• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 129
  • 111
  • 23
  • 19
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 356
  • 356
  • 105
  • 103
  • 85
  • 81
  • 73
  • 56
  • 52
  • 50
  • 49
  • 43
  • 38
  • 38
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Smart Grid Reliability Assessment Under Variable Weather Conditions

Islam, Arif 26 March 2009 (has links)
The needs of contemporary electric utility customers and expectations regarding energy supply require dramatic changes in the way energy is transmitted and delivered. A smart grid is a concept by which the existing and aging electrical grid infrastructure is being upgraded with integration of multiple applications and technologies; such as two way power transfer, two way communication, renewable distributed generation, automated sensors, automated & advanced controls, central control, forecasting system and microgrids. This enables the grid to be more secure, reliable, efficient, self-healing, while reducing greenhouse gases. In addition, it will provide new products & services and fully optimize asset utilization. Also, integration of these innovative technologies to establish a smart grid poses new challenges. There will be need for new tools to assess and predict reliability issues. The goal of this research is both to demonstrate these new electrical system tools and to monitor and analyze the relationship of weather and electrical infrastructure interruptions. This goal will be accomplished by modeling weather and distribution system reliability issues, by developing forecasting tools and finally developing mathematical models for system availability with smart grid functionality. Expected results include the ability to predict and determine the number of interruptions in a defined region; a novel method for calculating a smart grid system’s availability; a novel method for normalizing reliability indices; and to determine manpower needs, inventory needs, and fast restoration strategies. The reliability of modern power distribution systems is dependent on many variables such as load capacity, renewable distributed generation, customer base, maintenance, age, and type of equipment. This research effort attempts to study these areas and in the process, has developed novel models and methods to calculate and predict the reliability of a smart grid distribution system. A smart grid system, along with variable weather conditions, poses new challenges to existing grid systems in terms of reliability, grid hardening, and security. The modern grid is comprised of various distributed generation systems. New methods are required to understand and calculate availability of a smart grid system. One such effort is demonstrated in this research. The method that was developed for modeling smart grid dynamic reconfigurations under variable weather conditions combines three modeling techniques: Markov modeling, Boolean Logic Driven Markov Process (BDMP) and the modeling of variable weather condition. This approach has advantages over conventional models because it allows complex dynamic models to be defined, while maintaining its easy readability.
182

A case study of Mionix’s distribution system on how to improve inventory management with focus on customer service and total cost

Holtne, Jim, Auvoja, Anton January 2015 (has links)
Background - A company’s distribution system is a critical component and businesses need to consider the aspects of customer service and total cost when designing the distribution system. A distribution system can be defined as the process of making products or services available for customers. The rise of e-commerce has increased the challenge of having a cost efficient distribution system together with a high standard of customer service.  The distribution system is put under heavy pressure to deliver goods as quickly as possible and at the lowest possible cost due to globalization and outsourcing. E-commerce involves a new approach of the distribution system with its small order sizes, daily order volumes and small parcel shipments that are often shipped the same day. Inventory management is being regarded as an important part of the distribution system. Inventory management is the ability to balance the demand of products with the supply of products in a cost-effectively way. Companies therefore need to use material planning methods to coordinate the flow of material effectively throughout the distribution system. Purpose - The purpose of this paper is to study Mionix’s current distribution system with focus on customer service and total cost. Based on the findings, this thesis will identify which costs that are possible to influence and reduce.  Secondly, the aim is to study how material planning methods can help Mionix to improve the inventory management function and propose measures for improvement. Method - This thesis has used a positivistic view with a deductive approach. It is a case study that contains elements of both qualitative and quantitative research strategy. In order to fulfil the purpose of the study the authors have conducted a flow and situational analysis in order to identify services and costs in the distribution system that Mionix can influence. Further, the authors conducted a situation analysis of Mionix’s current inventory management function. The authors then calculated and analysed how material planning methods such as EOQ, Total cost, Sensitivity analysis, Ordering points and optimal safety stock and service levels could improve Mionix’s inventory management function. Next, alternative solutions are presented together with the authors’ evaluations and recommendations for the company. The data that was needed to accomplish this was collected by performing interviews, observations and extracting data from computer system e.g. Excel. Conclusion - The authors have identified two distribution channels within the distribution system: the wholesaler channel and the retailers/e-commerce channel. Mionix has the opportunity to influence two particular costs: capital costs and cost of loss of sales, which are included in inventory- and customer service costs according to the total cost model. Material planning methods can improve Mionix’s inventory management function by deciding safety stock levels, ordering points and EOQ for all products in accordance with the theoretical framework. Further, if Mionix use the authors’ recommendation the company can reduce estimated total annual cost by 23% or 26% depending on what mode of transportation that is used
183

