• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Distributed XML Query Processing

Kling, Patrick January 2012 (has links)
While centralized query processing over collections of XML data stored at a single site is a well understood problem, centralized query evaluation techniques are inherently limited in their scalability when presented with large collections (or a single, large document) and heavy query workloads. In the context of relational query processing, similar scalability challenges have been overcome by partitioning data collections, distributing them across the sites of a distributed system, and then evaluating queries in a distributed fashion, usually in a way that ensures locality between (sub-)queries and their relevant data. This thesis presents a suite of query evaluation techniques for XML data that follow a similar approach to address the scalability problems encountered by XML query evaluation. Due to the significant differences in data and query models between relational and XML query processing, it is not possible to directly apply distributed query evaluation techniques designed for relational data to the XML scenario. Instead, new distributed query evaluation techniques need to be developed. Thus, in this thesis, an end-to-end solution to the scalability problems encountered by XML query processing is proposed. Based on a data partitioning model that supports both horizontal and vertical fragmentation steps (or any combination of the two), XML collections are fragmented and distributed across the sites of a distributed system. Then, a suite of distributed query evaluation strategies is proposed. These query evaluation techniques ensure locality between each fragment of the collection and the parts of the query corresponding to the data in this fragment. Special attention is paid to scalability and query performance, which is achieved by ensuring a high degree of parallelism during distributed query evaluation and by avoiding access to irrelevant portions of the data. For maximum flexibility, the suite of distributed query evaluation techniques proposed in this thesis provides several alternative approaches for evaluating a given query over a given distributed collection. Thus, to achieve the best performance, it is necessary to predict and compare the expected performance of each of these alternatives. In this work, this is accomplished through a query optimization technique based on a distribution-aware cost model. The same cost model is also used to fine-tune the way a collection is fragmented to the demands of the query workload evaluated over this collection. To evaluate the performance impact of the distributed query evaluation techniques proposed in this thesis, the techniques were implemented within a production-quality XML database system. Based on this implementation, a thorough experimental evaluation was performed. The results of this evaluation confirm that the distributed query evaluation techniques introduced here lead to significant improvements in query performance and scalability both when compared to centralized techniques and when compared to existing distributed query evaluation techniques.
2

Distributed XML Query Processing

Kling, Patrick January 2012 (has links)
While centralized query processing over collections of XML data stored at a single site is a well understood problem, centralized query evaluation techniques are inherently limited in their scalability when presented with large collections (or a single, large document) and heavy query workloads. In the context of relational query processing, similar scalability challenges have been overcome by partitioning data collections, distributing them across the sites of a distributed system, and then evaluating queries in a distributed fashion, usually in a way that ensures locality between (sub-)queries and their relevant data. This thesis presents a suite of query evaluation techniques for XML data that follow a similar approach to address the scalability problems encountered by XML query evaluation. Due to the significant differences in data and query models between relational and XML query processing, it is not possible to directly apply distributed query evaluation techniques designed for relational data to the XML scenario. Instead, new distributed query evaluation techniques need to be developed. Thus, in this thesis, an end-to-end solution to the scalability problems encountered by XML query processing is proposed. Based on a data partitioning model that supports both horizontal and vertical fragmentation steps (or any combination of the two), XML collections are fragmented and distributed across the sites of a distributed system. Then, a suite of distributed query evaluation strategies is proposed. These query evaluation techniques ensure locality between each fragment of the collection and the parts of the query corresponding to the data in this fragment. Special attention is paid to scalability and query performance, which is achieved by ensuring a high degree of parallelism during distributed query evaluation and by avoiding access to irrelevant portions of the data. For maximum flexibility, the suite of distributed query evaluation techniques proposed in this thesis provides several alternative approaches for evaluating a given query over a given distributed collection. Thus, to achieve the best performance, it is necessary to predict and compare the expected performance of each of these alternatives. In this work, this is accomplished through a query optimization technique based on a distribution-aware cost model. The same cost model is also used to fine-tune the way a collection is fragmented to the demands of the query workload evaluated over this collection. To evaluate the performance impact of the distributed query evaluation techniques proposed in this thesis, the techniques were implemented within a production-quality XML database system. Based on this implementation, a thorough experimental evaluation was performed. The results of this evaluation confirm that the distributed query evaluation techniques introduced here lead to significant improvements in query performance and scalability both when compared to centralized techniques and when compared to existing distributed query evaluation techniques.
3

