161 |
Development of Novel Wearable Sensor System Capable of Measuring and Distinguishing Between Compression and Shear Forces for Biomedical ApplicationsDimitrija Dusko Pecoski (8797031) 21 June 2022 (has links)
<p>There are no commercially available wearable shoe in-sole sensors that are capable of measuring and distinguishing between shear and compression forces. Companies have already developed shoe sensors that simply measure pressure and make general inferences on the collected data with elaborate software [2, 3, 4, 5]. Researchers have also attempted making sensors that are capable of measuring shear forces, but they are not well suited for biomedical applications [61, 62, 63, 64]. This work focuses on the development of a novel wearable sensor system that is capable of identifying and measuring shear and compression forces through the use of capacitive sensing. Custom hardware and software tools such as materials test systems and capacitive measurement systems were developed during this work. Numerous sensor prototypes were developed, characterized, and optimized during the scope of this project. Upon analysis of the data, the best capacitive measurement system developed in this work utilized the CAV444 IC chip, whereas the use of the Arduino-derived measurement system required data filtering using median and Butterworth zero phase low pass filters. The highest dielectric constant reported from optimization experiments yielded 9.7034 (+/- 0.0801 STD) through the use of 60.2% by weight calcium copper titanate and ReoFlex-60 silicone. The experiments suggest certain sensors developed in this work feasibly measure and distinguish between shear and compressional forces. Applications for such technology focus on improving quality of life in areas such as managing diabetic ulcer formation, preventing injuries, optimizing performance for athletes and military personnel, and augmenting the scope of motion capture in biomechanical studies.</p>
|
162 |
The economics of exchanging and adopting plant genetic resources for food and agriculture / Evidence from Germany and PeruLüttringhaus, Sophia 09 March 2022 (has links)
Landwirtschaftliche Systeme müssen sich immerfort an Druckfaktoren wie Klimawandel und Bevölkerungswachstum anpassen. Hierbei spielt die genetische Vielfalt von Pflanzen eine wichtige Rolle, da diese für die Sicherung der Ernährung und des Einkommens von entscheidender Bedeutung ist. Dennoch wird der wirtschaftliche Wert pflanzengenetischer Ressourcen selten untersucht. Um diese Forschungslücke zu schließen, werden in dieser Arbeit drei Bewertungen vorgestellt, welche die wirtschaftlichen Werte pflanzengenetischer Ressourcen untersuchen.
Im Rahmen dieser Dissertation werden zwei verschiedene Agrarsystemen analysiert. Diese unterscheiden sich hinsichtlich des Klimas, der agrarökologischen Bedingungen, der landwirtschaftlichen Praxis, der politischen und ökonomischen Rahmenbedingungen sowie der soziokulturellen Verankerung der Kulturart. Die ersten beiden Analysen befassen sich mit der Züchtung und Produktion von Winterweizen in Deutschland. Charakterisiert sind diese durch ein gemäßigtes Klima und intensive Anbaubedingungen. In diesem System überwiegen moderne Sorten, die in einem formalisierten Züchtungsprozess entstanden sind. Es werden die folgenden Forschungsfragen beantwortet: 1) Was ist der ökonomische Wert, der durch den Austausch von Zuchtmaterial entsteht? und 2) Wie hoch ist der mikroökonomische Wert von Resistenzzüchtung? In der dritten Analyse wird ein weiteres Agrarsystem vorgestellt: Die Andenlandwirtschaft, wo im Hochland unter extensiven Bedingungen eine Vielzahl von Kartoffellandrassen angebaut wird. Dort wird folgende Frage analysiert: 3) Welche Mehrwerte wurden durch die Repatriierung oder Neuverteilung von Kartoffellandrassen erzielt?
Diese Analysen zeigen, dass die Verfügbarkeit, der Austausch und die Nutzung von pflanzengenetischen Ressourcen die Agrarproduktion verbessern; es entstehen sowohl sektorale, mikroökonomische als auch ernährungsbezogene und kulturelle Mehrwerte. / Agricultural systems must constantly adapt to pressuring events such as climate change and population growth to maintain and improve production processes in a sustainable manner. Thereby the genetic diversity of plants used in agriculture constitute a strategic asset. Nevertheless, their economic value is often overlooked. To fill this research gap, this thesis presents three assessments that produce more evidence on the economic value of plant genetic resources.
Two very distinct agricultural systems are discussed. These differ greatly in terms of climate, agroecological conditions, farming practices, seed systems, political and economic frameworks, and the socio-cultural embeddedness of the crop in question. The first two assessments are concerned with winter wheat (Triticum aestivum) breeding and production in the temperate climate and intensive growing conditions in Germany. Modern cultivars created in a formalized breeding process prevail in this system. The following two research questions are elaborated: 1) What is the economic value of exchanging breeding material? and 2) What is the microeconomic value of resistance breeding? The third assessment presents a different agricultural system: Andean agriculture, where a wide variety of potato landraces (Solanum spp.) are grown extensively in the Peruvian highlands. In this case, the research question I investigated is: 3) What are the benefits of repatriating (i.e., redistributing) potato landraces to Andean farmers?
These studies demonstrate that the availability, exchange, and adoption of plant genetic resources, which are well adapted to and culturally embedded in specific agricultural systems, improve the overall quantity and sustainability of agricultural production. These improvements can be translated into sectoral, microeconomic as well as nutritional and cultural benefits.
|
Page generated in 0.1008 seconds