• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 20
  • 20
  • 15
  • 10
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Alterações do metabolismo do ferro nas talassemias / Changes of iron metabolism in thalassemia

Guimarães, Jacqueline da Silva 15 December 2014 (has links)
As síndromes talassêmicas (?- e ?-talassemia) são as desordens mais comuns e frequentes associadas com eritropoese ineficaz. O desbalanço na produção das cadeias ?- e ?-globinas resulta no comprometimento da produção de eritrócitos, em anemia e aumento de progenitores eritroides no sangue periférico. Enquanto os pacientes homozigóticos afetados por essas desordens demonstram alterações características dos parâmetros relacionados a eritropoese, a relação entre grau de anemia, eritropoese alterada e disfunção do metabolismo de ferro ainda não foram investigados nos indivíduos com ?+-talassemia heterozigótica ou ?+-talassêmia. Duzentos e vinte seis indivíduos (75 do gênero feminino e 151 do gênero masculino) foram recrutados e divididos em 5 grupos: Controle (n=28), doadores de sangue regulares (DSR, n=23), ?+-talassemia heterozigótica (TAT, n=14), ?+-thalassemia (traço ?-talassêmico, TBT, n=20) e ?0-talassemia, (?-talassemia maior, BTM, n=27). As amostras foram analisadas para parâmetros hematológicos (Micros ABX 60); ferro sérico, capacidade total de ligação ao ferro e saturação de transferrina por método colorimétrico (Pointe Scientific, Inc., Canton, MI, USA), ferritina e proteína C-reativa ultra sensível por imunoensaio (Immulite 1000); receptor solúvel de transferrina, eritropoetina, fator de diferenciação do crescimento 15 (R&D Systems) e hepcidina (Intrinsic LifeSciences, La Jolla, CA) por ELISA. As razões sTfR/log ferritina e (hepcidina/ferritina)/sTfR foram calculadas para avaliar o metabolismo do ferro. sTfR/log ferritina pode distinguir depleção dos estoques de ferro de eritropoese deficiente de ferro, enquanto (hepcidina/ferritina)/sTfR pode avaliar os estímulos contrários (disponibilidade de ferro e atividade eritropoética) que controlam a síntese de hepcidina e a absorção de ferro, na ausência de estímulos inflamatórios. Foi demonstrado que TAT teve significativa redução da hepcidina e aumento do receptor solúvel de transferrina, com parâmetros hematológicos relativamente normais. Em contraste, todos os parâmetros hematológicos de TBT foram significativamente diferentes do Controle, incluindo aumento dos níveis do receptor solúvel de transferrina, ferritina, eritropoetina e fator de diferenciação do crescimento 15. Essas alterações em ambos os grupos sugerem um balanço alterado entre eritropoese e metabolismo de ferro. Os índices sTfR/log ferritina e (hepcidina/ferritina)/sTfR estão, respectivamente, aumentado e reduzido comparados ao Controle, proporcional a severidade de cada grupo talassêmico. Em conclusão, destacamos que, pela primeira vez, foram descritas alterações no metabolismo de ferro em indivíduos com ?+-talassemia heterozigótica. Esses dados demonstram que, no contexto da saúde pública, são necessários identificação e acompanhamento dos portadores de ?+-talassemia. / The thalassemia syndromes (?- and ?-thalassemia) are the most common and frequent disorders associated with ineffective erythropoiesis. Imbalance of ?- or ?-globin chain production results in impaired red blood cell synthesis, anemia and more erythroid progenitors in the blood stream. While patients affected by these disorders show definitive altered parameters related to erythropoiesis, the relationship between the degree of anemia, altered erythropoiesis and dysfunctional iron metabolism have not been investigated in both carriers of ?-thalassemia and ?-thalassemia. 226 subjects (75 females and 151 males) were recruited to this study and divided in 5 groups: Control (n=28), repeat blood donors (DSR, n=23), ?+-thalassemia heterozygous carriers (TAT, n=14), ?+-thalassemia (?-thalassemia trait, TBT, n=20) and ?0-thalassemia, (?-thalassemia major, BTM, n=27). Samples were tested for hematological parameters (Micros ABX 60); serum iron, total iron binding capacity, and transferrin saturation by the colorimetric method (Pointe Scientific, Inc., Canton, MI, USA), ferritin and high sensitive C-reactive protein by immunoassay (Immulite 1000); soluble transferrin receptor, erythropoietin and growth differentiation factor 15 (R&D Systems) and hepcidin (Intrinsic LifeSciences, La Jolla, CA) by ELISA. Were calculated the ratios sTfR/log ferritin and (hepcidin/ferritin)/sTfR to evaluate iron metabolism. sTfR/log ferritin can distinguish storage iron depletion from iron-deficient erythropoiesis, while (hepcidin/ferritin)/sTfR can be utilized to explore and quantify the opposing forces (i.e. iron availability and erythropoietic activity) regulating hepcidin synthesis and iron absorption in absence of inflammatory stimuli. We demonstrate that TAT have a significantly reduced hepcidin and increased soluble transferrin receptor levels but relatively normal hematological findings. In contrast, TBT have all hematological parameters significantly different from controls, including increased soluble transferrin receptor, ferritin, erythropoietin and growth differentiation factor 15 levels. These changings in both groups suggest an altered balance between erythropoiesis and iron metabolism. The indexes sTfR/log ferritin and (hepcidin/ferritin)/sTfR are respectively increased and reduced relative to controls, proportional to the severity of each thalassemia group. In conclusion, we emphasize that, for the first time in the literature, subjects with heterozygous ?+-thalassemia have altered iron metabolism. Our data demonstrate that within the context of public health, identification and monitoring of patients with ?+-thalassemia are needed.
12

