Spelling suggestions: "subject:"digestion aérobie""
21 |
Valorisation de la fraction organique de résidus agricoles et autres déchets assimilés à l'aide de traitements biologiques anaérobiesLacour, Joaneson 19 March 2012 (has links) (PDF)
Dans les espaces ruraux et périurbains d'Haïti, les déchets et résidus organiques générés principalement par les activités agricoles et agroindustrielles, sont traditionnellement valorisés in situ dans l'alimentation animale comme provende, dans la fertilisation des sols comme amendement organique et/ou à des fins énergétiques comme combustibles. Parallèlement, au niveau des villes, les déchets organiques sont majoritairement éliminés sans aucune forme de ségrégation dans des décharges non contrôlées. Ce travail de recherche a voulu mettre l'accent sur l'opportunité de valoriser ces déchets par la méthanisation approchée comme une voie alternative de traitement biologique des déchets organiques fermentescibles. Le travail d'évaluation des gisements de déchets organiques a mis en évidence que la mauvaise gestion de ces gisements entraine une perte annuelle de matières estimée à près de 2 960 000 tonnes de matière sèche, potentiellement convertibles en 367 500 000 Nm3 de méthane ou 310 000 tep, correspondant à environ 16% de la couverture énergétique finale des ménages à l'échelle nationale. L'approche expérimentale à l'échelle de laboratoire a permis d'évaluer les potentiels biométhanogènes de certaines catégories de déchets d'origine agricole, dont la bagasse, le chou et les déjections de bovins, porcins et poulets, ainsi que les possibilités d'optimisation des cinétiques de digestion anaérobie par des moyens peu onéreux comme la réduction de la taille des particules, l'augmentation du ratio InoculumMV/SubstratMV et les effets de synergie liés à la co-digestion. Des recherches à l'échelle du pilote de terrain ont également été réalisées. Un digesteur a été construit sur le modèle des digesteurs indiens et suivi pendant plusieurs semaines. Malgré les conditions particulières de mise en œuvre du pilote, les essais réalisés ont démontré la faisabilité de la filière avec la technologie rustique sélectionnée. Le temps de retour sur investissement pour un fonctionnement optimal du digesteur pilote a été estimé à 5 ans.
|
22 |
Analyse et contrôle optimal d'un bioréacteur de digestion anaérobie / Optimal control and analysis of anaerobic digestion bioreactorGhouali, Amel 14 December 2015 (has links)
Cette thèse porte sur l'analyse et le contrôle optimal d'un digesteur anaérobie. L'objectif est de proposer une stratégie de commande optimale pour maximiser la quantité de biogaz produit dans un bioréacteur anaérobie sur une période de temps donnée. Plus particulièrement, à partir d'un modèle simple de bioprocédé et en considérant une classe importante de cinétiques de croissance, nous résolvons un problème de maximisation de biogaz produit par le système pendant un temps fixé, en utilisant le taux de dilution D(.) comme variable de contrôle. Dépendant des conditions initiales du système, l'analyse du problème de contrôle optimal fait apparaître des degrés de difficulté très divers. Dans une première partie, nous résolvons le problème dans le cas où le taux de dilution permettant de maximiser le débit de gaz à l'équilibre est à l'intérieur des bornes minimales et maximales du débit d'alimentation pouvant être appliqué au système : il s'agit du cas WDAC (Well Dimensioned Actuator Case). La synthèse du contrôle optimal est obtenue par une approche de comparaison de trajectoires d'un système dynamique. Une étude comparative des solutions exactes avec celle obtenues avec une approche numérique directe en utilisant le logiciel "BOCOP" est faite. Une comparaison des performances du contrôleur optimal avec celles obtenues en appliquant une loi heuristique est discutée. On montre en particulier que les deux lois de commande amènent le système vers le même point optimal. Dans une deuxième partie, dans le cas où l'actionneur est sous- (ou sur-) dimensionné, c'est-à-dire si la valeur du taux de dilution à appliquer pour obtenir le maximum de biogaz à l'équilibre est en dehors de la valeur minimale ou maximale de l'actionneur, alors nous définissons les cas UDAC (Uder dimensioned Actuator Case) et ODAC (Over Dimensioned Actuator Case) que nous résolvons en appliquant le principe du maximum de Pontryagin. / This thesis focuses on the optimal control of an anaerobic digestor for maximizing its biogas production. In particular, using a simple model of the anaerobic digestion process, we derive a control law to maximize the biogas production over a period of time using the dilution rate D(.) as the control variable. Depending on initial conditions and constraints on the actuator, the search for a solution to the optimal control problem reveals very different levels of difficulty. In the first part, we consider that there are no severe constraints on the actuator. In particular, the interval in which the input flow rate lives includes the value which allows the biogas to be maximized at equilibrium. For this case, named WDAC (Well Dimensioned Actuator Case) we solve the optimal control problem using classical tools of differential equations analysis.Numerical simulations illustrate the robustness of the control law with respect to several parameters, notably with respect to initial conditions. We use these results to show that an heuristic control law proposed in the literature is optimal in a certain sense. The optimal trajectories are then compared with those given by a purely numerical optimal control solver (i.e. the "BOCOP" toolkit) which is an open-source toolbox for solving optimal control problems. When the exact analytical solution to the optimal control problem cannot be found, we suggest that such numerical tool can be used to intuiter optimal solutions.In the second part, the problem of maximizing the biogas production is treated when the actuator is under (-over) dimensioned. These are the cases UDAC (Under Dimensioned Actuator Cases) and ODAC (Over Dimensioned Actuator Cases). Then we solve these optimal problems using the Maximum Principle of Pontryagin.
