51 |
Chaotic Extensions for General Operators on a Hilbert SubspacePinheiro, Leonardo V. 31 July 2014 (has links)
No description available.
|
52 |
Counterexamples in Cocommutative ComonoidsMahaman, Myriam 22 January 2025 (has links)
In this thesis, we consider two problems related to cocommutative comonoids. In the first part, we construct an example of a comonoid which is not cocommutative, yet whose endomorphism operad is a clone. In the second part, we provide a class of examples of algebras which are not smooth, yet whose rings of differential operators are cocommutative Hopf algebroids.
|
53 |
Variétés de drapeaux et opérateurs différentielsJauffret, Colin 11 1900 (has links)
Soit G un groupe algébrique semi-simple sur un corps de caractéristique 0. Ce mémoire discute d'un théorème d'annulation de la cohomologie supérieure du faisceau D des opérateurs différentiels sur une variété de drapeaux de G. On démontre que si P est un sous-groupe parabolique de G, alors H^i(G/P,D)=0 pour tout i>0.
On donne en fait trois preuves indépendantes de ce théorème. La première preuve est de Hesselink et n'est valide que dans le cas où le sous-groupe parabolique est un sous-groupe de Borel. Elle utilise un argument de suites spectrales et le théorème de Borel-Weil-Bott. La seconde preuve est de Kempf et n'est valide que dans le cas où le radical unipotent de P agit trivialement sur son algèbre de Lie. Elle n'utilise que le théorème de Borel-Weil-Bott. Enfin, la troisième preuve est attribuée à Elkik. Elle est valide pour tout sous-groupe parabolique mais utilise le théorème de Grauert-Riemenschneider.
On présente aussi une construction détaillée du faisceau des opérateurs différentiels sur une variété. / Let G be a semisimple algebraic group on a field of characteristic 0. This thesis discusses a vanishing theorem for the higher cohomology of the sheaf D of differential operators on a flag variety of G. We show that if P is a parabolic subgroup of G, then H^i(G/P,D)=0 for all i>0.
In fact, we give three independent proofs of this theorem. The first proof, due to Hesselink, only works if the parabolic subgroup P is a Borel subgroup. It uses a spectral sequence argument as well as the Borel-Weil-Bott theorem. The second proof, due to Kempf, only works if the unipotent radical of P acts trivially on its Lie algebra. It only uses the Borel-Weil-Bott theorem. Finally, the third proof, due to Elkik, is valid for any parabolic subgroup. However, it uses the Grauert-Riemenschneider theorem.
We also present a detailled construction of the sheaf of differential operators on a variety.
|
54 |
Variétés de drapeaux et opérateurs différentielsJauffret, Colin 11 1900 (has links)
Soit G un groupe algébrique semi-simple sur un corps de caractéristique 0. Ce mémoire discute d'un théorème d'annulation de la cohomologie supérieure du faisceau D des opérateurs différentiels sur une variété de drapeaux de G. On démontre que si P est un sous-groupe parabolique de G, alors H^i(G/P,D)=0 pour tout i>0.
On donne en fait trois preuves indépendantes de ce théorème. La première preuve est de Hesselink et n'est valide que dans le cas où le sous-groupe parabolique est un sous-groupe de Borel. Elle utilise un argument de suites spectrales et le théorème de Borel-Weil-Bott. La seconde preuve est de Kempf et n'est valide que dans le cas où le radical unipotent de P agit trivialement sur son algèbre de Lie. Elle n'utilise que le théorème de Borel-Weil-Bott. Enfin, la troisième preuve est attribuée à Elkik. Elle est valide pour tout sous-groupe parabolique mais utilise le théorème de Grauert-Riemenschneider.
On présente aussi une construction détaillée du faisceau des opérateurs différentiels sur une variété. / Let G be a semisimple algebraic group on a field of characteristic 0. This thesis discusses a vanishing theorem for the higher cohomology of the sheaf D of differential operators on a flag variety of G. We show that if P is a parabolic subgroup of G, then H^i(G/P,D)=0 for all i>0.
In fact, we give three independent proofs of this theorem. The first proof, due to Hesselink, only works if the parabolic subgroup P is a Borel subgroup. It uses a spectral sequence argument as well as the Borel-Weil-Bott theorem. The second proof, due to Kempf, only works if the unipotent radical of P acts trivially on its Lie algebra. It only uses the Borel-Weil-Bott theorem. Finally, the third proof, due to Elkik, is valid for any parabolic subgroup. However, it uses the Grauert-Riemenschneider theorem.
