band filters. To date few work has been done in the area of dual-band dielectric resonator filters. Dielectric resonators filters are important components in many communication systems, when a group of such filters are brought together to perform multiplexing of RF channels. These multiplexer systems tend to be fairly complex and bulky in design, and there is strong desire to reduce their size and mass to the maximum extent possible. Novel quadruple-mode, dual-mode, and dual-band filters as well multiplexers are presented in this thesis. The first ever quadruple-mode dielectric resonator filter using the simple cylinder structure is reported in this work. A cylindrical dielectric resonator sized appropriately in terms of its diameter and height is shown to operate as a quadruple-mode resonator, which is achieved by having two mode pairs of the structure resonate at the same frequency. Single-cavity, quad-mode filters and higher order 4n-pole filters are realizable using this quad-mode cylindrical resonator, offering significant size reduction for dielectric resonator filter applications. The structure of the quad-mode cylinder is then simplified by cutting lengthwise along the central axis of the cylinder, to produce a half-cut cylinder suitable for operation in a dual-mode regime. Novel dual-mode, 2n-pole filters are realizable using this half-cut cylinder, by making the two resonances equal in frequency. The dual-mode half-cut filter is shown to be a strong contender for replacing existing dual-mode filters used in satellite and wireless applications, as it offers superior size and mass characteristics. By making the resonances unequal in frequency, novel dual-band filters and multiplexers are further realizable, by carrying separate frequency bands on different resonant modes of the structure. The first true orthogonal mode dual-band dielectric resonator is presented in this work, using the half-cut structure. Multiplexers are also derived from these dual-band resonators, which greatly reduce size and mass of many-channel multiplexers at the system level, as each two channels are overloaded in one physical branch. Full control of center frequencies of resonances, input and inter-resonator couplings are achievable, allowing realization of microwave filters with different bandwidth, frequency, and return loss specifications, as well as advanced filtering functions with prescribed transmission zeros. Spurious performance of the half-cut cylinder can also be improved by cutting one or more through-way slots between opposite surfaces of the resonator. Size and mass reduction achieved by using the full and half-cut resonators described in this thesis, provide various levels of size reduction in microwave systems, both device and system level.
883

Novel Quadruple-mode, Dual-mode and Dual-band Dielectric Resonator Filters and Multiplexers

Memarian, Mohammad January 2009 (has links)
Dielectric resonators offer high-Q (low loss) characteristics which make them ideal for filters with narrow bandwidth and low insertion loss specifications. They are mainly used in satellite and wireless system applications. Such applications desire the highest performance filters with the lowest amount of size and mass, which has been the main motivation for size reduction techniques invented over the past three decades for these filters. In addition with the emergence of different communication system technologies, several bands are now required to be supported by a single front-end, calling for emergence and development of dual-band and multi-band filters. To date few work has been done in the area of dual-band dielectric resonator filters. Dielectric resonators filters are important components in many communication systems, when a group of such filters are brought together to perform multiplexing of RF channels. These multiplexer systems tend to be fairly complex and bulky in design, and there is strong desire to reduce their size and mass to the maximum extent possible. Novel quadruple-mode, dual-mode, and dual-band filters as well multiplexers are presented in this thesis. The first ever quadruple-mode dielectric resonator filter using the simple cylinder structure is reported in this work. A cylindrical dielectric resonator sized appropriately in terms of its diameter and height is shown to operate as a quadruple-mode resonator, which is achieved by having two mode pairs of the structure resonate at the same frequency. Single-cavity, quad-mode filters and higher order 4n-pole filters are realizable using this quad-mode cylindrical resonator, offering significant size reduction for dielectric resonator filter applications. The structure of the quad-mode cylinder is then simplified by cutting lengthwise along the central axis of the cylinder, to produce a half-cut cylinder suitable for operation in a dual-mode regime. Novel dual-mode, 2n-pole filters are realizable using this half-cut cylinder, by making the two resonances equal in frequency. The dual-mode half-cut filter is shown to be a strong contender for replacing existing dual-mode filters used in satellite and wireless applications, as it offers superior size and mass characteristics. By making the resonances unequal in frequency, novel dual-band filters and multiplexers are further realizable, by carrying separate frequency bands on different resonant modes of the structure. The first true orthogonal mode dual-band dielectric resonator is presented in this work, using the half-cut structure. Multiplexers are also derived from these dual-band resonators, which greatly reduce size and mass of many-channel multiplexers at the system level, as each two channels are overloaded in one physical branch. Full control of center frequencies of resonances, input and inter-resonator couplings are achievable, allowing realization of microwave filters with different bandwidth, frequency, and return loss specifications, as well as advanced filtering functions with prescribed transmission zeros. Spurious performance of the half-cut cylinder can also be improved by cutting one or more through-way slots between opposite surfaces of the resonator. Size and mass reduction achieved by using the full and half-cut resonators described in this thesis, provide various levels of size reduction in microwave systems, both device and system level.
884