Data Integration Over Horizontally Partitioned Databases In Service-oriented Data Grids

Sonmez Sunercan, Hatice Kevser 01 September 2010 (has links) (PDF)
Information integration over distributed and heterogeneous resources has been challenging in many terms: coping with various kinds of heterogeneity including data model, platform, access interfaces / coping with various forms of data distribution and maintenance policies, scalability, performance, security and trust, reliability and resilience, legal issues etc. It is obvious that each of these dimensions deserves a separate thread of research efforts. One particular challenge among the ones listed above that is more relevant to the work presented in this thesis is coping with various forms of data distribution and maintenance policies. This thesis aims to provide a service-oriented data integration solution over data Grids for cases where distributed data sources are partitioned with overlapping sections of various proportions. This is an interesting variation which combines both replicated and partitioned data within the same data management framework. Thus, the data management infrastructure has to deal with specific challenges regarding the identification, access and aggregation of partitioned data with varying proportions of overlapping sections. To provide a solution we have extended OGSA-DAI DQP, a well-known service-oriented data access and integration middleware with distributed query processing facilities, by incorporating UnionPartitions operator into its algebra in order to cope with various unusual forms of horizontally partitioned databases. As a result / our solution extends OGSA-DAI DQP, in two points / 1 - A new operator type is added to the algebra to perform a specialized union of the partitions with different characteristics, 2 - OGSA-DAI DQP Federation Description is extended to include some more metadata to facilitate the successful execution of the newly introduced operator.
4

Dynamic Optimization and Migration of Continuous Queries Over Data Streams

Zhu, Yali 23 August 2006 (has links)
"Continuous queries process real-time streaming data and output results in streams for a wide range of applications. Due to the fluctuating stream characteristics, a streaming database system needs to dynamically adapt query execution. This dissertation proposes novel solutions to continuous query adaptation in three core areas, namely dynamic query optimization, dynamic plan migration and partitioned query adaptation. Runtime query optimization needs to efficiently generate plans that satisfy both CPU and memory resource constraints. Existing work focus on minimizing intermediate query results, which decreases memory and CPU usages simultaneously. However, doing so cannot assure that both resource constraints are being satisfied, because memory and CPU can be either positively or negatively correlated. This part of the dissertation proposes efficient optimization strategies that utilize both types of correlations to search the entire query plan space in polynomial time when a typical exhaustive search would take at least exponential time. Extensive experimental evaluations have demonstrated the effectiveness of the proposed strategies. Dynamic plan migration is concerned with on-the-fly transition from one continuous plan to a semantically equivalent yet more efficient plan. It is a must to guarantee the continuation and repeatability of dynamic query optimization. However, this research area has been largely neglected in the current literature. The second part of this dissertation proposes migration strategies that dynamically migrate continuous queries while guaranteeing the integrity of the query results, meaning there are no missing, duplicate or incorrect results. The extensive experimental evaluations show that the proposed strategies vary significantly in terms of output rates and memory usages given distinct system configurations and stream workloads. Partitioned query processing is effective to process continuous queries with large stateful operators in a distributed system. Dynamic load redistribution is necessary to balance uneven workload across machines due to changing stream properties. However, existing solutions generally assume static query plans without runtime query optimization. This part of the dissertation evaluates the benefits of applying query optimization in partitioned query processing and shows dramatic performance improvement of more than 300%. Several load balancing strategies are then proposed to consider the heterogeneity of plan shapes across machines caused by dynamic query optimization. The effectiveness of the proposed strategies is analyzed through extensive experiments using a cluster."
5

Méthodes d'optimisation pour le traitement de requêtes réparties à grande échelle sur des données liées / Optimization methods for large-scale distributed query processing on linked data