|
23 |
Analyse de modèles de la digestion anaérobie : applications à la modélisation et au contrôle des bioréacteurs / Analysis of anaerobic digestion models : Applications to the modeling and the control of bioreactorsDaoud, Yessmine 28 November 2017 (has links)
Cette thèse porte sur l’analyse mathématique de différents modèles de la digestion anaérobie. Dans la première partie, nous étudions un modèle à quatre étapes avec dégradation enzymatique du substrat (matière organique) qui peut être sous forme solide. Nous étudions l’effet de l’hydrolyse sur le comportement du processus de la digestion anaérobie et de la production du biogaz (méthane et hydrogène). Nous considèrons, dans un premier modèle, que l’hydrolyse se fait d’une manière enzymatique, alors que dans un second, nous supposons qu’elle est réalisée par un compartiment microbien. Les modèles considérés incluent l’inhibition de croissance des bactéries acétogènes, méthanogènes hydrogénétrophes et acétoclastes par plu- sieurs substrats. Pour étudier l’effet de ces inhibitions en présence de l’étape de l’hydrolyse, nous étudions dans un premier temps un modèle sans inhibition. Nous déterminons les équilibres et nous donnons des conditions nécessaires et suffisantes pour leur stabilité. L’existence et la stabilité des équilibres sont illustrées avec des diagrammes opératoires. Nous montrons que le modèle avec hydrolyse enzymatique change la production du méthane et d’hydrogène. En outre, l’introduction du com- partiment hydrolytique microbien donne de nouveaux équilibres et affecte les régions de stabilité. Nous prouvons que la production de biogaz est maximale en un seul point d’équilibre selon les paramètres opératoires et nous déterminons le taux maxi- mal de biogaz produit, dans chaque cas. Dans la deuxième partie, nous nous sommes intéressés à un modèle à deux étapes décrivant les phases de l’acétogénèse et de la méthanogénèse hydrogénotrophe. Le modèle représente une relation de syntrophie entre deux espèces microbiennes (les bactéries acétogènes et méthanogènes hydro- génotrophes), avec deux substrats à l’entrée (l’acide gras volatile et l’hydrogène), incluant les termes de mortalité et l’inhibition de croissance des bactéries acéto- gènes par un excès d’hydrogène dans le système. L’analyse de l’existence et de la stabilité des équilibres du modèle donne naissance à un nouvel équilibre qui peut être stable selon les paramètres opératoires du système. En utilisant les diagrammes opératoires, on remarque que, quelle que soit la région de l’espace considérée, il existe un seul équilibre localement exponentiellement stable. Cette étude est géné- ralisée dans le cas où la croissance des bactéries méthanogènes hydrogénotrophes est inhibée. Ce modèle donne naissance à deux équilibres strictement positifs et une bistabilité. Nous illustrons, en utilisant les diagrammes opératoires l’effet de cette inhibition sur la réduction des régions de coexistence et l’émergence de régions de bistabilité. / This PhD thesis focuses on the mathematical analysis of different anaerobic digestion (AD) models. In a first part, we study a 4-step model with enzymatic degradation of the substrate (organic matter) that can partly be under a solid form. We investigate the effects of hydrolysis on the behavior of the AD process and the production of biogas (namely, the methane and the hydrogen). We consider, in a first model, that the microbial enzymatic activity is constant, then we take into consideration an explicit hydrolytic microbial compartment for the substrate biodegradation. The considered models include the inhibition of acetogens, hydroge- notrophic methanogens and acetoclastic methanogens growth bacteria. To examine the effects of these inhibitions in presence of a hydrolysis step, we first study an inhibition-free model. We determine the steady states and give sufficient and neces- sary conditions for their stability. The existence and stability of the steady states are illustrated by operating diagrams. We prove that modeling the hydrolysis phase by a constant enzymatic activity affects the production of methane and hydrogen. Furthermore, introducing the hydrolytic microbial compartment yields new steady states and affects the stability regions. We prove that the biogas production occurs at only one of the steady states according to the operating parameters and state variables and we determine the maximal rate of biogas produced, in each case. In the second part, we are interested in a reduced and simplified model of the AD pro- cess. We focus on the acetogenesis and hydrogenetrophic methanogenesis phases. The model describes a syntrophic relationship between two microbial species (the acetogenic bacteria and the hydrogenetrophic methanogenic bacteria) with two in- put substrates (the fatty acids and the hydrogen) including both decay terms and inhibition of the acetogenic bacteria growth by an excess of hydrogen in the sys- tem. The existence and stability analysis of the steady states of the model points out the existence of a new equilibrium point which can be stable according to the operating parameters of the system. By means of operating diagrams, we show that, whatever the region of space considered, there exists only one locally exponentially stable steady state. This study is generalized to the case where the growth of the hydrogenetrophic methanogens bacteria is inhibited. This model exhibits a rich be- havior with the existence of two positive steady states and bistability. We illustrate by means of operating diagrams the effect of this inhibition on the reduction of the coexistence region and the emergence of a bistability region.
