1 |
Synthesis and Characterization of Bulky Dipyrromethene Complexes of Boron throughImproved Dipyrromethene SynthesisSaleh, Fatemeh January 2020 (has links)
No description available.
|
2 |
Synthesis and Characterization of Dipyrromethene Complexes of AntimonyKowalski, Vincent Michael January 2017 (has links)
No description available.
|
3 |
Synthesis and Characterization of Indole-Based Zinc Dipyrrin PhotosensitizersSanza, Jean-Pierre 01 May 2024 (has links) (PDF)
Metal complexes of dipyrromethene (dipyrrins) used as sensitizers in photocatalysis offer a way to harness solar energy in chemical bonds to create new fuels. This offers the dual role of reducing fossil fuel dependence and atmospheric CO2 levels. Traditionally, metal dipyrrin complexes are synthesized using substituted pyrroles, aldehydes, and transition metals. Indoles have a more expanded pi-electron system and their dipyrrin-type complex may exhibit visible light absorption, suggesting that they can act as photosensitizers for CO2 reduction processes. A novel indoledipyrromethene was synthesized using unsubstituted indole and mesitaldehyde. The complex exhibits visible light absorption at 422 nm. Its Zn coordinated complex it likely to exhibit blue-green light absorption making it suitable as a sensitizer for CO2 photoreduction and other applications.
|
4 |
Creative Synthesis of Novel Optically-Functional Materials by Modified BODIPYs with Unique Structures / 特殊構造BODIPYによる新寄光機能性材料の創出Yamane, Honami 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20401号 / 工博第4338号 / 新制||工||1672(附属図書館) / 京都大学大学院工学研究科高分子化学専攻 / (主査)教授 中條 善樹, 教授 赤木 和夫, 教授 秋吉 一成 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
5 |
An Unexpected “Bodipy-Like” Dipyrromethene With pH Dependent On/Off Fluorescent PropertiesOwen, Spencer Austin 13 July 2022 (has links)
No description available.
|
6 |
Spectral, Electrochemical, and Photochemical Characterization of Donor-Acceptor Supramolecular SystemsLiyanage, Anuradha Vidyani 07 1900 (has links)
This dissertation research work focuses on the investigation of novel donor-acceptor systems elucidating their photochemical properties, anion binding, and their potential application in the development of artificial photosynthetic systems. The explored systems are based on oxoporphyrinogen (OxPs), porphyrins, fullerene, and boron dipyrromethene (BODIPY) based donor-acceptor systems. The photochemical properties of novel molecular systems were elucidated using UV-vis spectroscopy, fluorescence spectroscopy, electrochemical methods, computational calculations, and ultrafast transient absorption spectroscopy. A novel BODIPY-oxoporphyrinogen dyad which is able to bind with fluoride anion promoting the excited state ultrafast electron and energy transfer events mimicking the primary events in natural photosynthesis was introduced. Further, self-assembly of supramolecular complexes based on oxoporphyrinogens, fullerene, and different zinc porphyrin dimers was explored. The formed self-assembled complexes have shown photoinduced electron transfer. A novel push-pull supramolecular construct based on the spiro-locked N-heterocycle-fused zinc porphyrin was studied. The excited state charge separation and stabilization of this push-pull system was enhanced by the complexation with fluoride anion. Also, the effect of BODIPY functionalization and linkers on the electron transfer properties of a series of carbazole–BODIPY and phenothiazine-BODIPY dyads were investigated. These findings are important to develop advanced and efficient BODIPY-based donor-acceptor systems for efficient light harvesting applications. The entire study aims to expand our understanding of these systems and contribute towards the advancement of sustainable energy technologies.
|
7 |
Development of Bulky Dipyrromethene Complexes of Aluminum, Zinc, and RhodiumGianopoulos, Christopher G. January 2014 (has links)
No description available.