Μελέτη βλαβών σε εξοπλισμό μέσης τάσης

Παπαδημάτος, Παναγιώτης 04 November 2014 (has links)
Στην παρούσα διπλωματική εργασία θα ασχοληθούμε με την ποσοτική καταγραφή και στατιστικοποίηση των αιτίων βλάβης με κριτήριο το Σημείωμα Αποκατάστασης Βλάβης της ΔΕΗ (Σ.Α.Β), στις περιοχές των δήμων Πατρώων, Ερύμανθου και Αιγιάλειας. Οι μετρήσεις αυτές μας δόθηκαν σε ηλεκτρονική μορφή και παρέχουν λεπτομερή αναφορά των βλαβών που υπέστησαν οι εξοπλισμοί Μέσης Τάσης στις εν λόγω περιοχές. Στο πρώτο κεφάλαιο θα προσπαθήσουμε να ορίσουμε και να επεξηγήσουμε κάποιες βασικές έννοιες, ώστε να διευκολύνουμε την μελέτη αυτής της διπλωματικής εργασίας και από έναν μέσο αναγνώστη. Στο δεύτερο κεφάλαιο γίνεται παρουσίαση της μορφής των συστημάτων ηλεκτρικής ενέργειας με ιδιαίτερη έμφαση στο σύστημα διανομής. Παρουσιάζεται η δομή του συστήματος διανομής, τα επιμέρους μέρη και εξαρτήματα από τα οποία αποτελείται καθώς και τα χαρακτηριστικά τους. Στο τέλος παρουσιάζονται δεδομένα και στατιστικά του ελληνικού συστήματος διανομής. Στο τρίτο κεφάλαιο, γίνεται μια σύντομη παρουσίαση των σφαλμάτων και υπερτάσεων που παρουσιάζονται στο σύστημα διανομής καθώς και των μέσων προστασίας που χρησιμοποιούμε προκειμένου να εξασφαλίσουμε την αδιάλειπτη λειτουργία του συστήματος διανομής Στο τέταρτο κεφάλαιο θα παρουσιάσουμε όλες τις βλάβες για όλες τις προαναφερθείσες περιοχές συνολικά και για όλα τα πιθανά αίτια βλάβης. Επίσης θα απεικονίσουμε στατιστικά και συγκριτικά τα αίτια βλάβης της κακοκαιρίας και του κεραυνού για τα έτη 2003 έως 2011 και για τους δήμους Πατρώων, Ερύμανθου και Αιγιάλειας ξεχωριστά. Τέλος ακολουθούν τα τελικά συμπεράσματα που απορρέουν από την επεξεργασία των στοιχείων που διαχειριστήκαμε. / In this diploma work we intend to deal with the quantitative report and statistics of the causes of damages concerning the damage repair document of ΔΕΗ, (Σ.Α.Β.), around the areas of the municipals of Patrai, Erymanthos and Egialia. All these measurements were given to us in electronic form including a detailed report of damages which occurred to the medium voltage equipment in the whole place of Achaia. In the first chapter our effort will be to determine and explain a number of basic concepts, so that the study of this diploma work will be easy understood by an average reader. The second chapter contains the presentation of the form of electric power systems, with special emphasis on the distribution system. It is a presentation of the distribution system structure, the individual parts and devices as well as their features. Data and statistics of the Greek distribution system are presented at the end of the section. The third section is a brief presentation of the faults and overvoltage occurring at the distribution system as well as of the protection measures we use in order to ensure the uninterrupted operation and the integrity of our system. In chapter four what will be presented are the damages of all the above mentioned areas in total, as well as the possible causes of them. Moreover there will be a presentation of damages caused by bad weather and thunder from the year 2003 up to 2011 for the municipals of Patrai, Erymanthos and Egialia separately. All this work will be done through statistics and comparison. At the end we will expose the final conclusions that come from the data we handled.
184