Dielectric Nanocomposites for High Performance Embedded Capacitors in Organic Printed Circuit Boards

Xu, Jianwen 23 June 2006 (has links)
Conventionally discrete passive components like capacitors, resistors, and inductors are surface-mounted on top of the printed circuit boards (PCBs). To match the ever increasing demands of miniaturization, cost reduction, and high performance in microelectronic industry, a promising approach is to integrate passive components into the board during PCB manufacture. Because they are embedded inside multilayer PCBs, such components are called embedded passives. This work focuses on the materials design, development and processing of polymer-based dielectric nanocomposites for embedded capacitor applications. The methodology of this approach is to combine the advantages of the polymer and the filler to satisfy the electric, dielectric, mechanical, fabrication, and reliability requirements for embedded capacitors. Restrained by poor adhesion and poor thermal stress reliability at high filler loadings, currently polymer-ceramic composites can only achieve a dielectric constant of less than 50. In order to increase the dielectric constant to above 50, effects of high-k polymer matrix, bimodal fillers, and dispersing agent are systematically investigated. Surface functionalization of nanofiller particles and modification of epoxy matrix with a secondary rubberized epoxy to form sea-island structure are proposed to enhance the dielectric constant, adhesion and high-temperature thermal stress reliability of high-k composites. To obtain photodefinable high-k composites, fundamental understanding of the photopolymerization of the novel epoxy-ceramic composite photoresist is addressed. While the properties of high-k composites largely depend on the polymer matrix, the fillers can also drastically affect the material properties. Carbon black- and carbon nanotubes-filled ultrahigh-k polymer composites are investigated as the candidate materials for embedded capacitors. Dielectric composites based on percolation typically show a high dielectric constant, and a high dielectric loss which is not desirable for high frequency applications. To achieve a reproducible low-loss percolative composite, a novel low-cost core-shell particle filled high-k percolative composite is developed. The nanoscale insulating shells allow the electrons in the metallic core to tunnel through it, and thereby the composites exhibit a high dielectric constant as a percolation system; on the other hand, the insulating oxide layer restricts the electron transfer between filler particles, thus leading to a low loss as in a polymer-ceramic system.
885

RF MEMS Switches with Novel Materials and Micromachining Techniques for SOC/SOP RF Front Ends

Wang, Guoan 03 August 2006 (has links)
This dissertation deals with the development of RF MEMS switches with novel materials and micromachining techniques for the RF and microwave applications. To enable the integration of RF and microwave components on CMOS grade silicon, finite ground coplanar waveguide transmission line on CMOS grade silicon wafer were first studied using micromachining techniques. In addition, several RF MEMS capacitive switches were developed with novel materials. A novel approach for fabricating low cost capacitive RF MEMS switches using directly photo-definable high dielectric constant metal oxides was developed, these switches exhibited significantly higher isolation and load capacitances as compared to comparable switches fabricated using a simple silicon nitride dielectric. The second RF MEMS switch developed is on a low cost, flexible liquid crystal polymer (LCP) substrate. Its very low water absorption (0.04%), low dielectric loss and multi-layer circuit capability make it very appealing for RF Systems-On-a-Package (SOP). Also, a tunable RF MEMS switch on a sapphire substrate with BST as dielectric material was developed, the BST has a very high dielectric constant (>300) making it very appealing for RF MEMS capacitive switches. The tunable dielectric constant of BST provides a possibility of making linearly tunable MEMS capacitor-switches. For the first time a capacitive tunable RF MEMS switch with a BST dielectric and its characterization and properties up to 40 GHz was presented. Dielectric charging is the main reliability issue for MEMS switch, temperature study of dielectric polarization effect of RF MEMS was investigated in this dissertation. Finally, integration of two reconfigurable RF circuits with RF MEMS switches were discussed, the first one is a reconfigurable dual frequency (14GHz and 35 GHz) antenna with double polarization using RF MEMS switches on a multi-layer LCP substrate; and the second one is a center frequency and bandwidth tunable filter with BST capacitors and RF MEMS switches on sapphire substrate.
886