|
24 |
Rôle des matériaux-supports sur la mise en place du biofilm : application au démarrage d'un procédé de méthanisation / Role of materials-substrata on the implementation of the biofil formation : application to the start-up of an anaerobic biofilm processHabouzit, Frédéric 25 June 2010 (has links)
Dans les systèmes anaérobies de traitement d'eaux usées, la biomasse microbienne complexe incluant archées et bactéries peut être maintenue au sein du procédé par l'adhésion aux supports solides sous forme de biofilm. Le but de ce travail est d'évaluer l'impact des propriétés des matériaux supports sur l'adhésion et la colonisation du consortium méthanogène. Différents matériaux (le polyéthylène, le polypropylène, le chlorure de polyvinyle, l'acrylonitrile butadiène styrène, le polycarbonate, le verre borosilicaté, l'acier inoxydable 304L et Bioflow 30 ®) sont décrits en termes de topographie par la détermination de rugosité et en termes d'énergie de surface par la mesure d'angle de contact. Le biofilm est évalué quantitativement et les structures communautaires bactériennes et archéennes sont observées grâce à l'analyse moléculaire à différents stades de sa mise en place. L'adhésion d'un consortium méthanogène sur les matériaux après deux heures de contact dans un réacteur annulaire rotatif révèle que les communautés adhérées diffèrent de l'inoculum, y compris en termes de proportion archées/bactéries. Ce résultat a un impact significatif sur le démarrage de digesteurs anaérobie car les tendances observées sont confirmées pendant l'établissement du biofilm actif. La mise en oeuvre de différents matériaux dans des réacteurs à lit fixe a permis de montrer que les populations d'archées des biofilms sont spécifiques au matériau et indépendantes de l'inoculum. / In anaerobic wastewater treatment systems, the complex microbial biomass including Archeae and Bacteria may be retained as a biofilm by attachment to solid supports. The aim of this study is to evaluate the impact of support material properties on adhesion and colonization. Various substrata (polyethylene, polypropylene, polyvinyl chloride, acrylonitrile butadiene styrene, polycarbonate, borosilicate glass, stainless steel 304L and Bioflow 30®) are described in terms of topography by determinating of roughness and in terms of surface energy by contact angle measurement. Adhesion is quantified and the bacterial and archaeal community structure are assessed by molecular analysis in various stages of the biofilm development. Adhesion of a methanogenic consortium on these substrata Is measured after two hours of contact in a rotating annular reactor. The result reveals that the adhered communities were different from the parent inocula, including the Archeae/Bacteria ratio. This result has a significant impact on the start-up of anaerobic digesters because the observed tendencies are confirmed during the establishment of the active biofilm. Start-up of anaerobic fixed-bed reactors using different substrata showed that Archeae populations in the biofilms are specific to each of the material and independent of the inoculum.
|
25 |
Fast characterization of the organic matter, instrumentation and modelling for the AD process performances prediction / Caractérisation rapide de la matière organique, instrumentation et modélisation pour la prédiction des performances des procédés de digestion anaérobieCharnier, Cyrille 25 November 2016 (has links)
La digestion anaérobie est un des piliers de l'économie circulaire européenne, produisant du méthane et des engrais organiques à partir de déchets. Le développement de ce secteur passe par la co-digestion et l’optimisation de l'alimentation des procédés. Cela nécessite l'estimation de l'état biologique du digesteur, la caractérisation du substrat ainsi que l’utilisation de modèles prédictifs simulant les performances du digesteur, pour lesquels les solutions actuelles ne sont pas adaptées. Dans cette thèse, un capteur titrimétrique couplant pH et conductivité électrique pour l'estimation des concentrations en acides gras volatils, carbone inorganique et azote ammoniacale a été conçu, améliorant la précision d'estimation des acides gras volatils de 14,5 par rapport aux capteurs actuels. Couplé à l’analyse du biogaz, il permet d'estimer l'état biologique du procédé. En parallèle, une analyse spectroscopique proche-infrarouge, estimant les teneurs en glucides, protéines, lipides, demande chimique en oxygène, rendement et cinétique de production de méthane a été développée réduisant le temps de caractérisation des substrats à quelques minutes. La caractérisation rapide des substrats est utilisée pour implémenter le modèle de digestion anaérobie ADM1 de l’IWA qui prédit les performances d'un digesteur dans des conditions de digestion optimales. Le couplage de l’estimation de l'état biologique à cette approche permet de corriger la prédiction en prenant en compte l'état actuel du digesteur. Cette approche fournit un outil prédictif puissant pour le contrôle avancé des unités de digestion anaérobie ainsi que l'optimisation de la recette d'alimentation. / Anaerobic digestion is an important pillar of the European circular economy, producing methane and organic fertilizers from waste. The development of the anaerobic digestion sector goes through co-digestion and feeding strategy optimization. Its development requires the biological state estimation of the plant, substrate characterization and predictive models simulating the plant performances, for which current solutions are not suitable. In this thesis, a titration sensor coupling pH and electrical conductivity for the estimation of volatile fatty acids, inorganic carbon and ammonia has been designed, improving the accuracy on volatile fatty acids estimation by 14.5 compared to current sensors. Along with biogas analyses, it allows estimating the biological state of the unit. Besides, fast near infrared spectroscopic analysis, estimating in a matter of minute carbohydrate, protein and lipid contents, chemical oxygen demand, methane production yield and kinetics, has been developed. Thus fast substrate characterization is then used to implement a modified Anaerobic Digestion Model n°1 which predicts the performances of a plant under optimal condition. Coupling biological state estimation to this approach enables to correct the prediction with the current state of the plant. This approach provides a powerful predictive tool for advanced control of anaerobic digestion plants and feeding strategy optimization.
