• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inverted Organic Light Emitting Diodes

Thomschke, Michael 27 May 2013 (has links) (PDF)
This study focuses on the investigation of the key parameters that determine the optical and electrical characteristics of inverted top-emitting organic light emitting diodes (OLED). A co-deposition of small molecules in vacuum is used to establish electrically doped films that are applied in n-i-p layered devices. The knowledge about the functionality of each layer and parameter is important to develop efficient strategies to reach outstanding device performances. In the first part, the thin film optics of top-emitting OLEDs are investigated, focusing on light extraction via cavity tuning, external outcoupling layers (capping layer), and the application of microlens films. Optical simulations are performed to determine the layer configuration with the maximum light extraction efficiency for monochrome phosphorescent devices. The peak efficiency is found at 35%, while varying the thickness of the charge transport layers, the semitransparent anode, and the capping layer simultaneously. Measurements of the spatial light distribution validate, that the capping layer influences the spectral width and the resonance wavelength of the extracted cavity mode, especially for TM polarization. Further, laminated microlens films are applied to benefit from strong microcavity effects in stacked OLEDs by spatial mixing of external and to some extend internal light modes. These findings are used to demonstrate white top-emitting OLEDs on opaque substrates showing power conversion efficiencies up to 30 lm/W and a color rendering index of 93, respectively. In the second part, the charge carrier management of n-i-p layered diodes is investigated as it strongly deviates from that of the p-i-n layered counterparts. The influence of the bottom cathode material and the electron transport layer is found to be negligible in terms of driving voltage, which means that the assumption of an ohmic bottom contact is valid. The hole transport and the charge carrier injection at the anode is much more sensitive to the evaporation sequence, especially when using hole transport materials with a glass transition temperature below 100°C. As a consequence, thermal annealing of fabricated inverted OLEDs is found to drastically improve the device electronics, resulting in lower driving voltages and an increased internal efficiency. The annealing effect on charge transport comes from a reduced charge accumulation due to an altered film morphology of the transport layers, which is proven for electrons and for holes independently. The thermal treatment can further lead to a device degradation. Finally, the thickness and the material of the blocking layers which usually control the charge confinement inside the OLED are found to influence the recombination much more effectively in inverted OLEDs compared to non-inverted ones.
2

Morphology, charge transport properties, and molecular doping of thiophene-based organic semiconducting thin films