Computationally Intensive Design of Water Distribution Systems

Andrade-Rodriguez, Manuel Alejandro January 2013 (has links)
The burdensome capital cost of urban water distribution systems demands the use of efficient optimization methods capable of finding a relatively inexpensive design that guarantees a minimum functionality under all conditions of operation. The combinatorial and nonlinear nature of the optimization problem involved accepts no definitive method of solution. Adaptive search methods are well fitted for this type of problem (to which more formal methods cannot be applied), but their computational requirements demand the development and implementation of additional heuristics to find a satisfactory solution. This work seeks to employ adaptive search methods to enhance the search process used to find the optimal design of any water distribution system. A first study presented here introduces post-optimization heuristics that analyze the best design obtained by a genetic algorithm--arguably the most popular adaptive search method--and perform an ordered local search to maximize further cost savings. When used to analyze the best design found by a genetic algorithm, the proposed post-optimization heuristics method successfully achieved additional cost savings that the genetic algorithm failed to detect after an exhaustive search. The second study herein explores various ways to improve artificial neural networks employed as fast estimators of computationally intensive constraints. The study presents a new methodology for generating any large set of water supply networks to be used for the training of artificial neural networks. This dataset incorporates several distribution networks in the vicinity of the search space in which the genetic algorithm is expected to focus its search. The incorporation of these networks improved the accuracy of artificial neural networks trained with such a dataset. These neural networks consistently showed a lower margin of error than their counterparts trained with conventional training datasets populated by randomly generated distribution networks.
185

An Energy Management System for Isolated Microgrids Considering Uncertainty

Olivares, Daniel 22 January 2015 (has links)
The deployment of Renewable Energy (RE)-based generation has experienced a sustained global growth in the recent decades, driven by many countries' interest in reducing greenhouse gas emissions and dependence on fossil fuel for electricity generation. This trend is also observed in remote off-grid systems (isolated microgrids), where local communities, in an attempt to reduce fossil fuel dependency and associated economic and environmental costs, and to increase availability of electricity, are favouring the installation of RE-based generation. This practice has posed several challenges to the operation of such systems, due to the intermittent and hard-to-predict nature of RE sources. In particular, this thesis addresses the problem of reliable and economic dispatch of isolated microgrids, also known as the energy management problem, considering the uncertain nature of those RE sources, as well as loads. Isolated microgrids feature characteristics similar to those of distribution systems, in terms of unbalanced power flows, significant voltage drops and high power losses. For this reason, detailed three-phase mathematical models of the microgrid system and components are presented here, in order to account for the impact of unbalanced system conditions on the optimal operation of the microgrid. Also, simplified three-phase models of Distributed Energy Resources (DERs) are developed to reduce the level of complexity in small units that have limited impact on the optimal operation of the system, thus reducing the number of equations and variables of the problem. The proposed mathematical models are then used to formulate a novel energy management problem for isolated microgrids, as a deterministic, multi-period, Mixed-Integer Nonlinear Programming (MINLP) problem. The multi-period formulation allows for a proper management of energy storage resources and multi-period constraints associated with the commitment decisions of DERs. In order to obtain solutions of the energy management problem in reasonable computational times for real-time, realistic applications, and to address the uncertainty issues, the proposed MINLP formulation is decomposed into a Mixed-Integer Linear Programming (MILP) problem, and a Nonlinear programming (NLP) problem, in the context of a Model Predictive Control (MPC) approach. The MILP formulation determines the unit commitment decisions of DERs using a simplified model of the network, whereas the NLP formulation calculates the detailed three-phase dispatch of the units, knowing the commitment status. A feedback signal is generated by the NLP if additional units are required to correct reactive power problems in the microgrid, triggering a new calculation MINLP problem. The proposed decomposition and calculation routines are used to design a new deterministic Energy Management System (EMS) based on the MPC approach to handle uncertainties; hence, the proposed deterministic EMS is able to handle multi-period constraints, and account for the impact of future system conditions in the current operation of the microgrid. In the proposed methodology, uncertainty associated with the load and RE-based generation is indirectly considered in the EMS by continuously updating the optimal dispatch solution (with a given time-step), based on the most updated information available from suitable forecasting systems. For a more direct modelling of uncertainty in the problem formulation, the MILP part of the energy management problem is re-formulated as a two-stage Stochastic Programming (SP) problem. The proposed novel SP formulation considers that uncertainty can be properly modelled using a finite set of scenarios, which are generated using both a statistical ensembles scenario generation technique and historical data. Using the proposed SP formulation of the MILP problem, the deterministic EMS design is adjusted to produce a novel stochastic EMS. The proposed EMS design is tested in a large, realistic, medium-voltage isolated microgrid test system. For the deterministic case, the results demonstrate the important connection between the microgrid's imbalance, reactive power requirements and optimal dispatch, justifying the need for detailed three-phase models for EMS applications in isolated microgrids. For the stochastic studies, the results show the advantages of using a stochastic MILP formulation to account for uncertainties associated with RE sources, and optimally accommodate system reserves. The computational times in all simulated cases show the feasibility of applying the proposed techniques to real-time, autonomous dispatch of isolated microgrids with variable RE sources.
186