Oğuz, Damla 28 June 2017 (has links)
Données Liées est un terme pour définir un ensemble de meilleures pratiques pour la publication et l'interconnexion des données structurées sur le Web. A mesure que le nombre de fournisseurs de Données Liées augmente, le Web devient un vaste espace de données global. La fédération de requêtes est l'une des approches permettant d'interroger efficacement cet espace de données distribué. Il est utilisé via un moteur de requêtes fédéré qui vise à minimiser le temps de réponse du premier tuple du résultat et le temps d'exécution pour obtenir tous les tuples du résultat. Il existe trois principales étapes dans un moteur de requêtes fédéré qui sont la sélection de sources de données, l'optimisation de requêtes et l'exécution de requêtes. La plupart des études sur l'optimisation de requêtes dans ce contexte se concentrent sur l'optimisation de requêtes statique qui génère des plans d'exécution de requêtes avant l'exécution et nécessite des statistiques. Cependant, l'environnement des Données Liées a plusieurs caractéristiques spécifiques telles que les taux d'arrivée de données imprévisibles et les statistiques peu fiables. En conséquence, l'optimisation de requêtes statique peut provoquer des plans d'exécution inefficaces. Ces contraintes montrent que l'optimisation de requêtes adaptative est une nécessité pour le traitement de requêtes fédéré sur les données liées. Dans cette thèse, nous proposons d'abord un opérateur de jointure adaptatif qui vise à minimiser le temps de réponse et le temps d'exécution pour les requêtes fédérées sur les endpoints SPARQL. Deuxièmement, nous étendons la première proposition afin de réduire encore le temps d'exécution. Les deux propositions peuvent changer la méthode de jointure et l'ordre de jointures pendant l'exécution en utilisant une optimisation de requêtes adaptative. Les opérateurs adaptatifs proposés peuvent gérer différents taux d'arrivée des données et le manque de statistiques sur des relations. L'évaluation de performances dans cette thèse montre l'efficacité des opérateurs adaptatifs proposés. Ils offrent des temps d'exécution plus rapides et presque les mêmes temps de réponse, comparé avec une jointure par hachage symétrique. Par rapport à bind join, les opérateurs proposés se comportent beaucoup mieux en ce qui concerne le temps de réponse et peuvent également offrir des temps d'exécution plus rapides. En outre, le deuxième opérateur proposé obtient un temps de réponse considérablement plus rapide que la bind-bloom join et peut également améliorer le temps d'exécution. Comparant les deux propositions, la deuxième offre des temps d'exécution plus rapides que la première dans toutes les conditions. En résumé, les opérateurs de jointure adaptatifs proposés présentent le meilleur compromis entre le temps de réponse et le temps d'exécution. Même si notre objectif principal est de gérer différents taux d'arrivée des données, l'évaluation de performance révèle qu'ils réussissent à la fois avec des taux d'arrivée de données fixes et variés. / Linked Data is a term to define a set of best practices for publishing and interlinking structured data on the Web. As the number of data providers of Linked Data increases, the Web becomes a huge global data space. Query federation is one of the approaches for efficiently querying this distributed data space. It is employed via a federated query engine which aims to minimize the response time and the completion time. Response time is the time to generate the first result tuple, whereas completion time refers to the time to provide all result tuples. There are three basic steps in a federated query engine which are data source selection, query optimization, and query execution. This thesis contributes to the subject of query optimization for query federation. Most of the studies focus on static query optimization which generates the query plans before the execution and needs statistics. However, the environment of Linked Data has several difficulties such as unpredictable data arrival rates and unreliable statistics. As a consequence, static query optimization can cause inefficient execution plans. These constraints show that adaptive query optimization should be used for federated query processing on Linked Data. In this thesis, we first propose an adaptive join operator which aims to minimize the response time and the completion time for federated queries over SPARQL endpoints. Second, we extend the first proposal to further reduce the completion time. Both proposals can change the join method and the join order during the execution by using adaptive query optimization. The proposed operators can handle different data arrival rates of relations and the lack of statistics about them. The performance evaluation of this thesis shows the efficiency of the proposed adaptive operators. They provide faster completion times and almost the same response times, compared to symmetric hash join. Compared to bind join, the proposed operators perform substantially better with respect to the response time and can also provide faster completion times. In addition, the second proposed operator provides considerably faster response time than bind-bloom join and can improve the completion time as well. The second proposal also provides faster completion times than the first proposal in all conditions. In conclusion, the proposed adaptive join operators provide the best trade-off between the response time and the completion time. Even though our main objective is to manage different data arrival rates of relations, the performance evaluation reveals that they are successful in both fixed and different data arrival rates.
6

Optimizing Communication Cost in Distributed Query Processing / Optimisation du coût de communication des données dans le traitement des requêtes distribuées