|
8 |
Ligands Phosphine-diène et Salicylamidines : chimie de coordination, catalyse et thérapie / Phosphine-diène and Salicylamidines ligands : coordination chemistry, catalysis and therapyChotard, Florian 29 September 2017 (has links)
Les travaux de thèse retranscrits dans ce mémoire ont pour sujet l’élaboration de nouveaux ligands pour la coordination de métaux et l’application des complexes correspondants pour la catalyse et la thérapie.La première partie du manuscrit traite de l’élaboration de ligands phosphine-diène, de leurs analogues saturés et des complexes arène-ruthénium correspondants. Le départ d’arène permet au ligand phosphine-cycloheptadiène de former avec le ruthénium un complexe bimétallique cationique où le ligand est chélate κ-P/diène-η4. Ces complexes ont été appliqués en catalyse pour l’addition radicalaire par transfert d’atome (ATRA) de CCl4 au styrène. Lors de l’utilisation de conditions dures, la supériorité des complexes « diène » a pu être mise en évidence par rapport aux analogues saturés.La seconde partie rapporte le développement de nouveaux analogues de base de Schiff : les « salicylamidines ». L’utilisation de différentes voies de synthèse a permis d’obtenir plusieurs générations de ligands. Ils ont été utilisés pour la coordination de métaux et sont particulièrement adaptés à la formation de complexes avec le zinc et l’aluminium. Certains de ces composés ont été utilisés pour la polymérisation par ouverture de cycle (ROP) de lactides et ont démontré une bonne activité.La dernière partie concerne la synthèse et l’évaluation de complexes métalliques comme agents anticancéreux. Des complexes phosphine-or et phosphine-ruthénium ont été synthétisés et évalués pour leur activité antiproliférative. Les complexes phosphine-or présentent une activité remarquable, meilleure que le cisplatine. La nature de l’arène des complexes phosphine-ruthénium influe fortement sur leur activité, les dérivés « benzoate d’éthyle » donnent des cytotoxicités significativement meilleures que les analogues « p-cymène ». Des complexes de titane et de zirconium avec un ligand de type aza-dipyrrométhène ont été synthétisés. Une étude préliminaire de leurs propriétés photophysiques a été réalisée et a indiqué que les composés étaient fluorescents. L’étude de leur propriété anticancéreuse a démontré une faible cytotoxicité. / The subject of this thesis concerns the development of new ligands, their coordination chemistry, and the synthesis of the corresponding metal complexes for catalysis and therapy.The first part of this work relates to the synthesis of diene-phosphine ligands, their saturated analogs, and the corresponding arene-ruthenium complexes. Arene decoordination allows the formation of a cationic bimetallic complex where the ligand is diène-η4/κ-P coordinated to the ruthenium. These complexes have been applied to atom transfer radical addition (ATRA) of CCl4 to styrene. When harsh reaction conditions are used, the superiority of the “diene” complexes is highlighted comparing to saturated analogs.The second part concerns the development of new Schiff base analogs: the “salicylamidines”. Several ligand generations have been obtained following different synthetic paths. They have been used for metal coordination, and are especially well-suited for the formation of zinc and aluminium complexes. Some of the compounds have been applied to ring opening polymerization (ROP) of lactides, and demonstrated good activity.The last part reports on the synthesis and assessment of metal-based anticancer agents. Some phosphine-gold and phosphine-ruthenium complexes have been synthesized and tested for their antiproliferative activity on several cancer cell lines. The phosphine-gold complexes showed impressive activities, better than cisplatine. Activity of phosphine-ruthenium is strongly influenced by the nature of the arene, ethyl benzoate derivatives are significantly more cytotoxic than p-cymene ones. Titanium and zirconium complexes with aza-dipyrromethene ligand were synthesized. Preliminary photophysical study was performed and indicated fluorescence. Their anticancer properties were assessed, and they are only poorly cytotoxic.
|
9 |
Investigations of Structure-Property Relationships in NPI and BODIPY Based Luminescent MaterialMukherjee, Sanjoy January 2015 (has links) (PDF)
Luminescent materials find numerous applications in recent times and have enriched human lives in several different ways. From display and lighting technologies to security, sensing and biological investigations, luminescent organic compounds have become indispensible and often preferred over their inorganic counterparts. The versatility of organic materials arises from their comparative low costs, ease of fine-tuning, low toxicity and the possibility to develop flexible devices. Even until very recent times, the investigations and usage of organic luminescent materials were mostly limited to solution-state properties. However, with progress of available characterisation techniques and parallel development of their usage in solid-state devices and other applications (e.g. security, forensics, sensing etc.), significantly greater attention has been paid to the development and investigations of solid-state emissive organic materials. In solid-state applications, apart from the molecular properties of any given material, their cumulative i.e. bulk physical properties are of even greater importance. Thus, investigations of structure-property relationships in organic luminescent compounds to understand their molecular and bulk properties are of fundamental interest. In this thesis, NPI (1,8-naphthalimide) and BODIPY (boron-dipyrromethene) dyes were investigated to provide a broad overview of their structure-property correlations. Among commonly encountered organic luminescent materials, NPIs and BODIPYs have emerged as two broad classes of luminescent organic compounds, finding applications as functional luminescent materials in various fields. However, lack of understanding for controlling the cumulative emissive properties of these compounds has limited their usage as active solid-state emitters in various applications. This thesis presents several new insights into the molecular and bulk emissive properties of these two classes of luminescent dyes (NPIs and BODIPYs). The contents of the six chapters contained in this thesis are summarised below.