Energy Losses Study on District Cooling Pipes : Steady-state Modeling and Simulation

Calance, Marius Alexandru January 2014 (has links)
Distributionsförluster är en viktig faktor i fjärrenergisystem. Genom att optimera förluster i sådana system, kan både ekonomiska och miljömässiga aspekter uppfyllas. Tyvärr finns det ringa information om rörförluster i fjärrkylasystem. Föreliggande studie fokuserar på förluster i ett fjärrkylanät genom att både använda ett R-nätverk och FEM simuleringsmodeller. Ett R-nätverksmodell bestående av termiska konduktanser har utvecklats genom analytiska ekvationer och simuleringar med FEM har utfört för validering av modellen. Därefter har ett fjärrkylanätverk som konstrueras i Gävle, analyserats. Undersökningen omfattar 15 olika rördiametrar i tre utföranden (dubbelrör med två symmetriska och en osymmetrisk värmeisolering) och i tre förläggningsdjup (0,8; 2 och 4 meter) för en säsong om 7 månader (April t o m Oktober). Särskilt utreds ökningen av temperaturen hos framledningsmediet, där matningsrören förlagts i en å mitt i staden om en sträcka av 1 km. Den maximala förlusten under säsongen, bland alla rörkonfigurationer, motsvarar 2 % av den totala levererade energin. Slutligen konstateras att kombinationen av isolerad framledningsrör och oisolerade returrör verkar som en gångbar investering, ekonomiskt och tekniskt, men kan inte användas i hela nätet eftersom stora delar har redan byggts med oisolerade plaströr. R-nätverksmodellen, som visades vara effektiv och pålitlig i undersökningen, kan som beräkningsverktyg, framförallt för dimensionering och för att uppskatta energiförluster. / Distribution losses are a very important factor in district energy systems. By optimizing the losses in such a system, both economical and environmental aspects can be fulfilled. Unfortunately, there is few information regarding losses for district cooling systems. This study focuses on losses in district cooling networks by using both R-network and FEM simulation models. A R-network model composed of thermal conductances has been developed through analytical equations and simulations have been performed for validation. Afterwards, an in-progress construction project of a district cooling network from the city of Gävle, Sweden, is analyzed. The assessment consists of 15 pipe diameters in three configurations (two symmetric cases and one asymmetric), at three ground laying depths (0.8, 2 and 4 meters) for a duration of 7 months (April to October). A particular case in which the main distribution pipes from and to the plant are submerged in the city’s river for a distance of 1 km is investigated in order to estimate the temperature increase of the supply water. A maximum cooling loss below 2% of the total delivered energy during the season for any network configuration resulted from the calculation. Finally, the mixed pipes array seems to be a feasible investment both economically and technically but it cannot be used for the entire network spread since a part of the network has been already built with the non-insulated plastic pipes. The R-network model proved to be effective and reliable in the analysis which provides confidence that it can serve as a solid foundation for a calculation tool - primarily for design purposes and also for estimating energy loss.
187

