• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • 31
  • 17
  • Tagged with
  • 171
  • 133
  • 48
  • 30
  • 30
  • 28
  • 27
  • 27
  • 26
  • 24
  • 23
  • 23
  • 23
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Integralab : un software para integración de funciones y solución de ecuaciones diferenciales por métodos numéricos

Ruíz Lizama, Edgar Cruz 09 May 2011 (has links)
El trabajo presenta el diseño e implementación de un software que tiene por nombre IntegraLAB el cual sirve como una herramienta para resolver problemas de integración de funciones y solución de ecuaciones diferenciales ordinarias aplicando métodos numéricos. / Tesis
32

Ergodicidad, rigidez y topología de subgrupos de Bih0(C)

Ysique Quesquén, José Walter 21 May 2012 (has links)
La presente tesis basa su contenido en temas de dinámica compleja, tiene como primer objetivo el estudio de los teoremas de densidad, ergodicidad y rigidez de Y. Iliashenko [I2; I3]; y como segundo objetivo se estudia un teorema debido a C. Camacho [Ca1], el cual analiza el comportamiento topológico de un germen del tipo parabólico. Para lograr los objetivos planteados introducimos las definiciones y resultados necesarios, los cuales buscamos expresarlos de tal modo que sean accesibles al lector y poder así de alguna manera que lo tratado en esta tesis se constituya en material de consulta y aplicación en otras áreas de la matemática. / Tesis
33

Teorema del centro

Crespo Guerrero, Gloria Solvey 25 February 2014 (has links)
Dada una 1-forma analítica real w = a(x,y)dx + b(x,y)dy. ¿Cómo reconocer si la ecuación w=0 posee una integral primera?. El Teorema del Centro nos da ciertas condiciones sobre la singularidad 0 E R cuadrado para que la ecuación Pfaff w=0 posea una integral primera analítica. Lo interesante en la demostración de este teorema (realizada por Robert Moussu en [11]) es como argumentos de la teoría de variable compleja son utilizados para demostrar este teorema de naturaleza real. Lo primero que hacemos es considerar la ecuación complejificada de w=0, esto es, consideramos los puntos (x,y) en el plano complejo C cuadrado. Como estamos interesados en la geometría de las soluciones (comportamiento cualitativo) surge la necesidad de la teoría de foliaciones. Pues, el complejificado de w induce una foliación singular de dimensión compleja 1, cuyas hojas localmente son las curvas solución del campo holomorfo (dual de la 1-forma holomorfa). El propósito siguiente es estudiar esta foliación asociada al campo holomorfo, pero lastimosamente no tenemos mucha información al respecto, sin embargo, mediante la técnica del Blow-up de la foliación en el punto 0 E C cuadrado, logramos obtener suficiente información acerca de esta foliación. Información que junto con el Grupo de Holonomía de una hoja y el Teorema de Mattei-Moussu nos conducen a la conclusión del teorema, la existencia de una integral primera para el campo holomorfo. Finalmente se sigue que la integral primera buscada para el campo analítico real es la parte real de la integral primera obtenida del campo holomorfo. / Tesis
34

Estudio del método de Galerkin discontinuo nodal aplicado a la ecuación de advección lineal 1D

Sosa Alva, Julio César 21 January 2019 (has links)
The present work focuses on Nodal Discontinuous Galerkin Method applied to the one-dimensional linear advection equation, which approximates the global solution, partitioning its domain into elements. In each element the local solution is approximated by using interpolation in such a way that the total numerical solution is a direct sum of those approximations (polynomials). This method aims at reaching a high order through a simple implementation. This model is studied by Hesthaven and Warburton [16], with the particularity of Joining the best of the Finite Volumes Method and the best of Finit Element Method . First, the main results are revised in detail concerning the Jacobi orthogonal polynomials; more precisely, its generation formula and other results which help implementing the method. Concepts regarding interpolation and best approximation are studied. Furthermore, some notions about Sobolev space interpolation is revised. Secondly, theoretical aspects of the method are explained in detail , as well as its functioning. Thirdly, both the two method consistency theorems (better approximation and interpolation), proposed by Canuto and Quarteroni [4], and error behavior theorem based on Hesthaven and Warburton [16] are explained in detail. Finally, the consistency theorem referred to the interpolation is veri ed numerically through the usage of the Python language as well as the error behavior. It is worth mentioning that, from our numerical results, we propose a new bound for the consistency (relation 4.2 (4.2)), whose demonstration will remain for a future investigation. / El presente trabajo consiste en el estudio del método numérico Galerkin Discontinuo Nodal aplicado a la ecuación de advección lineal unidimensional, el cual aproxima la solución global, particionando su dominio en elementos. En cada elemento se aproxima la solución local usando interpolación; de tal manera que la solución numérica total es una suma directa de dichas aproximaciones (polinomios). El método busca alcanzar un alto orden mediante una implementación sencilla. Este modelo es estudiado por Hesthaven y Warburton[16], con la particularidad de Fusionar lo mejor del método de Volúmenes Finitos con lo mejor del método de Elementos Finitos . Primero se revisan en detalle los principales resultados sobre los polinomios ortogonales de Jacobi; más precisamente, su fórmula de generación y otros resultados que ayudan en la implementación del método. Se estudian los conceptos de interpolación y mejor aproximación. Además, se revisan algunas nociones de interpolación de espacios de Sobolev. Segundo, se detallan aspectos teóricos del método, así como su funcionamiento. Tercero, se brinda en detalle tanto la demostración de los dos teoremas de consistencia del método (mejor aproximación e interpolación) propuestos en Canuto y Quarteroni[4] como el comportamiento del error basado en Hesthaven y Warburton [16] . Finalmente, se veri ca numéricamente, mediante el uso del lenguaje Python, el teorema de consistencia referido a interpolación, así como el comportamiento del error. Se propone una nueva cota para el consistencia (relación (4.2)) basados en los resultados numéricos, cuya demostración quedará para una futura investigación. / Tesis
35