The Fabrication of Direct-Write Waveguides via the Glassy-State Processing of Porous Films: UV-Induced Porosity and Solvent-Induced Porosity

Abdallah, Jassem 03 May 2007 (has links)
The incorporation of porosity in a material potentially results in the changes in electrical, mechanical and electrical properties and has generated much interest by researchers. The development of new techniques for inducing porosity in thin films may prove advantageous if they lead to a decrease in processing complexity, or an increase in the processing flexibility by widening the window of compatible physical conditions, or the improvement of the final properties of the porous materials. Two processing techniques were developed to produce porosity in thin dielectric films at temperatures below the glass transition temperature of the host matrix. These glassy-regime processing methods relied on the susceptibility of hydrogen silsesquioxane (HSQ) to gelation in the glassy regime when exposed to polar substances. Both of these glassy-regime processing methods relied on the susceptibility of hydrogen silsesquioxane (HSQ) towards gelation in the glassy regime when exposed to polar substances. The first processing method made use of co-solvent mixtures of polar non-protic organic solvent to serve both as gelation catalysts and pore-generators. HSQ films were soaked in the polar organic co-solvents, which penetrated the films and initiated crosslinking throughout the matrix. Afterwards the films were baked, volatilizing entrapped solvents and producing air pockets within the rigid matrix. The second porosity method used UV-radiation to initiate acid-catalyzed decomposition of polycarbonate sacrificial polymers after first using bases to catalyze the gelation of HSQ. The radiation-based (direct-write) decomposition of the porogen enabled the selective patterning of regions porosity via the use of a photomask, which resulted in the creation of refractive index profiles in the direct-written films. Porous films that were produced by these two glassy-state processing techniques were used to build slab waveguide structures. Optical characterization experiments showed that the fabricated waveguides had average propagation losses of 16 - 27 dB/cm for the first guided TE mode and about 36-40 dB/cm, for the second TE guided mode. It is believed that the large propagation loss values were caused by a combination of the Rayleigh scattering from the relatively large UV-induced pores produced in the direct-write layers as well as scattering induced by surface roughness.
887

Development of high-efficiency solar cells on thin silicon through design optimization and defect passivation

Sheoran, Manav 24 March 2009 (has links)
The overall goal of this research is to improve fundamental understanding of the hydrogen passivation of defects in low-cost silicon and the fabrication of high-efficiency solar cells on thin crystalline silicon through low-cost technology development. A novel method was developed to estimate the flux of hydrogen, released from amorphous silicon nitride film, into the silicon. Rapid-firing-induced higher flux of hydrogen was found to be important for higher defect passivation. This was followed by the fabrication of solar cell efficiencies of ~ 17% on low-cost, planar cast multicrystalline silicon. Solar cell efficiencies and lifetime enhancement in the top, middle, and bottom regions of cast multicrystalline silicon ingots were explained on the basis of impurities and defects generally found in those regions. In an attempt to further reduce the cost, high-efficiency solar cells were fabricated on thin crystalline silicon wafers with full area aluminum-back surface field. In spite of loss in efficiency, wafer thinning reduced the module cost. Device modeling was performed to establish a roadmap towards high-efficiency thin cells and back surface recombination velocity and back surface reflectance were identified as critical parameters for high-efficiency thin cells. Screen-printed solar cells on float zone material, with efficiencies > 19% on 300 μm and > 18% on 140 μm were fabricated using a novel low-cost fabrication sequence that involved dielectric rear passivation along with local contacts and back surface field.
888