|
26 |
Étude du procédé de méthanation en digesteur anaérobie à l'échelle pilote : impact du mélange et du transfert gaz-liquide sur les performances de production de biogaz / Study of methanation process in pilote-scale anaerobic digester : Impact of mixing and gas-liquid mass transfer on performances of biogaz productionLebranchu, Aline 18 December 2017 (has links)
La méthanisation est la bioconversion de la matière organique en digestat et en biogaz. La méthanation biologique consiste à faire réagir de l'H2 avec du CO2 en digesteur anaérobie pour augmenter le taux de CH4 dans le biogaz. Cette thèse vise la valorisation des fumées de cokeries contenant du CO2 et de l’H2 par injection dans un méthaniseur. L'objectif de cette thèse est d'étudier la faisabilité de l'injection des gaz de cokeries dans un méthaniseur et de quantifier la variation du taux de CH4. Pour cela, un réacteur de 100 L a été conçu. Des études préalables en réacteur de 2 L ont été menées expérimentalement et par simulation numérique des écoulements pour définir un mode d’agitation adapté. Il a été montré que l'agitation par un double-ruban hélicoïdal permettait d'accroitre la vitesse de production du biogaz de 50 % en comparaison avec un système d’agitation classique. La perméation membranaire à travers un tube en silicone a été utilisée pour l’injection du gaz dans le digestat. A l’aide du pilote conçu, fonctionnant pendant 152 jours, une expérimentation d’hydrogénation en continu a été réalisée avant l’injection simultanée d’H2 et de CO2. L'injection d'hydrogène pur a augmenté le taux de CH4 de 57,5 à 68,2 % et abaissé celui du CO2 de 42,3 à 31,5 %. L'hydrogène injecté est entièrement consommé, ce qui a validé le choix de la perméation membranaire comme système d’apport de gaz en milieu visqueux et qui a montré que la quantité d'H2 injectée était limitante. L'injection supplémentaire de CO2 en proportions des gaz de cokeries s'est traduite par une augmentation du débit global de biogaz de 5,0 à 5,6 L/h, composé d’environ 35 % en CO2 et 65 % en CH4 / Anaerobic digestion is the bioconversion of organic matter into digestate and biogas. Biological methanation consists in the reaction between H2 and CO2 in anaerobic digester to increase the level of CH4 in the biogas. This thesis aims at recovering the fumes from coking plants containing CO2 and H2 by injection into an anaerobic digester. The objective of this thesis is to study the feasibility of injecting coke oven gases into an anaerobic digester and to quantify the variations of the CH4 content. To this end, a 100 L reactor has been designed. Previous studies in 2 L reactor were performed experimentally and by computational fluid dynamics to define a suitable design of stirrer. It has been shown that stirring by a double helical ribbon increases the biogas production rate by 50 % in comparison with a conventional stirring system. Membrane permeation through a silicone tube was used to inject the gas into the digestate. 152 days experiment was performed in this pilot with a continuous hydrogenation step prior to the simultaneous injection of H2 and CO2. Injection of pure hydrogen increased the CH4 level from 57.5 % to 68.2 % and decreased that of CO2 from 42.3 to 31.5 %. The injected hydrogen is entirely consumed. This result validated the choice of membrane permeation as a gas supply system in viscous medium but showed that the amount of H2 injected was limiting. The additional injection of CO2 in proportions of coke oven gases resulted in an increase in the overall biogas flow rate from 5.0 to 5.6 L h-1, composed of about 35 % CO2 and 65 % CH4
|
27 |
Comportement et caractérisation des boues d'un système de traitement des eaux usées par étangs aérés augmentésRidyard, Gabrielle 10 February 2024 (has links)
Le traitement des eaux usées par étangs aérés facultatifs est la méthode de traitement la plus répandue au Québec. Depuis l’adoption du ROMAEU (Règlement sur les ouvrages municipaux d’assainissement des eaux usées), plusieurs municipalités doivent faire une mise à niveau de leur station de traitement pour se conformer aux nouvelles normes de rejet, soit une concentration à l’effluent en MeS de 25 mg/L ainsi qu’une concentration en DBO5C de 25 mg/L. De plus, plusieurs stations ont, à ce jour, atteint leur vie utile et/ou leurs charges hydraulique ou organique sont dépassées. Ainsi, pour augmenter la capacité des étangs, quelques solutions ont été développées, dont le système KAMAKMC conçu par la compagnie Bionest, qui consiste en deux réacteurs à milieu fixe insérés dans un étang entre trois zones de décantation. Peu de données sont actuellement disponibles pour assurer une compréhension approfondie de ce procédé et de ses sous-systèmes. La présente étude