1 |
Optimal Sequential Decisions in Hidden-State ModelsVaicenavicius, Juozas January 2017 (has links)
This doctoral thesis consists of five research articles on the general topic of optimal decision making under uncertainty in a Bayesian framework. The papers are preceded by three introductory chapters. Papers I and II are dedicated to the problem of finding an optimal stopping strategy to liquidate an asset with unknown drift. In Paper I, the price is modelled by the classical Black-Scholes model with unknown drift. The first passage time of the posterior mean below a monotone boundary is shown to be optimal. The boundary is characterised as the unique solution to a nonlinear integral equation. Paper II solves the same optimal liquidation problem, but in a more general model with stochastic regime-switching volatility. An optimal liquidation strategy and various structural properties of the problem are determined. In Paper III, the problem of sequentially testing the sign of the drift of an arithmetic Brownian motion with the 0-1 loss function and a constant cost of observation per unit of time is studied from a Bayesian perspective. Optimal decision strategies for arbitrary prior distributions are determined and investigated. The strategies consist of two monotone stopping boundaries, which we characterise in terms of integral equations. In Paper IV, the problem of stopping a Brownian bridge with an unknown pinning point to maximise the expected value at the stopping time is studied. Besides a few general properties established, structural properties of an optimal strategy are shown to be sensitive to the prior. A general condition for a one-sided optimal stopping region is provided. Paper V deals with the problem of detecting a drift change of a Brownian motion under various extensions of the classical Wiener disorder problem. Monotonicity properties of the solution with respect to various model parameters are studied. Also, effects of a possible misspecification of the underlying model are explored.
|
2 |
Robust aspects of hedging and valuation in incomplete markets and related backward SDE theoryTonleu, Klebert Kentia 16 March 2016 (has links)
Diese Arbeit beginnt mit einer Analyse von stochastischen Rückwärtsdifferentialgleichungen (BSDEs) mit Sprüngen, getragen von zufälligen Maßen mit ggf. unendlicher Aktivität und zeitlich inhomogenem Kompensator. Unter konkreten, in Anwendungen leicht verifizierbaren Bedingungen liefern wir Existenz-, Eindeutigkeits- und Vergleichsergebnisse beschränkter Lösungen für eine Klasse von Generatorfunktionen, die nicht global Lipschitz-stetig im Sprungintegranden sein brauchen. Der übrige Teil der Arbeit behandelt robuste Bewertung und Hedging in unvollständigen Märkten. Wir verfolgen den No-Good-Deal-Ansatz, der Good-Deal-Grenzen liefert, indem nur eine Teilmenge der risikoneutralen Maße mit ökonomischer Bedeutung betrachtet wird (z.B. Grenzen für instantanen Sharpe-Ratio, optimale Wachstumsrate oder erwarteten Nutzen). Durchweg untersuchen wir ein Konzept des Good-Deal-Hedgings für welches Hedgingstrategien als Minimierer geeigneter dynamischer Risikomaße auftreten, was optimale Risikoteilung mit der Markt erlaubt. Wir zeigen, dass Hedging mindestens im-Mittel-selbstfinanzierend ist, also, dass Hedgefehler unter geeigneten A-priori-Bewertungsmaßen eine Supermartingaleigenschaft haben. Wir leiten konstruktive Ergebnisse zu Good-Deal-Bewertung und -Hedging im Rahmen von Prozessen mit Sprüngen durch BSDEs mit Sprüngen, sowie im Brown''schen Fall mit Driftunsicherheit durch klassische BSDEs und mit Volatilitätsunsicherheit durch BSDEs zweiter Ordnung her. Wir liefern neue Beispiele, die insbesondere für versicherungs- und finanzmathematische Anwendungen von Bedeutung sind. Bei Ungewissheit des Real-World-Maßes führt ein Worst-Case-Ansatz bei Annahme mehrerer Referenzmaße zu Good-Deal-Hedging, welches robust bzgl. Unsicherheit, im Sinne von gleichmäßig über alle Referenzmaße mindestens im-Mittel-selbstfinanzierend, ist. Daher ist bei hinreichend großer Driftunsicherheit Good-Deal-Hedging zur Risikominimierung äquivalent. / This thesis starts by an analysis of backward stochastic differential equations (BSDEs) with jumps driven by random measures possibly of infinite activity with time-inhomogeneous compensators. Under concrete conditions that are easy to verify in applications, we prove existence, uniqueness and comparison results for bounded solutions for a class of generators that are not required to be globally Lipschitz in the jump integrand. The rest of the thesis deals with robust valuation and hedging in incomplete markets. The focus is on the no-good-deal approach, which computes good-deal valuation bounds by using only a subset of the risk-neutral measures with economic meaning (e.g. bounds on instantaneous Sharpe ratios, optimal growth rates, or expected utilities). Throughout we study a notion of good-deal hedging consisting in minimizing some dynamic risk measures that allow for optimal risk sharing with the market. Hedging is shown to be at least mean-self-financing in that hedging errors satisfy a supermartingale property under suitable valuation measures. We derive constructive results on good-deal valuation and hedging in a jump framework using BSDEs with jumps, as well as in a Brownian setting with drift uncertainty using classical BSDEs and with volatility uncertainty using second-order BSDEs. We provide new examples which are particularly relevant for actuarial and financial applications. Under ambiguity about the real-world measure, a worst-case approach under multiple reference priors leads to good-deal hedging that is robust w.r.t. uncertainty in that it is at least mean-self-financing uniformly over all priors. This yields that good-deal hedging is equivalent to risk-minimization if drift uncertainty is sufficiently large.
|
Page generated in 0.076 seconds