We also present a detailled construction of the sheaf of differential operators on a variety.
|
55 |
(Konformní) Killingovy spinor hodnotové formy na Riemannovských varietách / (Conformal) Killing spinor valued forms on Riemannian manifoldsZima, Petr January 2014 (has links)
The goal of the present thesis is to introduce on a Riemannian Spin- manifold a system of partial differential equations for spinor-valued differ- ential forms called Killing equations. We study basic properties of several types of Killing fields and relationships among them. We provide a simple construction of Killing spinor-valued forms from Killing spinors and Killing forms. We also review the construction of metric cone and discuss the re- lationship between Killing spinor-valued forms on the base manifold and parallel spinor-valued forms on the metric cone.
|
56 |
Ideais de anéis de operadores diferenciais / Ideals of rings of differential operatorsTuesta, Napoleon Caro 07 April 2011 (has links)
Em [12] J.T. Stafford demonstrou que todo ideal à esquerda ou à direita da álgebra de Weyl \'A IND. n\' (K) = K \'[ \'x IND. 1\', ...,\'x IND. n\' ] \' partial IND. 1\', ... \'partial IND. n\' (K um corpo de característica zero) é gerado por dois elementos. Consideremos o anel \'D IND. n\' := K [[\'x IND.1\', ...\'x IND. n\']] de operadores diferenciais sobre o anel de séries de potências formais K[[\'x IND. 1\';...\' xI ND. n\']]. Uma pergunta natural é se todo ideal à esquerda ou à direita de\' D IND. n\'(K) pode ser gerado por dois elementos. Neste trabalho provaremos que todo ideal à esquerda ou à direita do anel \'E IND. n\'(K) := K((\'x IND. 1\' ... \'x IND. n\'))(\' partial IND. 1, ...\'partial IND. n\') de operadores diferenciais sobre o corpo das séries de Laurent K((\'x IND. 1\', ...\'x IND. n\')) é gerado por dois elementos. Nós provaremos também que todo ideal à esquerda ou à direita do anel \'S IND. n -1\'(K) := K((\'x IND. 1\', ...\'X ind. n - 1\"))[[\'x IND. n\']](\' partial IND. 1, ...\'partial IND. n\') é gerado por dois elementos e como corolário obtemos uma demonstração que todo ideal à esquerda ou à direita do anel \'D IND. 1\'(K) é gerado por dois elementos. Isto está de acordo com a conjectura que diz que todo ideal à esquerda ou à direita de um anel (não comutativo) Noetheriano simples é gerado por dois elementos / In [12] J.T. Stafford proved that every left or right ideal of the Weyl algebra \'A IND. n\'(K) = K[\'x IND. 1\', ...\'x IND. n\'](\' partial IND. 1, ...\'partial IND. n\')(K a field of characteristic zero) is generated by two elements. Consider the ring \'D IND. n\' := K[[\'x IND. 1\', ...\'x IND.n\']](\'partial IND. 1\", ...\'partial IND. n) of differential operators over the ring of formal power series K[[\'x IND. 1\', ... \'x IND. n\']]: A natural question is that if every left or right ideal of \'D IND. n\'(K) can be generated by two elements. In this work we will prove that every left or right ideal of the ring \'E IND. n\' (K) := K((\'x IND. 1\', ... \'x IND. n\'))(\'partial IND. 1,...\'partial IND. n\') of differential operators over the field of formal Laurent series K((\'x IND. 1\', ...\'x IND. n\'))) is generated by two elements. We will prove also that every left or right ideal of the ring \'S IND. n -1\"(K) := K((\'x IND. 1\', ...\'x IND. n\'-1\'))[[\'x IND. n]](\'paertial IND. 1, ...\'partial IND. n\') is generated by two elements and as a corollary we obtain a proof of that every left or right ideal of the ring \'D IND. 1\'(K) is generated by two elements. This is in accordance with the conjecture that says that in a (noncommutative) Noetherian simple ring, every left or right ideal is generated by two elements
|
57 |
Ideais de anéis de operadores diferenciais / Ideals of rings of differential operatorsNapoleon Caro Tuesta 07 April 2011 (has links)
Em [12] J.T. Stafford demonstrou que todo ideal à esquerda ou à direita da álgebra de Weyl \'A IND. n\' (K) = K \'[ \'x IND. 1\', ...,\'x IND. n\' ] \' partial IND. 1\', ... \'partial IND. n\' (K um corpo de característica zero) é gerado por dois elementos. Consideremos o anel \'D IND. n\' := K [[\'x IND.1\', ...\'x IND. n\']] de operadores diferenciais sobre o anel de séries de potências formais K[[\'x IND. 1\';...\' xI ND. n\']]. Uma pergunta natural é se todo ideal à esquerda ou à direita de\' D IND. n\'(K) pode ser gerado por dois elementos. Neste trabalho provaremos que todo ideal à esquerda ou à direita do anel \'E IND. n\'(K) := K((\'x IND. 1\' ... \'x IND. n\'))(\' partial IND. 1, ...\'partial IND. n\') de operadores diferenciais sobre o corpo das séries de Laurent K((\'x IND. 1\', ...\'x IND. n\')) é gerado por dois elementos. Nós provaremos também que todo ideal à esquerda ou à direita do anel \'S IND. n -1\'(K) := K((\'x IND. 1\', ...\'X ind. n - 1\"))[[\'x IND. n\']](\' partial IND. 1, ...\'partial IND. n\') é gerado por dois elementos e como corolário obtemos uma demonstração que todo ideal à esquerda ou à direita do anel \'D IND. 1\'(K) é gerado por dois elementos. Isto está de acordo com a conjectura que diz que todo ideal à esquerda ou à direita de um anel (não comutativo) Noetheriano simples é gerado por dois elementos / In [12] J.T. Stafford proved that every left or right ideal of the Weyl algebra \'A IND. n\'(K) = K[\'x IND. 1\', ...