consiste donc en l’analyse du comportement des boues au sein de cette nouvelle filière de traitement, principalement dans les zones de décantation. L’étude a été réalisée sur un système KAMAKMC installé dans le premier tiers de l’étang aéré de Grandes-Piles, en Mauricie. Le suivi de l’accumulation de boues a été effectué de mai 2016 à mai 2017 inclusivement, à raison d’une fois par mois. Les mesures ont été prises à l’aide d’une jauge à boues à différents points dans les zones de clarification. À titre de comparaison, des mesures avec un sonar ont été effectuées 3 fois durant la période du suivi (avril et octobre 2016 ainsi qu’en mai 2017). En parallèle aux mesures de hauteurs de boues, un échantillonnage a été effectué pour faire certaines analyses, dont les solides totaux (ST) et les solides totaux volatils (STV). De plus, une mesure de gaz in situ ainsi qu’en laboratoire ont été réalisées pendant la période estivale permettant de mieux caractériser la digestion anaérobie survenant dans ces zones de décantation. La température de l’eau durant la période de suivi a varié entre approximativement 2 °C et 22°C. Les taux d’accumulation trouvés pour Cl2 et Cl3 sont respectivement de 0,05m3an-1hab-1 et de 0,06m3an-1hab-1 . Par contre, la première zone de décantation possède un taux d’accumulation de boues annuel de 0. Cela suggère que l’aération fournie dans Cl1 limite l’accumulation de boues à 0,6m et que les solides primaires se déplacent vers Cl2 et Cl3. À partir du ratio STV/ST, il a été possible de remarquer qu’en température froide, le ratio était plus élevé dans les zones de décantation, tandis qu’en température chaude ce ratio était diminué. Pour la récolte de gaz in situ, des valeurs de 18 LCH4m-2d -1 et 4 LCH4m-2d -1 ont été trouvées dans ces deux zones et ils étaient composés de 62,8% de méthane en moyenne et 1,4% de CO2. Le peu de gaz carbonique est probablement attribuable à une solubilisation du gaz dans l’eau sous-jacente au montage de récolte de gaz. / In Quebec, wastewaters are mostly treated with aerated facultative lagoons. Since the adoption of the Regulation respecting municipal wastewater treatment works, many municipalities need to upgrade and improve their wastewater treatment station to comply with the new requirements, which are a concentration of suspended solids (SS) less than or equal to 25 mg/L and a concentration of the 5-day carbonaceous biochemical oxygen demand (CBOD5) less than or equal to 25 mg/L. Moreover, many stations have arrived at the end of their operating life expectancy and other stations have even exceeded their organic loads or flowrate loads. One solution that would help these municipalities would be to improve these stations with the new KAMAKMC technology developed by Bionest. This new technology incorporates two reactors containing BIONEST® inert media placed directly in a lagoon, between three clarification zones. At this time, there is a lack of technical data to ensure a good understanding of the KAMAKMC system. The aim of the present study is to characterize sludge accumulations in this new technology, especially in the clarification zones. Tests were conducted with a KAMAKMC system installed in the first third of an aerated lagoon belonging to the municipality of Grandes-Piles, in province of Québec. Between May 2016 and May 2017, measurements of sludge accumulations are taken monthly with a sludge judge in the clarification zones. To compare these measurements, sonar testing is taken 3 times during the year (April and October 2016 and May 2017). Sludge samples are taken during the year to measure total suspended solids (TSS) and volatile suspended solids (VSS). Moreover, gas sampling equipment sits over the lagoon to retrieve samples during the summer months of 2016, to allow a better characterization of anaerobic digestion in the zones. Water temperature during this follow up was between 2°C and 22°C. The sludge accumulation rate in the second and the third clarification zones were 0,05m3y -1hab-1 et de 0,06m3y -1hab-1 . In fact, the first clarification zone had a sludge accumulation rate of 0. This indicates that aeration in the first zone was high, restraining the sludge accumulation to a value of 0,6m and that primary solids were probably displaced in the next two clarification zone due to excessive aeration. The VSS/TSS ratio indicates that in cold temperature, the ratio was constant in every zone, while during the summer months a lower ratio was observed. Values of 18 LCH4m-2d -1 and 4 LCH4m2d -1 in Cl2 and Cl3 were found with the gas collector on the lagoon. Average methane concentrations in the gas collector were 62,8% and 1,4% of CO2. The low percentage of CO2 might be caused by the gas solubilization in the water.