Belghoul, Abdeslem 07 July 2017 (has links)
Dans cette thèse, nous étudions le problème d’optimisation du temps de transfert de données dans les systèmes de gestion de données distribuées, en nous focalisant sur la relation entre le temps de communication de données et la configuration du middleware. En réalité, le middleware détermine, entre autres, comment les données sont divisées en lots de F tuples et messages de M octets avant d’être communiqués à travers le réseau. Concrètement, nous nous concentrons sur la question de recherche suivante : étant donnée requête Q et l’environnement réseau, quelle est la meilleure configuration de F et M qui minimisent le temps de communication du résultat de la requête à travers le réseau?A notre connaissance, ce problème n’a jamais été étudié par la communauté de recherche en base de données.Premièrement, nous présentons une étude expérimentale qui met en évidence l’impact de la configuration du middleware sur le temps de transfert de données. Nous explorons deux paramètres du middleware que nous avons empiriquement identifiés comme ayant une influence importante sur le temps de transfert de données: (i) la taille du lot F (c’est-à-dire le nombre de tuples dans un lot qui est communiqué à la fois vers une application consommant des données) et (ii) la taille du message M (c’est-à-dire la taille en octets du tampon du middleware qui correspond à la quantité de données à transférer à partir du middleware vers la couche réseau). Ensuite, nous décrivons un modèle de coût permettant d’estimer le temps de transfert de données. Ce modèle de coût est basé sur la manière dont les données sont transférées entre les noeuds de traitement de données. Notre modèle de coût est basé sur deux observations cruciales: (i) les lots et les messages de données sont communiqués différemment sur le réseau : les lots sont communiqués de façon synchrone et les messages dans un lot sont communiqués en pipeline (asynchrone) et (ii) en raison de la latence réseau, le coût de transfert du premier message d’un lot est plus élevé que le coût de transfert des autres messages du même lot. Nous proposons une stratégie pour calibrer les poids du premier et non premier messages dans un lot. Ces poids sont des paramètres dépendant de l’environnement réseau et sont utilisés par la fonction d’estimation du temps de communication de données. Enfin, nous développons un algorithme d’optimisation permettant de calculer les valeurs des paramètres F et M qui fournissent un bon compromis entre un temps optimisé de communication de données et une consommation minimale de ressources. L’approche proposée dans cette thèse a été validée expérimentalement en utilisant des données issues d’une application en Astronomie. / In this thesis, we take a complementary look to the problem of optimizing the time for communicating query results in distributed query processing, by investigating the relationship between the communication time and the middleware configuration. Indeed, the middleware determines, among others, how data is divided into batches and messages before being communicated over the network. Concretely, we focus on the research question: given a query Q and a network environment, what is the best middleware configuration that minimizes the time for transferring the query result over the network? To the best of our knowledge, the database research community does not have well-established strategies for middleware tuning. We present first an intensive experimental study that emphasizes the crucial impact of middleware configuration on the time for communicating query results. We focus on two middleware parameters that we empirically identified as having an important influence on the communication time: (i) the fetch size F (i.e., the number of tuples in a batch that is communicated at once to an application consuming the data) and (ii) the message size M (i.e., the size in bytes of the middleware buffer, which corresponds to the amount of data that can be communicated at once from the middleware to the network layer; a batch of F tuples can be communicated via one or several messages of M bytes). Then, we describe a cost model for estimating the communication time, which is based on how data is communicated between computation nodes. Precisely, our cost model is based on two crucial observations: (i) batches and messages are communicated differently over the network: batches are communicated synchronously, whereas messages in a batch are communicated in pipeline (asynchronously), and (ii) due to network latency, it is more expensive to communicate the first message in a batch compared to any other message that is not the first in its batch. We propose an effective strategy for calibrating the network-dependent parameters of the communication time estimation function i.e, the costs of first message and non first message in their batch. Finally, we develop an optimization algorithm to effectively compute the values of the middleware parameters F and M that minimize the communication time. The proposed algorithm allows to quickly find (in small fraction of a second) the values of the middleware parameters F and M that translate a good trade-off between low resource consumption and low communication time. The proposed approach has been evaluated using a dataset issued from application in Astronomy.
7