Gene regulation and immune mechanisms in multiple sclerosis experimental models /

Marta, Mónica Sofia Calado, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.
13

Alterações do metabolismo do ferro nas talassemias / Changes of iron metabolism in thalassemia

Jacqueline da Silva Guimarães 15 December 2014 (has links)
As síndromes talassêmicas (?- e ?-talassemia) são as desordens mais comuns e frequentes associadas com eritropoese ineficaz. O desbalanço na produção das cadeias ?- e ?-globinas resulta no comprometimento da produção de eritrócitos, em anemia e aumento de progenitores eritroides no sangue periférico. Enquanto os pacientes homozigóticos afetados por essas desordens demonstram alterações características dos parâmetros relacionados a eritropoese, a relação entre grau de anemia, eritropoese alterada e disfunção do metabolismo de ferro ainda não foram investigados nos indivíduos com ?+-talassemia heterozigótica ou ?+-talassêmia. Duzentos e vinte seis indivíduos (75 do gênero feminino e 151 do gênero masculino) foram recrutados e divididos em 5 grupos: Controle (n=28), doadores de sangue regulares (DSR, n=23), ?+-talassemia heterozigótica (TAT, n=14), ?+-thalassemia (traço ?-talassêmico, TBT, n=20) e ?0-talassemia, (?-talassemia maior, BTM, n=27). As amostras foram analisadas para parâmetros hematológicos (Micros ABX 60); ferro sérico, capacidade total de ligação ao ferro e saturação de transferrina por método colorimétrico (Pointe Scientific, Inc., Canton, MI, USA), ferritina e proteína C-reativa ultra sensível por imunoensaio (Immulite 1000); receptor solúvel de transferrina, eritropoetina, fator de diferenciação do crescimento 15 (R&D Systems) e hepcidina (Intrinsic LifeSciences, La Jolla, CA) por ELISA. As razões sTfR/log ferritina e (hepcidina/ferritina)/sTfR foram calculadas para avaliar o metabolismo do ferro. sTfR/log ferritina pode distinguir depleção dos estoques de ferro de eritropoese deficiente de ferro, enquanto (hepcidina/ferritina)/sTfR pode avaliar os estímulos contrários (disponibilidade de ferro e atividade eritropoética) que controlam a síntese de hepcidina e a absorção de ferro, na ausência de estímulos inflamatórios. Foi demonstrado que TAT teve significativa redução da hepcidina e aumento do receptor solúvel de transferrina, com parâmetros hematológicos relativamente normais. Em contraste, todos os parâmetros hematológicos de TBT foram significativamente diferentes do Controle, incluindo aumento dos níveis do receptor solúvel de transferrina, ferritina, eritropoetina e fator de diferenciação do crescimento 15. Essas alterações em ambos os grupos sugerem um balanço alterado entre eritropoese e metabolismo de ferro. Os índices sTfR/log ferritina e (hepcidina/ferritina)/sTfR estão, respectivamente, aumentado e reduzido comparados ao Controle, proporcional a severidade de cada grupo talassêmico. Em conclusão, destacamos que, pela primeira vez, foram descritas alterações no metabolismo de ferro em indivíduos com ?+-talassemia heterozigótica. Esses dados demonstram que, no contexto da saúde pública, são necessários identificação e acompanhamento dos portadores de ?+-talassemia. / The thalassemia syndromes (?- and ?-thalassemia) are the most common and frequent disorders associated with ineffective erythropoiesis. Imbalance of ?- or ?-globin chain production results in impaired red blood cell synthesis, anemia and more erythroid progenitors in the blood stream. While patients affected by these disorders show definitive altered parameters related to erythropoiesis, the relationship between the degree of anemia, altered erythropoiesis and dysfunctional iron metabolism have not been investigated in both carriers of ?-thalassemia and ?-thalassemia. 226 subjects (75 females and 151 males) were recruited to this study and divided in 5 groups: Control (n=28), repeat blood donors (DSR, n=23), ?+-thalassemia heterozygous carriers (TAT, n=14), ?+-thalassemia (?-thalassemia trait, TBT, n=20) and ?0-thalassemia, (?-thalassemia major, BTM, n=27). Samples were tested for hematological parameters (Micros ABX 60); serum iron, total iron binding capacity, and transferrin saturation by the colorimetric method (Pointe Scientific, Inc., Canton, MI, USA), ferritin and high sensitive C-reactive protein by immunoassay (Immulite 1000); soluble transferrin receptor, erythropoietin and growth differentiation factor 15 (R&D Systems) and hepcidin (Intrinsic LifeSciences, La Jolla, CA) by ELISA. Were calculated the ratios sTfR/log ferritin and (hepcidin/ferritin)/sTfR to evaluate iron metabolism. sTfR/log ferritin can distinguish storage iron depletion from iron-deficient erythropoiesis, while (hepcidin/ferritin)/sTfR can be utilized to explore and quantify the opposing forces (i.e. iron availability and erythropoietic activity) regulating hepcidin synthesis and iron absorption in absence of inflammatory stimuli. We demonstrate that TAT have a significantly reduced hepcidin and increased soluble transferrin receptor levels but relatively normal hematological findings. In contrast, TBT have all hematological parameters significantly different from controls, including increased soluble transferrin receptor, ferritin, erythropoietin and growth differentiation factor 15 levels. These changings in both groups suggest an altered balance between erythropoiesis and iron metabolism. The indexes sTfR/log ferritin and (hepcidin/ferritin)/sTfR are respectively increased and reduced relative to controls, proportional to the severity of each thalassemia group. In conclusion, we emphasize that, for the first time in the literature, subjects with heterozygous ?+-thalassemia have altered iron metabolism. Our data demonstrate that within the context of public health, identification and monitoring of patients with ?+-thalassemia are needed.
14

