• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • 31
  • 17
  • Tagged with
  • 171
  • 133
  • 48
  • 30
  • 30
  • 28
  • 27
  • 27
  • 26
  • 24
  • 23
  • 23
  • 23
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Propagating reaction fronts in moving fluids

Vilela Proaño, Pablo Martin 20 October 2015 (has links)
La presente tesis tuvo como objetivo estudiar frentes de reacción modelados mediante la ecuación de Kuramoto-Sivashinsky sujetos a diferentes tipos de movimiento de fluido: flujo externo de Poiseuille, el cual es contrastado con el flujo de Couette, y flujo convectivo debido a la inestabilidad de Rayleigh-Taylor. En el primer caso, los frentes se propagan a favor o en contra de un flujo estacionario bidimensional entre dos placas paralelas que se conoce como flujo de Poiseuille. Para pequeñas distancias entre las placas, encontramos frentes estacionarios que pueden ser planos, simétricos o asimétricos, dependiendo de la separación de las placas y de la velocidad promedio del fluido externo. Adicionalmente, descubrimos que los frentes simétricos estables que se propagan en sentido opuesto al flujo simétrico externo se vuelven asimétricos al incrementar la rapidez del flujo externo. En el caso del flujo externo de Couette, el flujo es producido por el movimiento de dos placas paralelas en sentidos opuestos. Hallamos que la estabilidad y la forma de los frentes estacionarios dependen de la velocidad relativa entre las placas y de su separación. Estos parámetros desempeñan un papel importante, puesto que pueden convertir frentes inestables en estables. En el último caso, las inestabilidades en el frente producidas cuando un fluido más denso se encuentra encima de un fluido menos denso se conocen como inestabilidades de Rayleigh-Taylor y son causadas por la diferencia de densidades a través del frente bajo la acción de la gravedad. El frente describe la interfaz delgada que separa los fluidos de diferente densidad dentro de dos placas paralelas verticales; mientras que la convección causada por las fuerzas de flotación a través de la interfaz delgada determina el flujo debido a la inestabilidad de Rayleigh-Taylor. Para el estudio de los efectos del flujo externo sobre los frentes de reacción, primero obtuvimos los frentes y luego realizaremos un análisis de estabilidad lineal para determinar la estabilidad de los frentes bajo los tres tipos de movimiento del fluido. La forma de los frentes y sus respectivas regiones de estabilidad fueron contrastadas con los frentes en ausencia de flujo externo. Los resultados de la investigación fueron publicados en tres revistas internacionales arbitradas e indexadas: Physical Review E (2012), Chaos (2014), y European Physics Journal (2014). Adicionalmente, la tesis presenta resultados para frentes oscilantes y sus transiciones al caos debido a la interacción del frente de reacción con los flujos externos antes mencionados. / Tesis
72

Resolución de la ecuación de advección lineal unidimensional por un método de volúmenes finitos compacto de alto orden

Chávez Pacheco, Xyoby 12 February 2018 (has links)
Los métodos numéricos de alto orden, necesarios para la discretización espacial, son una de las áreas más activas del campo de la dinámica de fluidos computacional (CFD en sus siglas en inglés). Dentro de estos, los Métodos de Volúmenes Finitos (MVF) han encontrado difcultades en la implementación de los procesos de reconstrucción. En el presente trabajo presentamos e implementamos en Python un novedoso proceso de reconstrucción compacto de alto orden propuesto por Q. Wang [22]. La novedad yace en que el orden alto es alcanzado usando un estencil compacto; es decir, usando únicamente celdas vecinas. En este proceso se obtiene un conjunto de relaciones que sirven para obtener los coeficientes de los polinomios de reconstrucción sobre los volúmenes de control de interés preservando sus valores promedios y el de sus derivadas. Con estas relaciones obtenemos un sistema lineal sobredeterminado que al ajustarse por mínimos cuadrados resultan en un sistema tridiagonal por bloques para el caso de una ecuación de advección 1D. Para esta ecuación de advección usamos además el Análisis de Fourier para examinar los números de onda modificados por el MVF compacto. La reconstrucción incluye parámetros que son optimizados para mejorar las propiedades de dispersión/disipación. Así mismo, el análisis de estabilidad de von Neumann nos permite estimar el número CFL (Courant Friedrich Levy) máximo para dos métodos de Runge-Kutta. Finalmente, validamos tanto los órdenes de convergencia de la combinación del MVF compacto con dos esquemas de Runge-Kutta como los parámetros óptimos de los esquemas de reconstrucción. / The numerical methods of high order, necessary for spatial discretization, are one of the most active areas of the field of Computational Fluid Dynamics. Within these, Finite Volume Methods (abbreviated as MVF in spanish) have encountered difficulties in the implementation of reconstruction processes. In the present work we present a novel high order compact reconstruction process proposed by Q. Wang [22], and implemented in Python. The novelty lies in that high order is achieved using a compact stencil, that is, using only neighboring cells. In this process we obtain a set of relations that are constructed to obtain the coefficients of reconstruction polynomials on the control volumes of interest, preserving their average values and that of their derivatives. With these relations we obtain an overdetermined linear system that is adjusted by least squares resulting in a tridiagonal system by blocks in the case of a 1D advection equation. For this advection equation we also use the Fourier Analysis to examine the wave numbers modified by the compact MVF. The reconstruction includes parameters that are optimized to improve the dispersion / dissipation properties. Furthermore, the von Neumann stability analysis allows us to estimate the maximum CFL number for two Runge-Kutta methods. Finally, we validate the convergence orders of the combination of the compact MVF with two schemes of Runge-Kutta and we also validate the optimal parameters of the reconstruction schemes. / Tesis
73