\'x IND. n\'](\' partial IND. 1, ...\'partial IND. n\')(K a field of characteristic zero) is generated by two elements. Consider the ring \'D IND. n\' := K[[\'x IND. 1\', ...\'x IND.n\']](\'partial IND. 1\", ...\'partial IND. n) of differential operators over the ring of formal power series K[[\'x IND. 1\', ... \'x IND. n\']]: A natural question is that if every left or right ideal of \'D IND. n\'(K) can be generated by two elements. In this work we will prove that every left or right ideal of the ring \'E IND. n\' (K) := K((\'x IND. 1\', ... \'x IND. n\'))(\'partial IND. 1,...\'partial IND. n\') of differential operators over the field of formal Laurent series K((\'x IND. 1\', ...\'x IND. n\'))) is generated by two elements. We will prove also that every left or right ideal of the ring \'S IND. n -1\"(K) := K((\'x IND. 1\', ...\'x IND. n\'-1\'))[[\'x IND. n]](\'paertial IND. 1, ...\'partial IND. n\') is generated by two elements and as a corollary we obtain a proof of that every left or right ideal of the ring \'D IND. 1\'(K) is generated by two elements. This is in accordance with the conjecture that says that in a (noncommutative) Noetherian simple ring, every left or right ideal is generated by two elements
|
58 |
Bandlimited functions, curved manifolds, and self-adjoint extensions of symmetric operatorsMartin, Robert January 2008 (has links)
Sampling theory is an active field of research that spans a variety of disciplines from communication engineering to pure mathematics. Sampling theory provides the crucial connection between continuous and discrete representations of information that enables one store continuous signals as discrete, digital data with minimal error. It is this connection that allows communication engineers to realize many of our modern digital technologies including cell phones and compact disc players.
This thesis focuses on certain non-Fourier generalizations of sampling theory and their applications. In particular, non-Fourier analogues of bandlimited functions and extensions of sampling theory to functions on curved manifolds are studied. New results in bandlimited function theory, sampling theory on curved manifolds, and the theory of self-adjoint extensions of symmetric operators are presented. Besides being of mathematical interest in itself, the research contained in this thesis has applications to quantum physics on curved space and could potentially lead to more efficient information storage methods in communication engineering.
|
59 |
Bandlimited functions, curved manifolds, and self-adjoint extensions of symmetric operatorsMartin, Robert January 2008 (has links)
Sampling theory is an active field of research that spans a variety of disciplines from communication engineering to pure mathematics. Sampling theory provides the crucial connection between continuous and discrete representations of information that enables one store continuous signals as discrete, digital data with minimal error. It is this connection that allows communication engineers to realize many of our modern digital technologies including cell phones and compact disc players.
This thesis focuses on certain non-Fourier generalizations of sampling theory and their applications. In particular, non-Fourier analogues of bandlimited functions and extensions of sampling theory to functions on curved manifolds are studied. New results in bandlimited function theory, sampling theory on curved manifolds, and the theory of self-adjoint extensions of symmetric operators are presented. Besides being of mathematical interest in itself, the research contained in this thesis has applications to quantum physics on curved space and could potentially lead to more efficient information storage methods in communication engineering.
|
60 |
Joint Eigenfunctions On The Heisenberg Group And Support Theorems On RnSamanta, Amit 05 1900 (has links) (PDF)
This work is concerned with two different problems in harmonic analysis, one on the Heisenberg group and other on Rn, as described in the following two paragraphs respectively.
Let Hn be the (2n + 1)-dimensional Heisenberg group, and let K be a compact subgroup of U(n), such that (K, Hn) is a Gelfand pair. Also assume that the K-action on Cn is polar. We prove a Hecke-Bochner identity associated to the Gelfand pair (K, Hn). For the special case K = U(n), this was proved by Geller, giving a formula for the Weyl transform of a function f of the type f = Pg, where g is a radial function, and P a bigraded solid U(n)-harmonic polynomial. Using our general Hecke-Bochner identity we also characterize (under some conditions) joint eigenfunctions of all differential operators on Hn that are invariant under the action of K and the left action of Hn .
We consider convolution equations of the type f * T = g, where f, g ε Lp(Rn) and T is a compactly supported distribution. Under natural assumptions on the zero set of the Fourier transform of T , we show that f is compactly supported, provided g is.
|
Page generated in 0.4396 seconds