Self-assembling peptide hydrogel for intervertebral disc tissue engineering

Wan, Simon January 2015 (has links)
The intervertebral disc (IVD), situated between adjoining vertebrae, consists of the gelatinous nucleus pulposus (NP) in the centre surrounded by the tougher annulus fibrosus (AF). Its main roles are to distribute loads and to act as joints. With aging, degenerative disc disease (DDD) occurs due to an imbalance in anabolic and catabolic events in the IVD, which results in a loss of function. Lower back pain (LBP) affects 84% of people at some point in their lifetime and is strongly associated with DDD. Current LBP treatments have limited long term efficacy and are symptomatic rather than curative. Cell-based therapies are regarded to hold great potential for the treatment of DDD as it has been hypothesised that they could regenerate the damaged tissue and alleviate LBP. A number of natural and synthetic biomaterials have been investigated as NP tissue engineering scaffolds with varying results. In this study, a self assembling peptide hydrogel (SAPH) was investigated for its potential as a cell carrier and/or scaffold for NP tissue engineering. SAPHs display the advantages of natural polymer hydrogels such as biocompatibility and biodegradability whilst combining the advantages of synthetic materials such as controlled structural and mechanical propertiesCharacterisation determined that the SAPH nanofibrous architecture had features that were of similar scale to extracellular matrix (ECM) components of the human NP. The mechanical properties of the SAPH could be optimised to closely match the native tissue. The system could shear thin and self-heal making the system ideally suited to delivery via minimally invasive procedure. The three dimensional (3D) culture of bovine NP cells (bNPCs) in the SAPH demonstrated that the NP phenotype could be restored after de-differentiation during monolayer culture. Gene expression results demonstrated that ‘traditional’ and ‘novel’ NP markers were highly expressed throughout in vitro culture. Cell viability was high, cell population remained stable and bNPCs adopted the characteristic rounded morphology of native NPCs. Finally, type II collagen and aggrecan, the main ECM components of the NP, were deposited with increasing production over culture period. Growth differentiation factor 6 (GDF-6) has been identified as the most promising current growth factor for inducing discogenic differentiation from human bone marrow mesenchymal stem cell (h-BMMSCs). After samples were stimulated with GDF-6, gene expression results confirmed that a NP-like phenotype could be induced with high expression of ‘traditional’ and ‘novel’ NP markers. Cell viability was high, cell population remained stable and NP associated ECM components were deposited with cells displaying a rounded morphology. Interestingly, when h-BMMSCs were cultured without GDF-6, it was strongly suggested that spontaneous discogenic differentiation occurred after culture in the SAPHs as ‘traditional’ and ‘novel’ NP markers were highly expressed, morphology was comparable to native NPCs and type II collagen and aggrecan were deposited extracellularly. If these findings were accurate then this is the first study to demonstrate that a NP-like phenotype could be induced from MSCs without use of an exogenous growth factor or a discogenic bioactive motif. Despite exciting and novel results, further work is required to confirm the potential of SAPHs for NP tissue engineering scaffolds.
15

Neue Biomarker und Multimarkerstrategien für eine optimierte Risikostratifizierung von Patienten mit Lungenembolie / Novel biomarkers and multimarker strategies for an optimized risk stratification of patients with pulmonary embolism

Lankeit, Mareike Katharina 14 December 2010 (has links)
No description available.
16

Experimental Studies of BMP Signalling in Neuronal Cells

Althini, Susanna January 2003 (has links)
<p>The developing nervous system depends largely on extracellular cues to shape its complex network of neurons. Classically, neurotrophins are known to be important mediators in this process. More recently, Bone Morphogenetic Proteins (BMPs), belonging to the Transforming Growth Factor beta (TGFβ) superfamily of secreted cytokines, have been shown to exert a wide range of effects, such as cellular growth, differentiation, survival and apoptosis, both in the developing and adult nervous system. They signal via serine/threonine kinase receptor essentially to the Smad pathway, which carries the signal to the nucleus where the transcription of target genes is regulated.</p><p>This thesis investigates the functions of BMPs in the nervous system, using a set of different models. Firstly, a targeted deletion of GDF10 (BMP3b) in the mouse was established to evaluate the role of this growth/differentiation factor in the hippocampal formation, a brain area known to be involved in memory processing. Other members of the TGFβ superfamily likely compensate for the lack of GDF10, since no detectable alterations in hippocampal function or gene transcription profile have been found. Secondly, a mouse model was set up, with the aim to study impaired BMP-signalling in dopaminergic neurons. The tyrosine hydroxylase (TH) locus was used to drive the expression of dominant negative BMP receptors by means of bicistronic mRNAs. TH is the rate-limiting enzyme in the biosynthesis of catecholamine and the mice described, show a graded decrease of TH-activity resulting in severe to mild dopamine deficiency. The contribution of the dominant negative BMP receptors to the phenotype is however secondary to the apparent TH hypomorphism. The final theme of this thesis is the potentiating effects of BMPs on neurotrophin-induced neurite outgrowth as studied in explanted ganglia from chick embryos and in the rat phaeochromocytoma cell line PC12. A number of pharmacological inhibitors of intracellular signalling kinases were applied to the cultures in order to reveal the contribution of different pathways to the enhanced neurite outgrowth. We made the unexpected finding that inhibition of MEK signalling mimicked the potentiating effects of BMP stimulation in the chick system. The underlying mechanisms for the synergistic effects, however, are still an enigma.</p>
17