|
28 |
Impact des facteurs biotiques sur le réseau métabolique des écosystèmes producteurs d’hydrogène par voie fermentaire en culture mixte / Impact of biotic factors on the metabolic network of fermentative hydrogen-producing ecosystems in mixed cultureRafrafi, Yan 28 June 2012 (has links)
De nos jours, les cultures mixtes sont considérées comme une sérieuse alternative aux cultures pures pour les procédés de biotechnologie. En effet, les cultures mixtes peuvent fonctionner en réacteur continu, dans des conditions non-stériles et traiter une grande variété de substrats organiques. La principale restriction de l'utilisation de ces bioprocédés en cultures mixtes réside dans leur instabilité liée à la présence de voies métaboliques non désirées résultant d'interactions microbiennes complexes. Notamment, le rôle des bactéries de faible abondance reste à être élucidé. Ce travail a donc consisté, dans un premier temps à déterminer le rôle des bactéries minoritaires dans la production d'hydrogène par voie fermentaire en utilisant un chémostat alimenté en continu avec un milieu à base de glucose. Sept inocula ont été cultivés dans les mêmes conditions opératoires. De façon remarquable, Clostridium pasteurianum a été retrouvé comme espèce dominante de l'écosystème six fois sur sept. Seules la nature et la diversité des espèces minoritaires variaient d'un écosystème à l'autre. Ainsi, il a été montré que la structure des communautés microbiennes a une influence significative sur la production de bio-hydrogène. Au sein de ces communautés, les bactéries en proportion minoritaires jouent un rôle clé en orientant le métabolisme globale de l'écosystème. La deuxième étape de ce travail a consisté à utiliser certaines de ces espèces minoritaires comme Ingénieurs Ecologiques des Ecosystèmes microbiens (IEEM). Pour cela, la structure d'une communauté microbienne productrice d'hydrogène a été modifiée artificiellement en introduisant des souches bactériennes exogènes aux fonctions redondantes et/ou complémentaires des souches indigènes. Les résultats en réacteur batch ont montré que les performances de production d'hydrogène pouvaient être améliorées jusqu'à un facteur 3,5 par l'ajout de certaines souches. Dans l'ensemble, les résultats obtenus ne peuvent être expliqués par de simples interactions trophiques et suggèrent la présence de mécanismes d'interactions de coopération entre microorganismes. De plus, sous des conditions opératoires plus favorables (inoculum, milieu), l'insertion de certaines espèces minoritaires a permis plutôt de stabiliser le métabolisme de l'écosystème microbien sans pour autant en affecter favorablement la production d'hydrogène. Dans tous les cas, les interactions compétitives n'ont pas été favorables à la production d'hydrogène. Enfin, des essais en réacteur continu ont montré que le mode d'implantation des souches peut être un facteur primordial pour l'utilisation d'IEEM. En conclusion, ce travail a montré la potentialité d'utiliser des bactéries exogènes, en proportions minoritaires, comme facteurs biotiques pour stabiliser et/ou orienter les métabolismes microbiens vers des fonctions d'intérêt au sein des cultures mixtes microbiennes. / Nowadays mixed cultures are considered as a serious alternative to pure cultures in biotechnological processes. Mixed cultures can be operated continuously, under unsterile conditions and from various organic substrates. One of the most constraints remains the chronic instability of the mixed culture processes due to the presence of unwanted metabolic pathways resulting from complex microbial interactions. More particularly the role of bacteria in low abundance remains to be elucidated. Therefore this work consisted initially to determine the contribution of sub-dominant bacteria to fermentative hydrogen production using a chemostat continuously fed with a glucose-based medium. Seven inocula were grown under the same operating conditions. Interestingly, Clostridium pasteurianum was found as dominant in six assays on seven at steady state. Only the minority bacterial population differed with regards to their identity and diversity. Acting as true keystone species, these minority bacteria impacted substantially the metabolic network of the overall ecosystem despite their low abundance. In a second step, this work consisted in using some of these minority species as Ecological Engineers of Microbial Ecosystem (EEME). In order to study this aspect, the structure of a hydrogen-producing microbial community has been artificially modified by adding exogenous bacterial strains with redundant functions and/or complementary native strains. Results in batch reactors have shown that the hydrogen production performances could be improved to a 3.5 factor by the addition of certain strains. Results obtained can not be explained by simple trophic interactions and suggest the presence of interaction mechanism of cooperation among microorganisms. Moreover, under more favourable operating conditions (inoculum, culture medium), the addition of certain species in low abundance could stabilize the metabolism of microbial ecosystem without necessarily favourably affect the hydrogen production. In all cases, competitive interactions were not favourable for hydrogen production. Trials were then realised in continuous reactors. These trials have shown that the method used to implant strains in reactors could be a key factor for using the EEME.As a conclusion, this study has shown the potential to use exogenous bacteria, in minority proportions, as biotic factors to stabilised and/or guides microbial metabolisms to functions of interest within microbial mixed cultures.