Chapter 1 summarises the available understanding of the basic concepts of photoluminescence and the design strategies to develop solid-state luminescent and AIE (aggregation-induced emission) active materials. This chapter also emphasises in the basic nature of the NPI and BODIPY compounds, their substitution patterns and their inherent characteristics and touches upon the relatively unexplored properties of NPI and BODIPY based materials. The importance and scope of the work reported in the thesis is outlined at the end of the chapter.
Chapter 2 describes a detailed investigation of a series of seven (4-oxoaryl substituted) NPI compounds (1-7) providing an insight into the molecular and cumulative photophysical
behaviour of these compounds. The low ICT characteristics of the NPIs, coupled with the
twisted geometry, facilitated solid-state
luminescence in these materials. The solution and solid-state luminescent properties of these compounds can be directly correlated to their structural rigidity, nature of substituents and solid-state intermolecular interactions (e.g. π-π stacking, C-H•••O interactions etc.). The solid-state crystal structures of the NPI siblings are profoundly affected by the pendant substituents. All of the NPIs (1-7) show antiparallel dimeric π-π stacking interactions in the solid-state which can further extend in parallel, alternate, orthogonal or lateral fashion depending on the steric and electronic nature of the C-4′ substituents. Structural investigations including Hirsfeld surface analysis methods reveal that while strongly interacting systems show weak to moderate emission in their condensed states, weakly interacting systems show strong emission yields under the same conditions. The nature of packing and extended structures also affects the emission colors of the NPIs in the solid-state. DFT computational studies were utilized to understand the molecular and cumulative electronic behavior of the NPIs. Apart from the investigation of solid-state luminescence, other functional potentials of these NPIs were also explored. One of the compounds (i.e. 4) shows chemodosimetric response towards aqueous Hg(II) species with a ‘turn-on’ response. Also, depending on the molecular flexibility of the compounds, promising AIEE (aggregation-induced emission enhancement) features were observed in these NPIs. Later (in Chapter 3), we developed a systematic investigation in a series of purely organic NPIs, restricting various parameters, to attain a thorough understanding of such AIEE properties.
Chapter 3 describes a detailed experimental and computational study in order gain an insight into the AIE (aggregation-induced emission) and AIEE mechanisms in NPI compounds.
Systematic structural perturbation was used to fine tune the luminescence properties of three new 1,8-naphthalimides (8-10) in solution and as aggregates. The NPIs (8-10) show blue emission in solution state and the fluorescence quantum yields depend on their molecular rigidity. In concentrated solutions of the NPIs, intermolecular interactions were found to result in quenching of fluorescence. In contrast, upon aggregation (in THF:H2O mixtures), two of the NPIs show aggregation-induced-emission-enhancement (AIEE). The NPIs also show moderately high solid-state emission quantum yields (~10-12.7 %). The AIEE behaviors of the NPIs depend on their molecular rigidity and nature of intermolecular interactions. The NPIs (8-10) show different extents of intermolecular (π-π and C-H•••O) interactions in their solid-state structures depending on their substituents. Detailed photophysical, computational and structural investigations suggest that only an optimal balance of structural flexibility and intermolecular communication is the effective recipe for achieving AIEE characteristics in these NPIs.