Experimental Studies of BMP Signalling in Neuronal Cells

Althini, Susanna January 2003 (has links)
The developing nervous system depends largely on extracellular cues to shape its complex network of neurons. Classically, neurotrophins are known to be important mediators in this process. More recently, Bone Morphogenetic Proteins (BMPs), belonging to the Transforming Growth Factor beta (TGFβ) superfamily of secreted cytokines, have been shown to exert a wide range of effects, such as cellular growth, differentiation, survival and apoptosis, both in the developing and adult nervous system. They signal via serine/threonine kinase receptor essentially to the Smad pathway, which carries the signal to the nucleus where the transcription of target genes is regulated. This thesis investigates the functions of BMPs in the nervous system, using a set of different models. Firstly, a targeted deletion of GDF10 (BMP3b) in the mouse was established to evaluate the role of this growth/differentiation factor in the hippocampal formation, a brain area known to be involved in memory processing. Other members of the TGFβ superfamily likely compensate for the lack of GDF10, since no detectable alterations in hippocampal function or gene transcription profile have been found. Secondly, a mouse model was set up, with the aim to study impaired BMP-signalling in dopaminergic neurons. The tyrosine hydroxylase (TH) locus was used to drive the expression of dominant negative BMP receptors by means of bicistronic mRNAs. TH is the rate-limiting enzyme in the biosynthesis of catecholamine and the mice described, show a graded decrease of TH-activity resulting in severe to mild dopamine deficiency. The contribution of the dominant negative BMP receptors to the phenotype is however secondary to the apparent TH hypomorphism. The final theme of this thesis is the potentiating effects of BMPs on neurotrophin-induced neurite outgrowth as studied in explanted ganglia from chick embryos and in the rat phaeochromocytoma cell line PC12. A number of pharmacological inhibitors of intracellular signalling kinases were applied to the cultures in order to reveal the contribution of different pathways to the enhanced neurite outgrowth. We made the unexpected finding that inhibition of MEK signalling mimicked the potentiating effects of BMP stimulation in the chick system. The underlying mechanisms for the synergistic effects, however, are still an enigma.
18

Chirurgie cardiaque sous circulation extra-corporelle et ses biomarqueurs : rôle du Growth / Différentiation Factor 15 (GDF 15) : études cliniques / Cardiac surgery associated to cardiopulmonary bypass and biomarkers : role of growth/differenctiation factor -15 : clinical studies