Controlabilidad exacta interna para la ecuación semilineal del calor

Quispe Vega, Luz Teresa January 2018 (has links)
Estudia el problema de la controlabilidad exacta en el interior del dominio Ω asociado a la ecuación semilineal parabólica { y′ − ∆y + f(y) = h , en Q | y = 0 , sobre Σ | y(0) = y0 , en Ω. Se demuestra que para cada estado inicial y 0 ∈ L 2 (Ω) y cada estado final z 0 ∈ L 2 (Ω), es posible encontrar una función control h ∈ L 2 (0, T; H−1 (Ω)) que al actuar sobre el sistema conduzca al estado y(x, t) hacia el estado final z 0 en el tiempo T. Además, se demuestra que el control h es Lipschitz continúo sobre los estados finales y se estudia el comportamiento de h cuando f tiende a cero. En la parte final del trabajo se estudia algunas aplicaciones del teorema principal, por ejemplo a los modelos semilineales de Fisher, Kierstead, Slobodkin y Skellam, Fisher - KPP y Jin-ichi-Nagumo. / Tesis
74

Estabilidad de soluciones tipo soliton para ciertas ecuaciones dispersivas no lineales

Palacios Armesto, José Manuel January 2018 (has links)
Ingeniero Civil Matemático / Este trabajo consiste principalmente en dos resultados matemáticos, basados en el estudio de ecuaciones dispersivas no lineales, la estabilidad de ciertas soluciones de las mismas, como así también la posible explosión en tiempo finito. En una primera parte, Capítulo 1, presentamos una breve introducción a los tópicos tratados en esta memoria. Se hace especial énfasis en la descripción de los conceptos de ecuación dispersiva, buen colocamiento, 2-solitones, estabilidad y explosión. En el Capítulo 2 probaremos que las soluciones de tipo 2-soliton de la ecuación de sine-Gordon (SG) son orbitalmente estables en el espacio de energía, el espacio natural para resolver este problema. Las soluciones que estudiamos son los 2-kink, kink-antikink y breather de SG. Con el objetivo de probar este resultado, utilizaremos las transformaciones de Bäcklund implementadas gracias al Teorema de la Función Implícita. Estas transformaciones nos permitirán reducir el problema de estabilidad para cada una de la soluciones, al caso de la solución cero. Probaremos estos resultados siguiendo el espíritu de un paper de M. A. Alejo y C. Muñoz, que trata el caso de la ecuación de Korteweg-de Vries modificada. Sin embargo, más adelante veremos que el caso de la ecuación de SG presenta varias nuevas dificultades dado el carácter vectorial de sus soluciones. Este resultado mejora los anteriores probados por M. A. Alejo et al., y entrega una primera demostración rigurosa de la estabilidad de los 2-solitones de la ecuación de SG en el espacio de energía. En el Capítulo 3 nuestro principal objetivo será estudiar nuevas propiedades de blow-up dispersivo para el sistema de Schrödinger-Korteweg-de Vries. Más precisamente, probaremos explosión para datos iniciales en H^2-(R)xH^{3/2-}(R), como consecuencia de mostrar previamente una nueva propiedad de persistencia del flujo asociado al sistema, establecida sobre ciertos espacios de Sobolev con pesos fraccionarios cuidadosamente escogidos. / Este trabajo ha sido parcialmente financiado por los proyectos Fondecyt Regular 1150202 y CMM Conicyt PIA AFB170001
75