Pingel, Patrick January 2013 (has links)
Organic semiconductors combine the benefits of organic materials, i.e., low-cost production, mechanical flexibility, lightweight, and robustness, with the fundamental semiconductor properties light absorption, emission, and electrical conductivity. This class of material has several advantages over conventional inorganic semiconductors that have led, for instance, to the commercialization of organic light-emitting diodes which can nowadays be found in the displays of TVs and smartphones. Moreover, organic semiconductors will possibly lead to new electronic applications which rely on the unique mechanical and electrical properties of these materials. In order to push the development and the success of organic semiconductors forward, it is essential to understand the fundamental processes in these materials. This thesis concentrates on understanding how the charge transport in thiophene-based semiconductor layers depends on the layer morphology and how the charge transport properties can be intentionally modified by doping these layers with a strong electron acceptor. By means of optical spectroscopy, the layer morphologies of poly(3-hexylthiophene), P3HT, P3HT-fullerene bulk heterojunction blends, and oligomeric polyquaterthiophene, oligo-PQT-12, are studied as a function of temperature, molecular weight, and processing conditions. The analyses rely on the decomposition of the absorption contributions from the ordered and the disordered parts of the layers. The ordered-phase spectra are analyzed using Spano’s model. It is figured out that the fraction of aggregated chains and the interconnectivity of these domains is fundamental to a high charge carrier mobility. In P3HT layers, such structures can be grown with high-molecular weight, long P3HT chains. Low and medium molecular weight P3HT layers do also contain a significant amount of chain aggregates with high intragrain mobility; however, intergranular connectivity and, therefore, efficient macroscopic charge transport are absent. In P3HT-fullerene blend layers, a highly crystalline morphology that favors the hole transport and the solar cell efficiency can be induced by annealing procedures and the choice of a high-boiling point processing solvent. Based on scanning near-field and polarization optical microscopy, the morphology of oligo-PQT-12 layers is found to be highly crystalline which explains the rather high field-effect mobility in this material as compared to low molecular weight polythiophene fractions. On the other hand, crystalline dislocations and grain boundaries are identified which clearly limit the charge carrier mobility in oligo-PQT-12 layers. The charge transport properties of organic semiconductors can be widely tuned by molecular doping. Indeed, molecular doping is a key to highly efficient organic light-emitting diodes and solar cells. Despite this vital role, it is still not understood how mobile charge carriers are induced into the bulk semiconductor upon the doping process. This thesis contains a detailed study of the doping mechanism and the electrical properties of P3HT layers which have been p-doped by the strong molecular acceptor tetrafluorotetracyanoquinodimethane, F4TCNQ. The density of doping-induced mobile holes, their mobility, and the electrical conductivity are characterized in a broad range of acceptor concentrations. A long-standing debate on the nature of the charge transfer between P3HT and F4TCNQ is resolved by showing that almost every F4TCNQ acceptor undergoes a full-electron charge transfer with a P3HT site. However, only 5% of these charge transfer pairs can dissociate and induce a mobile hole into P3HT which contributes electrical conduction. Moreover, it is shown that the left-behind F4TCNQ ions broaden the density-of-states distribution for the doping-induced mobile holes, which is due to the longrange Coulomb attraction in the low-permittivity organic semiconductors. / Organische Halbleiter kombinieren die molekulare Vielfalt und Anpassbarkeit, die mechanische Flexibilität und die preisgünstige Herstellung und Verarbeitung von Kunststoffen mit fundamentalen Halbleitereigenschaften wie Lichtabsorption und -emission und elektrischer Leitfähigkeit. Unlängst finden organische Leuchtdioden Anwendung in den Displays von TV-Geräten und Smartphones. Für die weitere Entwicklung und den Erfolg organischer Halbleiter ist das Verständnis derer physikalischer Grundlagen unabdingbar. Ein für viele Bauteile fundamentaler Prozess ist der Transport von Ladungsträgern in der organischen Schicht. Die Ladungstransporteigenschaften werden maßgeblich durch die Struktur dieser Schicht bestimmt, z.B. durch den Grad der molekularen Ordnung, die molekulare Verbindung von kristallinen Domänen und durch Defekte der molekularen Packung. Mittels optischer Spektroskopie werden in dieser Arbeit die temperatur-, molekulargewichts- und lösemittelabhängigen Struktureigenschaften poly- und oligothiophenbasierter Schichten untersucht. Dabei basiert die Analyse der Absorptionsspektren auf der Zerlegung in die spezifischen Anteile geordneten und ungeordneten Materials. Es wird gezeigt, dass sich hohe Ladungsträgerbeweglichkeiten dann erreichen lassen, wenn der Anteil der geordneten Bereiche und deren molekulare Verbindung in den Schichten möglichst hoch und die energetische Unordnung in diesen Bereichen möglichst klein ist. Der Ladungstransport in organischen Halbleitern kann außerdem gezielt beeinflusst werden, indem die Ladungsträgerdichte und die elektrische Leitfähigkeit durch molekulares Dotieren, d.h. durch das Einbringen von Elektronenakzeptoren oder -donatoren, eingestellt werden. Obwohl der Einsatz dotierter Schichten essentiell für effiziente Leuchtdioden und Solarzellen ist, ist der Mechanismus, der zur Erzeugung freier Ladungsträger im organischen Halbleiter führt, derzeit unverstanden. In dieser Arbeit wird der Ladungstransfer zwischen dem prototypischen Elektronendonator P3HT und dem Akzeptor F4TCNQ untersucht. Es wird gezeigt, dass, entgegen verbreiteter Vorstellungen, fast alle F4TCNQ-Akzeptoren einen ganzzahligen Ladungstransfer mit P3HT eingehen, aber nur 5% dieser Paare dissoziieren und einen beweglichen Ladungsträger erzeugen, der zur elektrischen Leitfähigkeit beiträgt. Weiterhin wird gezeigt, dass die zurückgelassenen F4TCNQ-Akzeptorionen Fallenzustände für die beweglichen Ladungsträger darstellen und so die Ladungsträgerbeweglichkeit in P3HT bei schwacher Dotierung absinkt. Die elektrischen Kenngrößen Ladungsträgerkonzentration, Beweglichkeit und Leitfähigkeit von F4TCNQ-dotierten P3HT-Schichten werden in dieser Arbeit erstmals in weiten Bereichen verschiedener Akzeptorkonzentrationen untersucht.
3