Kahli, Abdelkader 19 October 2016 (has links)
La circulation extracorporelle compte parmi les progrès techniques majeurs associés à la chirurgie cardiaque. Elle constitue aussi l’une des causes de complications principales car responsable d’une réponse inflammatoire généralisée qui résulte de la conjugaison des effets du stress oxydant et des cytokines libérés, contribuerait à la dysfonction multi-organe aboutissant aux complications myocardiques et rénales survenant au cours des périodes per- et postopératoires. La première partie de notre travail avait pour objectif d’explorer l’évolution des taux circulants du GDF-15, cytokine associée au stress oxydant et à l’inflammation, dans ce contexte de chirurgie cardiaque. Notre étude prospective a démontré pour la première fois que cette procédure est accompagnée de l’augmentation du GDF-15 dont les taux plasmatiques sont associés aux lésions postopératoires cardiaques et rénales.L’évaluation du risque opératoire repose sur un ensemble de scores dont le calcul est basé essentiellement sur des caractéristiques cliniques. Ces scores présentent toutefois un certaines limitations. Chez les patients « médicaux » atteints de pathologies cardiovasculaires la stratification du risque est définie en associant des caractéristiques cliniques à l’évaluation des taux circulants de biomarqueurs. L’objectif de cette seconde partie a donc été de mettre en évidence le pouvoir prédictif du GDF-15 en tant que biomarqueur circulant dans la survenue de complications rénales au cours de la chirurgie cardiaque sous CEC. Nous avons mis en évidence que les patients présentant des taux préopératoires élevés de GDF-15 sont à risque de développer une insuffisance rénale aigue postopératoire. / Ischemic cardiac diseases are the most frequent and deleterious pathologies leading to important cardiovascular-related mortality worldwide. One of the alternative therapies consists to treat these patients using cardiac surgery. Cardiopulmonary bypass was developed to greatly improve this surgical procedure. However, some adverse effects can occur during cardiac surgery associated with cardiopulmonary bypass due to the inflammatory response. This phenomenon is the result of various mechanisms including oxidative stress and inflammatory cytokines which lead to multi-organ failure and then to myocardial and renal injuries occurring during the peri- and post-operative periods.The first part of this work was designed to evaluate in the context of cardiac surgery the kinetics of plasma GDF-15 levels, an oxidative stress and inflammation related cytokine. Our prospective study demonstrated for the first time the kinetic increase in plasma GDF-15 levels which were associated to postoperative cardiac and renal injuries.Currently, operative risk evaluation is based on score calculation including clinical criteria. These risk scores present some limitations. Concerning other cardiac patients out of surgical fields, the risk assessment is defined using clinical parameters and biomarkers evaluation (cardiac troponin, BNP, Nt-proBNP). Thus, we aimed to determine whether pre-operative GDF-15 as plasma biomarker could help to identify patients at high risk of renal injuries. We found that patients with the highest pre-operative plasma GDF-15 levels are at risk for post-operative acute kidney injury.
19