Optimization Of Water Distribution Networks Using Genetic Algorithm

Guc, Gercek 01 April 2006 (has links) (PDF)
This study gives a description about the development of a computer model, RealPipe, which relates genetic algorithm (GA) to the well known problem of least-cost design of water distribution network. GA methodology is an evolutionary process, basically imitating evolution process of nature. GA is essentially an efficient search method basically for nonlinear optimization cases. The genetic operations take place within the population of chromosomes. By means of various operators, the genetic knowledge in chromosomes change continuously and the success of the population progressively increases as a result of these operations. GA optimization is also well suited for optimization of water distribution systems, especially large and complex systems. The primary objective of this study is optimization of a water distribution network by GA. GA operations are realized on a special program developed by the author called RealPipe. RealPipe optimizes given water network distribution systems by considering capital cost of pipes only. Five operators are involved in the program algorithm. These operators are generation, selection, elitism, crossover and mutation. Optimum population size is found to be between 30-70 depending on the size of the network (i.e. pipe number) and number of commercially available pipe size. Elitism rate should be around 10 percent. Mutation rate should be selected around 1-5 percent depending again on the size of the network. Multipoint crossover and higher rates are advisable. Also pressure penalty parameters are found to be much important than velocity parameters. Below pressure penalty parameter is the most important one and should be roughly 100 times higher than the other. Two known networks of the literature are examined using RealPipe and expected results are achieved. N8.3 network which is located in the northern side of Ankara is the case study. Total cost achieved by RealPipe is 16.74 percent lower than the cost of the existing network / it should be noted that the solution provided by RealPipe is hydraulically improved.
188

Risk-based methods for reliability investments in electric power distribution systems

Alvehag, Karin January 2011 (has links)
Society relies more and more on a continuous supply of electricity. However, while underinvestments in reliability lead to an unacceptable number of power interruptions, overinvestments result in too high costs for society. To give incentives for a socioeconomically optimal level of reliability, quality regulations have been adopted in many European countries. These quality regulations imply new financial risks for the distribution system operator (DSO) since poor reliability can reduce the allowed revenue for the DSO and compensation may have to be paid to affected customers.This thesis develops a method for evaluating the incentives for reliability investments implied by different quality regulation designs. The method can be used to investigate whether socioeconomically beneficial projects are also beneficial for a profit-maximizing DSO subject to a particular quality regulation design. To investigate which reinvestment projects are preferable for society and a DSO, risk-based methods are developed. With these methods, the probability of power interruptions and the consequences of these can be simulated. The consequences of interruptions for the DSO will to a large extent depend on the quality regulation. The consequences for the customers, and hence also society, will depend on factors such as the interruption duration and time of occurrence. The proposed risk-based methods consider extreme outage events in the risk assessments by incorporating the impact of severe weather, estimating the full probability distribution of the total reliability cost, and formulating a risk-averse strategy. Results from case studies performed show that quality regulation design has a significant impact on reinvestment project profitability for a DSO. In order to adequately capture the financial risk that the DSO is exposed to, detailed risk-based methods, such as the ones developed in this thesis, are needed. Furthermore, when making investment decisions, a risk-averse strategy may clarify the benefits or drawbacks of a project that are hard to discover by looking only at the expected net present value. / QC 20110530
189

Reconfiguração de alimentadores em sistemas de distribuição usando a metaheurística GRASP /