Chapter 4 presents the design, synthesis and detailed investigations and potential applications of a series of NPI-BODIPY dyads (11-13). The NPI and BODIPY moieties in these dyads are electronically separated by oxoaryl bridges and the compounds only differ structurally with respect to methyl substitutions on the BODIPY fluorophore. The NPI and BODIPY moieties retain their optical features in these molecular dyads (11- 13). Dyads 11-13 show dual emission in solution state originating from the two separate fluorescent units. The variations of the dual emission in these compounds are controlled by the structural flexibility of the systems. The
dyads also show significant AIES (Aggregation-Induced-Emission Switching) features upon formation of nano-aggregates in THF-H2O mixtures with visual changes in emission from green to red color. Whereas the flexible and aggregation prone system (i.e. compound 11) shows aggregation-induced enhancement of emission, rigid systems with less favorable intermolecular interactions (i.e. compound 12-13) show aggregation-induced quenching of emission. The emission-intensity vs. the structural-flexibility correlations were found to be reverse in solution and aggregated states. Photophysical and structural investigations suggest that the intermolecular interactions (e.g. π-π stacking etc.) play major role in controlling emission of these compounds in aggregated states. Similar trends were also observed in the solid-state luminescence of these compounds. The applications of the luminescent dyads 11-13 as live-cell imaging dyes was also investigated.
Chapter 5 describes investigations of photophysical properties of a series of six BODIPY dyes (14-19) in which there is a systematic alteration of a common -C6H4Si(CH3)3 substituent. Inrelated constitutional isomers, the systematic increment of steric congestion and lowering of molecular symmetry around the BODIPY core result in a steady increment of
solution and solid- state fluorescence quantum yields. The increasing fluorescence quantum yields (solution, solid state) with increasing steric congestions show that the molecular free rotation and aggregation-induced fluorescence quenching of BODIPYs can be successfully suppressed by lowering the flexibility of the molecules. Photophysical and DFT investigations reveal that the electronic band gap in any set of these constitutional isomers remain almost similar. However, the crystal structures of the compounds reveal that the solid-state colour and quantum yields of the compounds in solid-state are also related to the nature of intermolecular interactions.
Chapter 6 demonstrates the use of DFT computational methods to understand the effect of alkyl groups in governing the basic structural and electronic aspects of BODIPY dyes. As demonstrated in Chapter 4 and Chapter 5, apparently electronically inactive alkyl groups can be of immense importance to control the overall photophysics of BODIPYs. In this context, a systematic strategy su was utilized considering all possible outcomes of constitutionally-isomeric molecules to understand the effects of alkyl groups on the BODIPY molecules. Four different computational methods were employed to ascertain the unanimity of the observed trends associated with the molecular properties. In line with experimental observations, it was found that alkyl substituents in BODIPY dyes situated at 3/5-positions effectively participate in stabilization as well as planarization of such molecules. Screening of all the possible isomeric molecular systems was used to understand the individual properties and overall effects of the typical alkyl substituents in controlling several basic properties of such BODIPY molecules.
|
10 |
Développement et caractérisation de dérivés dipyrrométhène pour des applications dans le domaine du photovoltaïqueYvon-Bessette, André 09 1900 (has links)
Ce projet de recherche mené en collaboration industrielle avec St-Jean Photochimie Inc. / PCAS Canada vise le développement et la caractérisation de dérivés dipyrrométhène pour des applications dans le domaine du photovoltaïque. La quête du récoltage des photons se situant dans le proche-infrarouge a été au centre des modifications structurales explorées afin d’augmenter l’efficacité de conversion des cellules solaires de type organique et à pigments photosensibles. Trois familles de composés intégrant le motif dipyrrométhène ont été synthétisées et caractérisées du point de vue spectroscopique, électrochimique, structural ainsi que par modélisation moléculaire afin d’établir des relations structures-propriétés.
La première famille comporte six azadipyrrométhènes au potentiel de coordination tétradentate sur des centres métalliques. Le développement d’une nouvelle voie synthétique asymétrique combinée à l’utilisation d’une voie symétrique classique ont permis d’obtenir l’ensemble des combinaisons de substituants possibles sur les aryles proximaux incluant les noyaux 2-hydroxyphényle, 2-méthoxyphényle et 2- pyridyle. La modulation du maximum d’absorption dans le rouge a pu être faite entre 598 et 619 nm. De même, la présence de groupements méthoxyle ou hydroxyle augmente l’absorption dans le violet (~410 nm) tel que démontré par modélisation. La caractérisation électrochimique a montré que les dérivés tétradentates étaient en général moins stables aux processus redox que leur contre-parti bidentate.