Stabilized finite element approximation of the incompressible MHD equations

Hernández Silva, Noel 12 July 2010 (has links)
No es frecuente encontrar un campo donde dos ramas principales de la Física estén involucradas. La Magnetohidrodinámica es uno de tales campos debido a que involucra a la Mecánica de Fluidos y al Electromagnetismo. Aun cuando puede parecer que esas dos ramas de la Física tienen poco en común, comparten similitudes en las ecuaciones que gobiernan los fenómenos involucrados en ellas. Las ecuaciones de Navier-Stokes y las ecuaciones de Maxwell, ambas en la raíz de la Magnetohidrodinámica, tienen una condición de divergencia nula y es esta condición de divergencia nula sobre la velocidad del fluido y el campo magnético lo que origina algunos de los problemas numéricos que surgen en la modelación de los fenómenos donde el flujo de fluidos y los campos magnéticos están acoplados.El principal objetivo de este trabajo es desarrollar un algoritmo eficiente para la resolución mediante elementos finitos de las ecuaciones de la Magnetohidrodinámica de fluidos incompresibles.Para lograr esta meta, los conceptos básicos y las características de la Magnetohidrodinámica se presentan en una breve introducción informal.A continuación, se da una revisión completa de las ecuaciones de gobierno de la Magnetohidrodinámica, comenzando con las ecuaciones de Navier-Stokes y las ecuaciones de Maxwell. Se discute la aproximación que da origen a las ecuaciones de la Magnetohidrodinámica y finalmente se presentan las ecuaciones de la Magnetohidrodinámica.Una vez que las ecuaciones de gobierno de la Magnetohidrodinámica han sido definidas, se presentan los esquemas numéricos desarrollados, empezando con la linealización de las ecuaciones originales, la formulación estabilizada y finalmente el esquema numérico propuesto. En esta etapa se presenta una prueba de convergencia.Finalmente, se presentan los ejemplos numéricos desarrollados durante este trabajo.Estos ejemplos pueden dividirse en dos grupos: ejemplos numéricos de comparación y ejemplos de internes tecnológico. Dentro del primer grupo están incluidas simulaciones del flujo de Hartmann y del flujo sobre un escalón. El segundo grupo incluye simulaciones del flujo en una tobera de inyección de colada continua y el proceso Czochralski de crecimiento de cristales. / It is not frequent to find a field where two major branches of Physics are involved. Magnetohydrodynamics is one of such fields because it involves Fluid Mechanics and Electromagnetism. Although those two branches of Physics can seem to have little in common, they share similarities in the equations that govern the phenomena involved. The Navier-Stokes equations and the Maxwell equations, both at the root of Magnetohydrodynamics, have a divergence free condition and it is this divergence free condition over the velocity of the fluid and the magnetic field what gives origin to some of the numerical problems that appear when approximating the equations that model the phenomena where fluids flow and magnetic fields are coupled.The main objective of this work is to develop an efficient finite element algorithm for the incompressible Magnetohydrodynamics equations.In order to achieve this goal the basic concepts and characteristics of Magnetohydrodynamics are presented in a brief and informal introduction.Next, a full review of the governing equations of Magnetohydrodynamics is given, staring from the Navier-Stokes equations and the Maxwell equations. The MHD approximation is discussed at this stage and the proper Magnetohydrodynamics equations for incompressible fluid are reviewed.Once the governing equations have been defined, the numerical schemes developed are presented, starting with the linearization of the original equations, the stabilization formulations and finally the numerical scheme proposed. A convergence test is shown at this stage.Finally, the numerical examples performed while this work was developed are presented. These examples can be divided in two groups: numerical benchmarks and numerical examples of technological interest. In the first group, the numerical simulations for the Hartmann flow and the flow over a step are included. The second group includes the simulation of the clogging in a continuous casting nozzle and Czochralski crystal growth process.
76

Sífilis

Gareis, María Catalina January 2001 (has links) (PDF)
Se realizó un estudio retrospectivo, de tipo descriptivo y de corte transversal sobre pacientes que acudieron a la consulta en un Servicio de Dermatología de un Hospital General de la ciudad de La Plata, en el período de tiempo comprendido entre marzo de 1999 y diciembre de 2003. Se practicó el análisis estadístico mediante el Test de las Diferencias de Proporciones. Sobre un total de 34.700 pacientes asistidos en ese período de tiempo, se hallaron 375 casos de sífilis, los cuales fueron analizados de acuerdo a sexo, edad, incidencia anual, forma clínica de presentación de la enfermedad, lugar de procedencia, formas de ingreso y derivación al Servicio; fueron estudiadas además las tendencias sexuales, conductas promiscuas y hábitos tóxicos. Las gestantes representaron el 51,5% del total de las mujeres; el 34% de las mismas dio a luz un recién nacido con sífilis congénita. Fue realizada una investigación de asociación con HIV y otras coinfecciones . sexualmente transmisibles. Se destacó la importancia de las medidas de prevención, derivación oportuna, control prenatal, rescate de los contactos, asociación con otras coinfecciones y hábitos de riesgo, para lograr una detección precoz y un tratamiento oportuno de la enfermedad.
77