|
29 |
Application of pretreatments to enhance biohydrogen and/or biomethane from lignocellulosic residues : linking performances to compositional and structural features / Application de prétraitements pour augmenter la production de biohydrogène et/ou méthane à partir de résidus lignocellulosiques : lien entre performances et paramètres structuraux et compositionnelsMonlau, Florian 12 October 2012 (has links)
Dans le futur, différentes sources d'énergies renouvelables comme les énergies de seconde génération produites à partir de déchets lignocellulosiques seront nécessaires pour palier à l'épuisement des énergies fossiles. Parmi ces énergies de seconde génération, le biohydrogène, le méthane et l'hythane produits à partir de procédés fermentaires anaérobies représentent des alternatives prometteuses. Cependant la production de biohydrogène et de méthane à partir de résidus lignocellulosiques est limitée par leurs structures récalcitrantes et une étape de prétraitement en amont des procédés fermentaires est souvent nécessaire. Ce travail a pour but d'étudier l'impact des facteurs biochimiques et structurels des résidus lignocellulosiques sur les performances de production d'hydrogène et de méthane, pour pouvoir par la suite développer des stratégies de prétaitements adaptées. Tout d'abord, sur un panel de vingt substrats lignocellulosiques, les potentiels hydrogène et méthane ont été corrélés aux paramètres biochimiques et structurels. Les résultats ont mis en évidence que le potentiel hydrogène est uniquement corrélé positivement à la teneur en sucres solubles. La production de méthane quant à elle est négativement corrélée à la teneur en lignine et, à un moindre degré, à la cristallinité de la cellulose, mais positivement à la teneur en sucres solubles, holocelluloses amorphes et protéines. Par la suite, des stratégies de prétraitements ont été établies pour améliorer la production d'hydrogène et de méthane. Le couplage prétaitements alcalins/enzymatique ainsi que les prétraitements à l'acide dilué, efficaces pour solubiliser les holocelluloses en sucres solubles ont été appliqués en amont de la production d'hydrogène. En combinant le pretraitement alcalin avec une hydrolyse enzymatique, le potentiel hydrogène des tiges de tournesol fut multiplié par quinze. En revanche, suite aux prétraitements acides, la production d'hydrogène fut inhibée à cause de la libération de sous-produits (furfural, 5-HMF et composés phénoliques) engendrant un changement d'espèces bactériennes vers des espèces non productrices d'hydrogène. Pour la production de méthane, cinq prétraitements thermo-chimiques (NaOH, H2O2, Ca(OH)2, HCl and FeCl3) efficaces pour délignifier ou solubiliser les holocelluloses ont été étudiés. Parmi ces prétraitements, la meilleure condition fut 55°C à une concentration de 4% NaOH pendant 24 h, résulant en une augmentation du potentiel méthane variant de 29 à 44 % en fonction des tiges de tournesol. Cette condition fut par la suite validée en réacteurs anaérobies continusavec une augmentation de 26.5% de la production de méthane. Un procédé à deux étages couplant la production d'hydrogène en batch suivi de la production de méthane en continu fut aussi étudié. Néanmoins, aucune différence significative en termes d'énergie produite ne fut observée entre les procédés à deux étages (H2/CH4) et à un étage (CH4). / In the future, various forms of renewable energy, such as second generation biofuels from lignocellulosic residues, will be required to replace fossil fuels. Among these, biohydrogen and methane produced through fermentative processes appear as interesting candidates. However, biohydrogen and/or methane production of lignocellulosic residues is often limited by the recalcitrant structure and a pretreatment step prior to fermentative processes is often required. Up to date, informations on lignocellulosic characteristics limiting both hydrogen and methane production are limited.Therefore, this work aims to investigate the effect of compositional and structural features of lignocellulosic residues on biohydrogen and methane performances for further developping appropriate pretreatments strategies. Firstly, a panel of twenty lignocellulosic residues was used to correlate both hydrogen and methane potentials with the compositional and structural characteristics. The results showed that hydrogen potential positively correlated with soluble carbohydrates only. Secondly, methane potential correlated negatively with lignin content and, in a lesser extent, with crystalline cellulose, but positively with the soluble carbohydrates, amorphous holocelluloses and protein contents. Pretreatments strategies were further developed to enhance both hydrogen and methane production of sunflower stalks. Dilute-acid and combined alkaline-enzymatic pretreatments, which were found efficient in solubilizing holocelluloses into soluble carbohydrates, were applied prior to biohydrogen potential tests. By combined alkaline-enzymatic pretreatment, hydrogen potential was fifteen times more than that of untreated samples. On the contrary, hydrogen production was inhibited after dilute-acid pretreatments due to the release of byproducts (furfural, 5-HMF and phenolic compounds) that led to microbial communities shift toward no hydrogen producing bacteria. Similarly, methane production, five thermo-chemical pretreatments (NaOH, H2O2, Ca(OH)2, HCl and FeCl3) found efficient in delignification or solubilization of holocelluloses, were considered. Among these pretreatments, the best conditions were 55°C with 4% NaOH for 24 h and led to an increase of 29-44 % in methane potential of sunflower stalks. This pretreatment condition was validated in one stage anaerobic mesophilic continuous digester for methane production and was found efficient to enhance from 26.5% the total energy produced compared to one stage-CH4 alone. Two-stage H2 (batch) / CH4 (continuous) process was also investigated. Nevertheless, in term of energy produced, no significant differences were observed between one-stage CH4 and two-stage H2 /CH4.