Optimizing embryo culture conditions and spent culture media analysis as predictors of embryo quality and pregnancy

Kaskar, Khalied January 2021 (has links)
Philosophiae Doctor - PhD / The aim of this thesis is first, to evaluate various culture conditions to improve embryo development, and secondly, to analyze spent culture media for any biomarkers that may be predictive of embryo health. Single-step and sequential culture media were compared in both Planer and EmbryoScope™ incubators. Single-step media resulted in better blastocyst development compared to sequential media and the EmbryoScope™ incubation system showed slight improvements in embryo development than the Planer system. The benefits of supplementing the culture medium with either insulin or insulin-like growth factor 1 (IGF-1) or culturing in a 2% O2 environment, using two different strains of mice (hybrid and C57), as well as the suitability of these strains for quality control were compared. In insulin, hybrid embryos were slower to blastulate and had a lower blastocyst rate, whereas C57 embryos were slower to the morula and faster to blastocyst stages, and lower blastocyst rate than the controls. IGF-1 showed no difference in time-lapse morphokinetics (TLM) or blastocyst rates compared to controls in both hybrid and C57 embryos. Under 2% O2, hybrid embryos showed no significant difference in TLM up to the 8-cell stage, but slowed down afterwards, resulting in blastocysts with significantly lower cell counts than the 6% O2 group. The C57 embryos were slower to reach morula and expanded blastocyst, and had lower blastocyst rates in 2%O2 vs 6%O2. The C57 strain had significant slower overall embryo development for all time points than hybrid embryos in insulin, IGF-1 and ultra-low O2, as well as lower blastocyst rates. Measurement of growth differentiation factor 9 (GDF-9) and oxidation-reduction potential (ORP) in spent media as markers for embryo health were evaluated. Day 5 human blastocysts yielded higher pregnancy rates and GDF-9 levels in spent media compared to Day 6 blastocysts, but TLM parameters showed no impact on pregnancy outcome. In Day 6 blastocysts, the non-pregnant group showed significantly faster embryo development compared to the clinically pregnant group up to the 8-cell stage and start of blastulation. GDF-9 did not show any significant differences between non-pregnant and pregnant groups of Day 5 or Day 6 embryo transfers. ORP in spent media from good quality Day 3 embryos that developed into blastocysts were significantly higher than from those that did not, with no difference in control medium ORP. Spent media from arrested embryos showed lower ORP than their corresponding controls. Arrested embryos had slower development at syngamy, morula, blastulation and blastocyst stages. The single step medium in the EmbryoScope™ is the preferred choice for embryo culture. Insulin or IGF-1 media supplementation or 2% O2 culture did not provide any benefit to embryo development. The C57 mouse strain is more sensitive and may be better to detect changes in culture conditions, and therefore better model for quality control assays. GDF-9 values decrease from Day 5 to Day 6 which gives new insight to understanding the role of GDF-9 during embryogenesis. ORP in spent media indicate that embryos that developed into blastocysts did not contribute to ROS, but maintained ORP balance.
20