Processamento distribu?do da consulta espa?o textual top-k

Novaes, Tiago Fernandes de Athayde 17 July 2017 (has links)
Submitted by Ricardo Cedraz Duque Moliterno (ricardo.moliterno@uefs.br) on 2017-11-28T21:38:06Z No. of bitstreams: 1 dissertacao-versao-final.pdf: 2717503 bytes, checksum: a1476bba65482b40daa1a139191ea912 (MD5) / Made available in DSpace on 2017-11-28T21:38:06Z (GMT). No. of bitstreams: 1 dissertacao-versao-final.pdf: 2717503 bytes, checksum: a1476bba65482b40daa1a139191ea912 (MD5) Previous issue date: 2017-07-17 / With the popularization of databases containing objects with spatial and textual information (spatio-textual object), the interest in new queries and techniques for retrieving these objects have increased. In this scenario, the main query is the the top-k spatio-textual query. This query retrieves the k best spatio-textual objects considering the distance of the object to the query location and the textual similarity between the query keywords and the textual information of the objects. However, most the studies related to top-k spatio-textual query are performed in centralized environments, not addressing real world problems such as scalability. In this paper, we study different strategies for partitioning the data and processing the top-k spatio-textual query in a distributed environment. We evaluate each strategy in a real distributed environment, employing real datasets. / Com a populariza??o de bases de dados contendo objetos que possuem informa??o espacial e textual (objeto espa?o-textual), aumentou o interesse por novas consultas e t?cnicas capazes de recuperar esses objetos de forma eficiente. Uma das principais consultas para objetos espa?o-textuais ? a consulta espa?o-textual top-k. Essa consulta visa recuperar os k melhores objetos considerando a dist?ncia do objeto at? um local informado na consulta e a similaridade textual entre palavras-chave de busca e a informa??o textual dos objetos. No entanto, a maioria dos estudos para consultas espa?o-textual top-k assumem ambientes centralizados, n?o abordando problemas frequentes em aplica??es do mundo real como escalabilidade. Nesta disserta??o s?o estudadas diferentes formas de particionar os dados e o impacto destes particionamentos no processamento da consulta espa?o-textual top-k em um ambiente distribu?do. Todas as estrat?gias propostas s?o avaliadas em um ambiente distribu?do real, utilizando dados reais.
8

Traitement de requêtes SPARQL sur des données liées / SPARQL distributed query processing over linked data

Macina, Abdoul 17 December 2018 (has links)
De plus en plus de sources de données liées sont publiées à travers le Web en s'appuyant sur les technologies du Web sémantique, formant ainsi un large réseau de données distribuées. Cependant il est difficile pour les consommateurs de données de profiter de la richesse de ces données, compte tenu de leur distribution, de l'augmentation de leur volume et de l'autonomie des sources de données. Les moteurs fédérateurs de données permettent d'interroger ces sources de données en utilisant des techniques de traitement de requêtes distribuées. Cependant, une mise en œuvre naïve de ces techniques peut générer un nombre considérable de requêtes distantes et de nombreux résultats intermédiaires entraînant ainsi un long temps de traitement des requêtes et des communications réseau coûteuse. Par ailleurs, la sémantique des requêtes distribuées est souvent ignorée. L'expressivité des requêtes, le partitionnement des données et leur réplication sont d'autres défis auxquels doivent faire face les moteurs de requêtes. Pour répondre à ces défis, nous avons d'abord proposé une sémantique des requêtes distribuées compatible avec les standards SPARQL et RDF qui préserve l’expressivité de SPARQL. Nous avons ensuite présenté plusieurs stratégies d'optimisation pour un moteur de requêtes fédérées qui interroge de manière transparente des sources de données distribuées. La performance de ces optimisations est évaluée sur une implémentation d’un moteur de requêtes distribuées SPARQL / Driven by the Semantic Web standards, an increasing number of RDF data sources are published and connected over the Web by data providers, leading to a large distributed linked data network. However, exploiting the wealth of these data sources is very challenging for data consumers considering the data distribution, their volume growth and data sources autonomy. In the Linked Data context, federation engines allow querying these distributed data sources by relying on Distributed Query Processing (DQP) techniques. Nevertheless, a naive implementation of the DQP approach may generate a tremendous number of remote requests towards data sources and numerous intermediate results, thus leading to costly network communications. Furthermore, the distributed query semantics is often overlooked. Query expressiveness, data partitioning, and data replication are other challenges to be taken into account. To address these challenges, we first proposed in this thesis a SPARQL and RDF compliant Distributed Query Processing semantics which preserves the SPARQL language expressiveness. Afterwards, we presented several strategies for a federated query engine that transparently addresses distributed data sources, while managing data partitioning, query results completeness, data replication, and query processing performance. We implemented and evaluated our approach and optimization strategies in a federated query engine to prove their effectiveness.

Page generated in 0.1455 seconds