|
30 |
Aptitude d’écosystèmes anaérobies industriels à produire du méthane à partir d’éthanol en conditions psychrophile, mésophile et thermophile / Ability of industrial anaerobic ecosystems to produce methane from ethanol in psychrophilic, mesophilic and thermophilic conditionsMabala, Jojo Charlie 03 October 2012 (has links)
Le processus de dégradation anaérobie de la matière organique est un phénomène naturel largement répandu sur terre (ex. marais, lacs, rizières, systèmes digestifs d'animaux et humains). Une très grande diversité microbienne est entretenue durant ce processus, traduisant une diversité de voies métaboliques impliquées. Lorsqu'elle est complète, la digestion anaérobie aboutie à la formation de biogaz (mélange de méthane et de dioxyde de carbone). En termes de biotechnologie, le traitement par voie anaérobie de pollutions organiques permet de réduire le volume de déchets en générant du méthane valorisable sous plusieurs formes (électricité, chaleur, gaz naturel, biocarburant). Cependant, les digesteurs industriels sont optimisés pour un fonctionnement à 35°C ou à 55°C, ce qui nécessite un apport exogène d'énergie de maintenance. Ainsi, les travaux de thèse se sont intéressés à l'étude de la capacité d'adaptation de divers écosystèmes anaérobies industriels couvrant une variété de procédés et de conditions opératoires à convertir l'éthanol en biogaz à différentes températures. La première phase de l'étude avait pour but le conditionnement, en réacteurs de laboratoire d'écosystèmes à leur température d'origine avec un substrat facilement biodégradable (éthanol). Ensuite, les performances des communautés microbiennes (le potentiel méthanogène maximal et la cinétique de dégradation) ont été estimées sur un gradient de température de 5°C à 55°C en fioles. La phase de conditionnement des écosystèmes en réacteur batch a montré que la production de biogaz avoisinait la production théorique et que cette production s'accompagnait d'une diminution de la durée de réaction avec ajout successif du substrat. De plus, les cinétiques de production de biogaz obtenues les variaient fortement d'un écosystème à l'autre. Des profils d'empreintes moléculaires (CE-SSCP) des communautés bactériennes et archées ont été réalisés au début et à la fin du conditionnement. Ces profils de communauté ont été comparés entre eux par analyse en composante principale (ACP). Les populations bactériennes qui assuraient une performance efficiente étaient différentes de celles qui garantissaient une bonne capacité d'adaptation. Par ailleurs, le potentiel d'adaptation dépendait de la présence de populations d'Archaea méthanogènes bien spécifiques. En plaçant ensuite les écosystèmes conditionnés dans des conditions de température éloignées de la température d'origine, seuls les écosystèmes mésophiles se sont acclimatés aux températures psychrophiles. Comme attendu, l'activé spécifique maximale des méthanogènes était toujours obtenue à la température d'origine de l'écosystème. L'analyse des communautés bactériennes et archées à la fin de la période d'acclimatation a révélé que l'acclimatation des écosystèmes thermophiles et mésophiles à des températures plus faibles ne modifiait que légèrement la structure des communautés microbiennes. En revanche, des changements plus importants étaient obtenus lorsque la température d'incubation était augmentée par rapport à la température d'origine de l'écosystème. En résumé, l'étude de l'effet de la température d'incubation (de 5°C à 55°C) sur l'activité fermentaire et sur la structure des populations microbiennes est un bon modèle d'étude au laboratoire pour appréhender l'impact d'un facteur abiotique sur la dynamique structurelle et fonctionnelle d'une communauté microbienne complexe. / The process of anaerobic degradation of organic matter is a natural phenomenon widespread on Earth (eg, marshes, lakes, rice fields, digestive systems of animals and humans). A high microbial diversity is maintained during this process, reflecting a diversity of metabolic pathways involved. When complete, the anaerobic digestion accomplished in the formation of biogas (methane mixture and carbon dioxide). In terms of biotechnology, anaerobic treatment of organic pollution reduces the volume of waste and generates methane recoverable in several forms (electricity, heat, natural gas, biofuels). However, industrial digesters are optimized for operation at 35 ° C or 55 ° C, which requires exogenous energy maintenance. Thus, the thesis is interested in the study of the adaptability of various anaerobic ecosystems covering a variety of industrial processes and operating conditions to convert ethanol into biogas at different temperatures. The first phase of the study was to the conditioning, in laboratory reactors ecosystems to their original temperature with a readily biodegradable substrate (ethanol). Then, the performances of microbial communities (the maximum methanogenic potential and degradation kinetics) were estimated on a temperature gradient of 5 ° C to 55 ° C in glass bottles. The conditioning phase of the ecosystems in batch reactor showed that the biogas averaged theoretical production and this production was followed by a decrease in reaction time with successive addition of the substrate. In addition, the kinetics of the biogas obtained varied greatly from one ecosystem to another. Molecular fingerprinting profiles (CE-SSCP) of bacterial and archaeal communities were performed at the beginning and at the end of conditioning. These community profiles were compared with each other by principal component analysis (PCA). Bacterial populations that ensured efficient performance were different from those that ensured a good adaptability. In addition, the potential for adaptation depended on the presence of very specific methanogenic Archaea populations. When placing ecosystems conditioned in temperature away from the original temperature, only mesophilic ecosystems adapted to psychrophilic temperatures. As expected, specific methanogenic activity was always obtained at the original temperature of the ecosystem. Analysis of bacterial and archaeal communities at the end of the acclimation period revealed that acclimation thermophilic and mesophilic ecosystems to lower temperatures only modified slightly the structure of microbial communities. On the other hand, more significant changes were obtained when the incubation temperature was increased in comparison to the original temperature of the ecosystem. In summary, the study of the effect of incubation temperature (5 ° C to 55 ° C) on the fermentation activity and microbial population structure is a good model for laboratory study to understand the impact of abiotic factor on the structural and functional dynamics of a complex microbial community.
|
Page generated in 0.1104 seconds