Conjugación analítica local de difeomorfismos analíticos de C en C

Coripaco Huarcaya, Jorge Alberto January 2016 (has links)
Analiza el comportamiento dinámico de una función analítica φ : (C, 0) → (C, 0) definida en una vecindad del origen con φ´ (0) ≠ 0 y sobre qué condiciones es linealizable. Como parte central de este trabajo, se muestra que toda función analítica con │φ´ (0)│ = 1, que satisface una condición que llamaremos Convergencia Cv es linealizable. Finalmente, se presenta como aplicación, un estudio sobre ecuaciones en diferencias, que permite estudiar los puntos de equilibrio y estabilidad de fenómenos asociados a logística y economía. / Tesis
36

Caos en frentes químicos con flujo de Poiseuille

Argüelles Delgado, Carlos Alberto 28 October 2011 (has links)
Se estudian los frentes químicos debido a reacción-difución descritos por la ecuación Kuramoto-Sivashinsky en un fluido de Poiseuille en un tubo. Se estudian las diferentes soluciones del frente variando el ancho del tubo y la velocidad media del flujo. Además se analizan las transiciones del frente plano a uno impar, y luego entre frentes pares e impares variando la velocidad media del flujo. Finalmente se analiza la transición al caos y los efectos del flujo en la transición.
37

Elementos finitos especiales aplicados a problemas elípticos de 2do orden con coeficientes no suaves

Timoteo Sánchez, Martha Hilda January 2002 (has links)
No description available.
38

Construcción de atractores mediante gráficas de retardo

Pasquel Carbajal, Francisco 25 September 2017 (has links)
En esta exposición presentaremos una introducción a las principales ideas que permiten una construcción de atractores de sistemas dinámicos, utilizando para tal efecto, las denominadas gráficas de retardo establecidas en base a series de tiempo. Este método es de especial importancia en estudios de sistemas, en los cuales es muy difícil establecer las ecuaciones que rigen el proceso en estudio; teniendo muchas veces sólo como base para el análisis, datos obtenidos mediante métodos experimentales.
39

El modelo de Black-Scholes

Chávez Fuentes, Jorge Richard 25 September 2017 (has links)
Se presenta el modelo de Black-Scholes, a través del más popular de los contratos financieros, esto es, la opción de compra europea. Se establece la fórmula de valuación martingala para reclamos contingentes en general y se muestra una aplicación de ella mediante la obtención del precio del contrato call. Al final se establece también la ecuación de Black-Scholes, que es una ecuación diferencial parcial no lineal de segundo orden, y que constituye una forma alternativa para la preciación de activos derivados.
40

Sobre la existencia de atractores en un modelo de competencia con retardos discretos

Cavani, Mario, Marín, Julio 25 September 2017 (has links)
En este trabajo estudiamos un modelo de competencia de dos depredadores que compiten por una misma presa sin interferencia entre ellos. Nuestro enfoque mejora al modelo estudiado por Hsu, Hubbel y Waltman en [6} por medio de un replanteamiento del modelo considerando que existen tiempos de retardo que afectan el crecimiento de las especies depredadoras. En este sentido, hemos considerado que en el tiempo actual las poblaciones depredadoras dependen de las densidades en tiempos pasados de la población presa. El resultado principal de este trabajo consiste en demostrar que el sistema es puntualmente disipativo lo que conlleva a la existencia de atractores globales para las soluciones del sistema.

Page generated in 0.0585 seconds