A Tale of Two SNPS: Polymorphism Analysis of Toll-like Receptor (TLR) Adapter Proteins: A Dissertation

Nagpal, Kamalpreet 16 May 2011 (has links)
The innate immune system is the first line of defense against invading pathogens. Recognition of microbial ligands by the innate immune system relies on germ-line encoded, evolutionarily conserved receptors called pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are one such family of PRRs and are involved in innate defenses to a variety of microbes. At the core of TLR signaling pathways are Toll interleukin-1 receptor (TIR) domain containing adapter proteins. Much of the specificity of TLR pathways arise from the differential use of these adapter proteins. The TLR signaling cascade that ensues upon ligand recognition is marked by finely orchestrated molecular interactions between the receptor and the TIR domain containing adapter proteins, as well as various downstream kinases and effector molecules. Conserving the structural integrity of the TLR components is thus essential for maintaining a robust host defense system. Sometimes, changes in a protein can be brought about by single nucleotide polymorphisms (SNPs). Studies carried out in this thesis focus on polymorphisms in MyD88 adapter-like (Mal) and myeloid differentiation protein 88 (MyD88), two TIR domain-containing adapter proteins, which incidentally are also highly polymorphic. Mal is a 235 amino acid protein that is involved in TLR2 and TLR4 signaling. The known polymorphisms in the coding region of Mal were screened with an aim to identify SNPs with altered signaling potential. A TIR domain polymorphism, D96N, was found to be completely defective in TLR2 and TLR4 signaling. Immortalized macrophage-like cell lines expressing D96N have impaired cytokine production as well as NF-κB activation. The reason for this loss-of-function phenotype is the inability of Mal D96N to bind the downstream adapter MyD88, an event necessary for signaling to occur. Genotyping studies reveal a very low frequency of this polymorphism in the population. Similar SNP analysis was carried out in myeloid differentiation protein 88 (MyD88). MyD88 is a key signaling adapter in TLR signaling; critical for all TLR pathways except TLR3. In reporter assays, a death domain variant, S34Y, was found to be inactive. Importantly, in reconstituted macrophage-like cell lines derived from knockout mice, MyD88 S34Y was severely compromised in its ability to respond to all MyD88-dependent TLR ligands. S34Y mutant has a dramatically different localization pattern as compared to wild type MyD88. Unlike wild type MyD88, S34Y is unable to form distinct foci in the cells but is present diffused in the cytoplasm. IRAK4, a downstream kinase, colocalizes with MyD88 in these aggregates or “Myddosomes”. S34Y MyD88, however, is unable to assemble into Myddosomes, thus demonstrating that proper cellular localization of MyD88 is a feature required for MyD88 function. This thesis thus describes two loss‐of‐function polymorphisms in TLR adapter proteins Mal and MyD88. It sheds light not only on the structural aspects of signaling by these two proteins, but also has implications for the development of novel pharmaceutical agents.

Page generated in 0.1226 seconds