Inverted Organic Light Emitting Diodes: Optical and Electrical Device Improvement

Thomschke, Michael 12 February 2013 (has links)
This study focuses on the investigation of the key parameters that determine the optical and electrical characteristics of inverted top-emitting organic light emitting diodes (OLED). A co-deposition of small molecules in vacuum is used to establish electrically doped films that are applied in n-i-p layered devices. The knowledge about the functionality of each layer and parameter is important to develop efficient strategies to reach outstanding device performances. In the first part, the thin film optics of top-emitting OLEDs are investigated, focusing on light extraction via cavity tuning, external outcoupling layers (capping layer), and the application of microlens films. Optical simulations are performed to determine the layer configuration with the maximum light extraction efficiency for monochrome phosphorescent devices. The peak efficiency is found at 35%, while varying the thickness of the charge transport layers, the semitransparent anode, and the capping layer simultaneously. Measurements of the spatial light distribution validate, that the capping layer influences the spectral width and the resonance wavelength of the extracted cavity mode, especially for TM polarization. Further, laminated microlens films are applied to benefit from strong microcavity effects in stacked OLEDs by spatial mixing of external and to some extend internal light modes. These findings are used to demonstrate white top-emitting OLEDs on opaque substrates showing power conversion efficiencies up to 30 lm/W and a color rendering index of 93, respectively. In the second part, the charge carrier management of n-i-p layered diodes is investigated as it strongly deviates from that of the p-i-n layered counterparts. The influence of the bottom cathode material and the electron transport layer is found to be negligible in terms of driving voltage, which means that the assumption of an ohmic bottom contact is valid. The hole transport and the charge carrier injection at the anode is much more sensitive to the evaporation sequence, especially when using hole transport materials with a glass transition temperature below 100°C. As a consequence, thermal annealing of fabricated inverted OLEDs is found to drastically improve the device electronics, resulting in lower driving voltages and an increased internal efficiency. The annealing effect on charge transport comes from a reduced charge accumulation due to an altered film morphology of the transport layers, which is proven for electrons and for holes independently. The thermal treatment can further lead to a device degradation. Finally, the thickness and the material of the blocking layers which usually control the charge confinement inside the OLED are found to influence the recombination much more effectively in inverted OLEDs compared to non-inverted ones.
4

Performance enhancement of organic photovoltaic cells through nanostructuring and molecular doping