La deuxième famille comporte dix dérivés BODIPY fusionnés de façon asymétrique en position [b]. L’aryle proximal a été modifié de façon systématique afin de mieux comprendre l’impact des substituents riches en électron et de la fusion de cycles aromatiques. De plus, ces dérivés ont été mis en relation avec une vaste série de composés analogues. Les résultats empiriques ont montré que les propriétés optoélectroniques de la plateforme sont régies par le degré de communication électronique entre l’aryle proximal, le pyrrole sur lequel il est attaché et le noyau indolique adjacent à ce dernier. Les maximums d’absorption dans le rouge sont modulables entre 547 et 628 nm et la fluorescence des composés se situe dans le proche- infrarouge. L’un des composé s’est révélé souhaitable pour une utilisation en photovoltaïque ainsi qu’à titre de sonde à pH.
La troisième famille comporte cinq complexes neutres de RuII basés sur des polypyridines et portant un ligand azadipyrrométhène cyclométalé. Les composés ont montré une forte absorption de photons dans la région de 600 à 800 nm (rouge à proche- infrarouge) et qui a pu être étendue au-delà de 1100 nm dans le cas des dérivés portant un ligand terpyridine. L’analyse des propriétés optoélectroniques de façon empirique et théorique a montré un impact significatif de la cyclométalation et ouvert la voie pour leur étude en tant que photosensibilisateurs en OPV et en DSSC. La capacité d’un des complexes à photo-injecter un électron dans la bande de conduction du semi-conducteur TiO2 a été démontré en collaboration avec le groupe du Pr Gerald J. Meyer à University of North Carolina at Chapel Hill, premier pas vers une utilisation dans les cellules solaires à pigments photosensibles. La stabilité des complexes en solution s’est toutefois avérée problématique et des pistes de solutions sont suggérées basées sur les connaissances acquises dans le cadre de cette thèse. / This research project carried out in industrial collaboration with Saint-Jean Photochemicals Inc. / PCAS Canada aims at the development and characterization of dipyrromethene derivatives for photovoltaic applications. The quest for harvesting near- infrared photons was the central focus and various structural modifications were explored to improve the power conversion efficiency of organic and dye-sensitized solar cells (OPV and DSSC, respectively). Three families of chromophores which embedded a dipyrromethene motif were synthesized and characterized through spectroscopy, electrochemistry, X-ray diffraction and computationnal modelization in order to establish their structure-properties relationship.
The first family includes six azadipyrromethenes with potential for tetradentate coordination on metallic centers. The development of a new asymmetric synthetic route together with the classical symmetric one allowed access to all possible combinations of derivatives including 2-hydroxyphenyl, 2-methoxyphenyl and 2-pyridyl substituents in the proximal position of the dipyrromethene. Modulation of the absorption maxima in the red ranged between 598 and 619 nm. Also, having methoxy or hydroxy substituents provided an increase of the violet absorption (~410 nm) as established by modelization. Electrochemical characterization showed that the tetradentate azadipyrromethenes were generally less stable towards redox processes as compared to their bidentate counter- parts.
The second family includes ten asymmetric benzo[b]-fused BODIPYs where the proximal aryl was systematically modified in order to assess the impact of electron-rich substituents and fused aromatic cycles. The derivatives were further compared to a wide series of related BODIPYs. Empirical results showed the optoelectronic properties are dictated by the extend of electronic communication between the proximal aryl, the pyrrol to which it is attached and the adjacent indolic moiety. Absorption maxima in the red were modulated between 547 nm and 628 nm and the fluorescence was in the near-infrared. One compound proved to be a potential candidate for photovoltaic and pH probe applications.
The third family includes five neutral RuII polypyridine complexes bearing a cyclometalated azadipyrromethene ligand. The compounds exhibit strong light absorption in the 600 – 800 nm range (red to near-infrared) that tails beyond 1100 nm in the terpyridine-based adducts. Analysis of the optoelectronic properties showed a significant impact of this novel cyclometalation strategy for dipyrromethene derivatives and paved the way for further incorporation of the resulting complexes as photosensitizers in OPV and DSSC. In collaboration with the group of Pr Gerald J. Meyer at the University of North Carolina at Chapel Hill, the capacity of one compound to photo-inject its electron into the conduction band of the TiO2 semiconductor was established, a first step towards their use in dye-sensitized solar cells. The structural instability in solution of the complexes hindered their full potential for photovoltaic applications and suggestions to improve them are proposed based on the knowledge acquired in the course of this thesis.
|
Page generated in 0.0626 seconds