Oliveira, Marlon Borges Correia de. January 2011 (has links)
Resumo: Neste trabalho a metaheurística GRASP é utilizada para resolver o problema de reconfiguração de sistemas de distribuição de energia elétrica modelado como um problema de programação não linear binário misto. O objetivo é minimizar as perdas de potência ativa do sistema sujeito a restrições físicas e operacionais do sistema de distribuição. As variáveis binárias do problema representam a abertura e/ou fechamento de chaves de interconexão existentes nos ramos do sistema e as variáveis contínuas representam as tensões nodais e ângulos das tensões nodais. Na metodologia utilizada todas as chaves de interconexão do sistema de distribuição estão fechadas no início do processo e a cada passo da fase construtiva do GRASP um ramo é desconectado do sistema e um fluxo de carga é resolvido. Na fase de melhoria, tendo em vista que a solução da fase construtiva é um sistema radial, foi utilizado a cada iteração um fluxo de carga especializado para sistemas radiais. Para garantir que o sistema de distribuição opere de forma radial, foi introduzido na metodologia de solução uma rotina na qual é verificada a formação de laços e a conectividade do sistema em cada iteração das fases de construção e de melhoria local. São apresentados testes realizados utilizando os sistemas de 14, 33, 84,119 e 136 barras para avaliar a eficiência e robustez da metodologia proposta. Os resultados obtidos foram comparados aos resultados encontrados na literatura com o objetivo de validar a proposta deste trabalho / Abstract: In this work the GRASP is used to solve the problem of reconfiguring systems for electricity distribution modeled as a nonlinear programming problem of binary mixture. The goal is to minimize the power losses of the system subject to physical constraints and operating the distribution system. The problem of binary variables represents the opening and/or closing braces interconnecting branches existing in the system and the continuous variables represent the nodal voltages and angles of nodal voltages. In the methodology used to interconnect all the keys of the distribution system are closed at the beginning of the process and every step of the constructive phase of GRASP a branch is disconnected from the system and a load flow is solved. In the improvement phase, given that the solution of the constructive phase is a radial system was used at each iteration a load flow for radial systems specialist. To ensure that the distribution system operates in a radial manner, was introduced into the solution methodology is a routine in which verified the formation of linkages and connectivity of the system in each iteration of the phases of construction and local improvement. Tests are presented using the systems 14, 33, 84, 119 and 136 bus to evaluate the efficiency and robustness of the proposed methodology. The results were compared to results from the literature in order to validate the proposal of this work / Orientador: Rubén Augusto Romero Lázaro / Coorientador: Marina Lavorato de Oliveira / Banca: Marcos Julio Rider Flores / Banca: Eduardo Nobuhiro Asada / Mestre
190

Sensitivity-based Pricing and Multiobjective Control for Energy Management in Power Distribution Systems

January 2012 (has links)
abstract: In the deregulated power system, locational marginal prices are used in transmission engineering predominantly as near real-time pricing signals. This work extends this concept to distribution engineering so that a distribution class locational marginal price might be used for real-time pricing and control of advanced control systems in distribution circuits. A formulation for the distribution locational marginal price signal is presented that is based on power flow sensitivities in a distribution system. A Jacobian-based sensitivity analysis has been developed for application in the distribution pricing method. Increasing deployment of distributed energy sources is being seen at the distribution level and this trend is expected to continue. To facilitate an optimal use of the distributed infrastructure, the control of the energy demand on a feeder node in the distribution system has been formulated as a multiobjective optimization problem and a solution algorithm has been developed. In multiobjective problems the Pareto optimality criterion is generally applied, and commonly used solution algorithms are decision-based and heuristic. In contrast, a mathematically-robust technique called normal boundary intersection has been modeled for use in this work, and the control variable is solved via separable programming. The Roy Billinton Test System (RBTS) has predominantly been used to demonstrate the application of the formulation in distribution system control. A parallel processing environment has been used to replicate the distributed nature of controls at many points in the distribution system. Interactions between the real-time prices in a distribution feeder and the nodal prices at the aggregated load bus have been investigated. The application of the formulations in an islanded operating condition has also been demonstrated. The DLMP formulation has been validated using the test bed systems and a practical framework for its application in distribution engineering has been presented. The multiobjective optimization yields excellent results and is found to be robust for finer time resolutions. The work shown in this report is applicable to, and has been researched under the aegis of the Future Renewable Electric Energy Delivery and Management (FREEDM) center, which is a generation III National Science Foundation engineering research center headquartered at North Carolina State University. / Dissertation/Thesis / Ph.D. Electrical Engineering 2012

Page generated in 0.1157 seconds