Modeling and characterization of novel MOS devices

Persson, Stefan January 2004 (has links)
<p>Challenges with integrating high-κ gate dielectric,retrograde Si<sub>1-x</sub>Ge<sub>x</sub>channel and silicided contacts in future CMOStechnologies are investigated experimentally and theoreticallyin this thesis. ρMOSFETs with either Si or strained Si<sub>1-x</sub>Gex surface-channel and different high-κgate dielectric are examined. Si<sub>1-x</sub>Gex ρMOSFETs with an Al<sub>2</sub>O<sub>3</sub>/HfAlO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>nano-laminate gate dielectric prepared by means ofAtomic Layer Deposition (ALD) exhibit a great-than-30% increasein current drive and peak transconductance compared toreference Si ρMOSFETs with the same gate dielectric. Apoor high-κ/Si interface leading to carrier mobilitydegradation has often been reported in the literature, but thisdoes not seem to be the case for our Si ρMOSFETs whoseeffective mobility coincides with the universal hole mobilitycurve for Si. For the Si<sub>1-x</sub>Ge<sub>x</sub>ρMOSFETs, however, a high density ofinterface states giving riseto reduced carrier mobility isobserved. A method to extract the correct mobility in thepresence of high-density traps is presented. Coulomb scatteringfrom the charged traps or trapped charges at the interface isfound to play a dominant role in the observed mobilitydegradation in the Si<sub>1-x</sub>Ge<sub>x</sub>ρMOSFETs.</p><p>Studying contacts with metal silicides constitutes a majorpart of this thesis. With the conventional device fabrication,the Si<sub>1-x</sub>Ge<sub>x</sub>incorporated for channel applications inevitablyextends to the source-drain areas. Measurement and modelingshow that the presence of Ge in the source/drain areaspositively affects the contact resistivity in such a way thatit is decreased by an order of magnitude for the contact of TiWto p-type Si<sub>1-x</sub>Ge<sub>x</sub>/Si when the Ge content is increased from 0 to 30at. %. Modeling and extraction of contact resistivity are firstcarried out for the traditional TiSi<sub>2</sub>-Si contact but with an emphasis on the influenceof a Nb interlayer for the silicide formation. Atwo-dimensional numerical model is employed to account foreffects due to current crowding. For more advanced contacts toultra-shallow junctions, Ni-based metallization scheme is used.NiSi<sub>1-x</sub>Gex is found to form on selectively grown p-typeSi<sub>1-x</sub>Ge<sub>x</sub>used as low-resistivity source/drain. Since theformed NiSi1-xGex with a specific resistivity of 20 mWcmreplaces a significant fraction of the shallow junction, athree-dimensional numerical model is employed in order to takethe complex interface geometry and morphology into account. Thelowest contact resistivity obtained for our NiSi<sub>1-x</sub>Ge<sub>x</sub>/p-type Si<sub>1-x</sub>Ge<sub>x</sub>contacts is 5´10<sup>-8</sup>Ωcm<sup>2</sup>, which satisfies the requirement for the 45-nmtechnology node in 2010.</p><p>When the Si<sub>1-x</sub>Ge<sub>x</sub>channel is incorporated in a MOSFET, it usuallyforms a retrograde channel with an undoped surface region on amoderately doped substrate. Charge sheet models are used tostudy the effects of a Si retrograde channel on surfacepotential, drain current, intrinsic charges and intrinsiccapacitances. Closed-form solutions are found for an abruptretrograde channel and results implicative for circuitdesigners are obtained. The model can be extended to include aSi<sub>1-x</sub>Ge<sub>x</sub>retrograde channel. Although the analytical modeldeveloped in this thesis is one-dimensional for long-channeltransistors with the retrograde channel profile varying alongthe depth of the transistor, it should also be applicable forshort-channel transistors provided that the short channeleffects are perfectly controlled.</p><p><b>Key Words:</b>MOSFET, SiGe, high-k dielectric, metal gate,mobility, charge sheet model, retrograde channel structure,intrinsic charge, intrinsic capacitance, contactresistivity.</p>
889