Yu, Shuwen 05 March 2015 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Leistungssteigerung organischer Solarzellen durch Änderung der Geometrie an der Donor-Akzeptor Grenzfläche und dem Einstellen der elektronischen Eigenschaften von Grenzflächen durch molekulares p-Dotieren. Kristalline und gleichmäßige Nanosäulen aus dem organischen Halbleiter Pentazen wurden durch glancing angle deposition (GLAD) hergestellt, die einen ineinandergreifenden Heteroübergang zu Methanofulleren [6,6]-Phenyl-C61-Butansäure Methylester (PCBM) als Akzeptor ermöglichten. Die Kurzschlussspannung der nanosäulenbasierten Solarzellen war signifikant erhöht im Vergleich zu planaren Heteroübergängen zwischen denselben Materialien. Die Leistungssteigerung der Solarzellen konnte maßgebend der vergrößerten Grenzfläche zugewiesen werden, wegen des verringerten Einflusses der kurzen Exciton Diffusionslänge. Molekulares p-Dotieren mit Tetrafluorotetracyanoquinodimethan (F4TCNQ) als Dotand in polyfuranbasierten Solarzellen wurde für verschiede Dotierkonzentrationen untersucht. Ultraviolettphotoelektronenspektroskopie wurde verwendet, um die Veränderungen der Energieniveaus mit zunehmender Dotierkonzentration zu analysieren, welche zu einer Vergrößerung der 0,2 V Kurzschlussspannung auf bis zu 0,4 V führte. Nach Kombination dieser Beobachtung mit Ergebnissen an dotierten Polymerfilmen, insbesondere bezüglich deren Morphologie und Absorptionsverhalten, wurde vorgeschlagen, dass ein resultierender Dipol an der Donor-Akzeptorgrenzfläche präsent ist. Zusammenfassend zeigt die vorliegende Arbeit das Potential sowohl der GLAD Technik als auch des molekularen, elektrischen Dotierens für die Leistungsverbesserung organischer Solarzellen. / The present work mainly focuses on improving the performance of OPVCs by tailoring the donor-acceptor interface geometry and by tuning the electrical properties of interfaces with p-type molecular doping. Crystalline and uniform nanocolumns of pentacene (PEN) and diindenoperylene (DIP) were fabricated by glancing angle deposition (GLAD), forming an interdigitated donor/acceptor heterojunction with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and/or fullerene as the electron acceptor. The short circuit current of nanocolumn-based OPVCs increased significantly compared to planar heterojunction OPVCs made from the same materials. The performance improvement of OPVCs had been verified to be contributed decisively by the donor-acceptor interface area enlargement because of reduced impact of short exciton diffusion length in organic materials. P-type molecular doping as applied in polyfuran (PF) based OPVCs was investigated by using tetrafluorotetracyanoquinodimethane (F4-TCNQ) as the dopant for various doping ratios. Ultraviolet photoelectron spectroscopy (UPS) was applied to analyze the energy level shift with increasing doping ratio leading to the enlargement of the open circuit voltage in OPVCs, from 0.2 V to close to 0.4 V. Combining this observation with the results of doped polymer films, their morphology and absorption behavior, a net dipole pointing towards the donor material at the donor-acceptor interface of OPVCs is proposed. Overall, this work demonstrates the potential of both the GLAD technique and molecular electrical doping for improving the performance of OPVCs.
5

Theoretical Studies of Structural and Electronic Properties of Donor-Acceptor Polymers

Günther, Florian 17 September 2018 (has links)
The development of new electronic devices requires the design of novel materials since the existing technologies are not suitable for all applications. In recent years, semiconducting polymers (SCPs) have evolved as fundamental components for the next generation of costumer electronics. They provide interesting features, especially flexibility, light weight, optical transparency and low-cost processability from solution. The research presented in this thesis was devoted to theoretical studies of donor-acceptor (DA) copolymers formed by electron-deficient 3,6-(dithiophene-2-yl)-diketopyrrolo[3,4-c]pyrrole (TDPP) and different electron-rich thiophene compounds. This novel type of SCPs has received a lot of attention due to experimental reports on very good electronic properties which yielded record values for organic field-effect transistor applications. In order to get a deeper understanding of the structural and electronic properties, the main objective of this work was to study this material type on the atomic scale by means of electronic structure methods. For this, density functional theory (DFT) methods were used as they are efficient tools to consider the complex molecular structure. This work comprises three main parts: a comparative study of the structural and the electronic properties of TDPP based DA polymers obtained by means of different theory levels, the calculation of the intermolecular charge transfer between pi-pi stacked DA polymer chains based on the Marcus transfer theory and investigations of molecular p-doping of TDPP based DA polymers. For the first, DFT using different functionals was compared to the density functional based tight binding (DFTB) method, which is computationally very efficient. Although differences in structural properties were observed, the DFTB method was found to be the best choice to study DA polymers in the crystalline phase. For the second, correlations between the molecular structure and the reorganization energy are found. Moreover, the dependency of the electronic coupling element on the spatial shape of the frontier orbitals is shown. Furthermore, a Boltzmann-type statistical approach is introduced in order to enable a qualitative comparison of different isomers and chemical structures. For the last part, the p-doping properties of small, multi-polar dopant molecules with local dipole provided by cyano groups were investigated theoretically and compared with experimental observations. The one with the strongest p-doping properties was studied in this work for the first time on a theoretical basis. Comparing these different p-dopants, rich evidence was found supporting the experimentally observed doping strength.

Page generated in 0.0528 seconds