Aspectos epidemiológicos del carcinoma espinocelular

Tórtora, Mariela Elizabeth January 2009 (has links) (PDF)
Se realiza un estudio retrospectivo, de tipo descriptivo y de corte transversal, de pacientes que acudieron a la consulta en un Servicio de Dermatología de un Hospital Zonal General de Agudos de la Ciudad de La Plata, en el período comprendido entre enero de 2000 a diciembre de 2004. El análisis estadístico se ha realizado mediante el Test de las Diferencias de Proporciones. De un total de 16.500 pacientes, se hallaron 135 consultas por patología oncológica, de las cuales 83 pacientes (61,48%) correspondieron a Carcinoma de Células Basales, 45 pacientes (33,3%) a Carcinoma Espinocelular y 7 pacientes (5,18%) a Melanoma. Referente al CEC, se observó un leve predominio del sexo masculino 53,33 % con respecto al femenino 46,67% la edad promedio fue de 67 años, habiendo un rango de 16 a 81 años. Entre los fototipos más afectados fueron el II 53,3%, el III 22,22%, seguidos del I 15,56%. El 68,89% eran provenientes de áreas urbanas pero con antecedentes de gran exposición solar acumulativa. El 86,67% se desarrollaron en zonas fotoexpuestas de las cuales la cara fue el sitio más frecuentemente afectado. Cabe destacar con lo expuesto, que la importancia de la aplicación de los aspectos preventivos en todos los niveles, tratando de incorporar campañas de educación a la comunidad que ayuden a la labor profesional, para lograr un diagnóstico temprano y tratamiento oportuno.
78

Un teorema de reducción de singularidades para campos holomorfos 3-dimensionales

Vásquez Serpa, Luis Javier, Vásquez Serpa, Luis Javier January 2009 (has links)
En el presente trabajo, consideremos campos vectoriales holomorfos de dimensión compleja 3 deÖnidos en una vecindad de un punto p, donde p es una singularidad aislada, dicrÌtica o no. Es conocido que para campos holomorfos sobre un abierto de C2 que después de un número finito de blowing-up´s en los puntos singulares,la foliación asociada a dicho campo es transformada en una foliación que posee un número finito de singularidades, todas ellas irreducibles (Teorema de Seidenberg). En este trabajo se extiende el Teorema de Seidenberg para campos holomorfos sobre un abierto de C3, es decir, resolvemos el problema de desingularización sobre campos holomorfos 3-dimensiónales, restringiéndonos en el caso de que sea una singularidad absolutamente aislada. -- Palabras claves : Ecuaciones Diferenciales Ordinarias Complejas, Foliación Holomorfa Singular, Reducción de Singularidades, Desingularización, Blow-up, Sistemas Din·micos, Din·mica Compleja, Singularidad Absolutamnete Aislada. / -- In this paper, we consider holomorphic vector Öelds of complex dimension 3 deÖned in a neighborhood of a point p, where p is an isolated singularity, dicrÌtica or not. It is known that for holomorphic Öelds over an open set of C 2 that after a Önite number of blowing-upís in the singular points, the foliation associated to this Öeld is transformed into a foliation that has a Önite number of singularities, all irreducible (Seidenberg Theorem). This paper extends the Seidenberg theorem for holomorphic Öelds over an open set of C 3 , i.e., we solve the problem of desingularizaciÛn over 3- dimensional holomorphic Öelds, restricting in the case that it is an absolutely isolated singularity. -- Keywords: Ordinary Di§erential Equations Complex, Holomorphic Singular Foliation, Reduction of Singularities, DesingularizaciÛn, Blow-up, Dynamical Systems, Complex Dynamics, Absolutamnete Isolated Singularity / Tesis
79

Caos en frentes químicos con flujo de Poiseuille

Argüelles Delgado, Carlos Alberto 10 November 2011 (has links)
Se estudian los frentes químicos debido a reacción-difusión descritos por la ecuación Kuramoto-Sivanshinsky en un fluido de Poiseuille en un tubo. Se estudian las diferentes soluciones del frente variando el ancho del tubo y la velocidad media del flujo. Además se analizan las transacciones del frente plano a uno impar, y luego entre frentes pares e impares variando la velocidad media del flujo. Finalmente se analiza la transición al caos y los efectos del flujo en la transición. / Tesis
80

Existencia de soluciones débiles para una clase de sistemas elípticos semilineales

Tineo Condeña, Marlón Yván January 2017 (has links)
Prueba la existencia de soluciones débiles para una clase de sistemas elípticos semilineales potenciales. El problema de existencia de soluciones débiles para el sistema será abordado mediante las herramientas de la teoría de puntos críticos de funcionales definidas en espacios de Banach, como el Teorema del paso de la montaña y el Principio del mínimo. / Tesis

Page generated in 0.0741 seconds