The design, fabrication, and characterization of polymer-carbon nanotube composites

Clayton, LaNetra 01 June 2005 (has links)
The design, fabrication, and characterization of polymer-carbon nanotube (CNT) composites have generated a significant amount of attention in the fields of materials science and polymer chemistry. The challenge in fabricating composites that exploit the unique properties of the CNT and the ideal processing ability and low cost of the polymer is in achieving a uniform dispersion of the filler in the polymer matrix. This body of work focuses on (1) techniques employed to disperse CNTs into a polymer matrix and (2) the effects of CNTs on the mechanical and electrical properties of the polymer. Poly (methyl methacrylate) (PMMA), an amorphous polymer, and poly (4-methyl-1-pentene) (P4M1P), a semi crystalline polymer, were chosen as the matrices. Non-functionalized single-walled carbon nanotubes and soot (unpurified carbon nanotubes) were chosen as the filler material. In the first study, single-walled carbon nanotubes (SWNTs) were sonicated in methyl methacrylate monomer and initiated via thermal energy, UV light, and gamma radiation. Composite films with increased dielectric constants and unique optical transparency were produced. Samples were characterized using differential scanning calorimetry, dielectric analysis, and dynamic mechanical analysis. Refractive Indices were obtained and correlated to the dielectric constant using Maxwells relationship. PMMA/soot composites were fabricated in the second study. Dispersion was accomplished by way of sonication and melt compounding. The PMMA/soot composites were exposed to gamma radiation, with a 137Cs gamma source, in order to investigate how the filler affects the polymers ability to resist radiation. Samples were characterized by differential scanning calorimetry, dielectric analysis, and dynamic mechanical.
890

A Framework for Determining the Reliability of Nanoscale Metallic Oxide Semiconductor (MOS) Devices

Otieno, Wilkistar 31 December 2010 (has links)
An increase in worldwide investments during the past several decades has pro-pelled scienti c breakthroughs in nanoscience and technology research to new and exciting levels. To ensure that these discoveries lead to commercially viable prod-ucts, it is important to address some of the fundamental engineering and scientific challenges related to nanodevices. Due to the centrality of reliability to product integrity, nanoreliability requires critical analysis and understanding to ensure long-term sustainability of nanodevices and systems. In this study, we construct a relia-bility framework for nanoscale dielectric lms used in Metallic Oxide Semiconductor (MOS) devices. The successful fabrication and incorporation of metallic oxides in MOS devices was a major milestone in the electronics industry. However, with the progressive scaling of transistors, the dielectric dimension has progressively decreased to about 2nm. This reduction has had severe reliability implications and challenges including: short channeling e ects and leakage currents due to quantum-mechanical tunneling which leads to increased power dissipation and eventually temperature re-lated gate degradation. We develop a framework to characterize and model reliability of recently devel-oped gate dielectrics of Si-MOS devices. We accomplish this through the following research steps: (i) the identi cation of the failure mechanisms of Si-based high-k gates (stress, material, environmental), (ii) developing a 3-D failure simulation as a way to acquire simulated failure data, (iii) the identi cation of the dielectric failure prob-ability structure using both kernel estimation and nonparametric Bayesian schemes so as to establish the life pro le of high-k gate dielectric. The goal is to eventually develop the appropriate failure extrapolation model to relate the reliability at the test conditions to the reliability at normal use conditions. This study provides modeling and analytical clarity regarding the inherent failure characteristics and hence the reliability of metal/high-k gate stacks of Si-based sub-strates. In addition, this research will assist manufacturers to optimally characterize, predict and manage the reliability of metal high-k gate substrates. The proposed reliability framework could be extended to other thin lm devices and eventually to other nanomaterials and devices.

Page generated in 0.2679 seconds