• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 6
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 45
  • 30
  • 24
  • 21
  • 17
  • 15
  • 10
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Organic light-harvesting materials for power generation

Jradi, Fadi M. 27 May 2016 (has links)
This dissertation focuses on the design, synthesis, and characterization of a variety of organic dyes, semiconducting materials, and surface redox-active modifiers of potential interest to organic-based emerging photovoltaics. A discussion of the materials’ optoelectronic properties, their ability to modify and promote electron transfer through an organic/transparent conducting-oxide interface, and finally their effect on the photovoltaic properties of devices utilizing them as light-harvesters is provided where relevant. The first two research chapters discuss mono-chromophoric asymmetric squaraine-based sensitizers and covalently linked, dual-chromophoric, porphyrin-squaraine sensitizers as light absorbers in dye-sensitized solar cells (DSSCs), in an attempt to address two problems often encountered with DSSCs utilizing this class of near infra-red sensitizers; The lack of panchromatic absorption and aggregation on the surface. Also, this dissertation discusses the design and synthesis of asymmetric perylene diimide phosphonic acid (PDI-PA) redox-active surface modifiers, and reports on the electron-transfer rates and efficiencies across the interface of an ITO electrode (widely used in organic-electronic devices) modified with these perylene diimides. Finally two series of hole-transport materials based on oligothiophenes and benzodithiophenes are reported: optoelectronic properties and preliminary performance of organic photovoltaic (OPV) devices fabricated with them is discussed.
32

Ultrafast, Non-Equilibrium Electron Transfer Reactions of Molecular Complexes in Solution

Petersson, Jonas January 2014 (has links)
Photoinduced electron transfer is a fundamentally interesting process; it occurs everywhere in the natural world. Studies on electron transfer shed light on questions about the interaction between molecules and how the dynamics of these can be utilized to steer the electron transfer processes to achieve a desired goal. The goal may be to get electrons to the electrode of a solar cell, or to make the electrons form an energy rich fuel such as hydrogen, and it may also be an input or output for molecular switches. The importance of electron transfer reactions will be highlighted in this thesis, however, the main motivation is to gain a better understanding of the fundamental processes that affect the rate and direction of the electron transfer. A study of photoinduced electron transfer (ET) in a series of metallophorphyrin/bipyridinium complexes in aqueous solution provided fresh insight concerning the intimate relationship between vibrational relaxation and electron transfer. The forward electron transfer from porphyrin to bipyridinium as well as the following back electron transfer to the ground state could be observed by femtosecond transient absorption spectroscopy. Both the reactant and the product states of the ET processes were vibrationally unrelaxed, in contrary to what is assumed for most expressions of the ET rates. This could be understood from the observation of unrelaxed ground states. The excess energy given by the initial excitation of the porphyrin does not relax completely during the two steps of electron transfer. This is an unusual observation, not reported in the literature prior the studies presented in this thesis. This study also gave the first clear evidence of electronically excited radical pairs formed as products of intramolecular electron transfer. Signs of electronically excited radical pairs were seen in transient spectra, and were further verified by the observation that the rates followed a Marcus normal region behavior for all excitation wavelengths, despite the relatively large excess energy of the second excited state. This thesis also concerns electron transfer in solar cell dyes and mixed valence complexes. In the ruthenium polypyridyl complex Ru(dcb)2(NCS)2, where dcb = 4,4’-dicarboxy-2,2’-bipyridine, inter-ligand electron transfer (ILET) in the 3MLCT state was followed by means of femtosecond transient absorption anisotropy that was probed in the mid-IR region. Unexpectedly, ILET was not observed because electron density was localized on the same bpy during the time-window allowed by the rotational lifetime.
33

Material property study on dye sensitized solar cells and cu(ga,in)se2 solar cells

Pan, Jie. January 2008 (has links)
Thesis (M.S.)--Miami University, Dept. of Paper and Chemical Engineering, 2009. / Title from first page of PDF document. Includes bibliographical references (p. 64-69).
34

Σύνθεση και μελέτη υβριδικών φωτοβολταϊκών κυττάρων : νέα πρόκληση για το περιβάλλον και τα κτίρια

Τρυπαναγνωστοπούλου, Μαρία 16 June 2011 (has links)
Η διπλωματική μεταπτυχιακή εργασία ειδίκευσης παρουσιάζει μελέτη σε φωτοευαισθητοποιημένα ηλιακά κύτταρα, τα οποία μετατρέπουν την ηλιακή ακτινοβολία σε ηλεκτρική ενέργεια. Στο θεωρητικό μέρος παρουσιάζεται βιβλιογραφική ανασκόπηση των φωτοβολταϊκών κυττάρων και γίνεται εμβάθυνση στον μηχανισμό λειτουργίας των φωτοευαισθητοποιημένων ηλιακών κυττάρων με χρωστική ουσία (Dye-sensitized Solar Cells, DSSC). Αναλύονται τα υλικά που χρησιμοποιούνται για την σύνθεση του ηλιακού κυττάρου: υποστρώματα από Indium-Tin Oxide (ITO), υμένιο από νανο-κρυσταλλικό διοξείδιο του τιτανίου (TiO2), οργανικές χρωστικές ουσίες, υγρός/στερεός ηλεκτρολύτης ιωδίου και αντιηλεκτρόδιο. Επιπλέον, περιγράφονται πειραματικές διατάξεις από ελληνικά και διεθνή εργαστήρια τα οποία παρουσιάζουν τις νέες εξελίξεις στον τομέα των φωτοευαίσθητων φωτοβολταϊκών. Στο πειραματικό μέρος περιγράφεται η διαδικασία σύνθεσης φωτοευαίσθητων ηλιακών κυττάρων στο εργαστήριο. Γίνεται μελέτη των επιμέρους υλικών και σύνθεση νέων ηλιακών κυττάρων, έτσι ώστε να επιτευχθεί αύξηση της απόδοσης και της σταθερότητας των υποστρωμάτων τους. Σύμφωνα με την θεωρία Shockley–Queisser, η μέγιστη θεωρητική απόδοση ενός ηλιακού κυττάρου φτάνει το 30% και με επόμενες παρόμοιες μεθόδους υπολογίσθηκε ότι μπορεί να φτάσει το 68%. Παρουσιάζονται επιπλέον, πειραματικές διατάξεις με εφαρμογή χαμηλοδιάστατου ημιαγωγού, με σκοπό την αύξηση της απόδοσης και ταυτόχρονα την μείωση του υλικού και του κόστους του φωτοβολταϊκού. Η μελέτη και ο χαρακτηρισμός των επιμέρους υλικών έγινε με την χρήση τεχνικών οργάνων, όπως: XRD, UV, PL, SEM. Η μέτρηση της απόδοσης των ηλιακών κυττάρων πραγματοποιήθηκε σε εσωτερικό σκοτεινό χώρο με προσομοίωση του ηλιακού φωτός με την χρήση του ηλεκτρομέτρου και υπολογίστηκαν οι αποδόσεις των φωτοβολταϊκών κυττάρων. / The present master thesis presents a study on photo-sensitized solar cells, which convert solar radiation into electricity. The theoretical part includes a literature of relevant works on solar cells and a description of the operation mechanism of photo-sensitized solar cells using pigment (Dye-sensitized solar cells, DSSC). The materials used for the fabrication of solar cell were Indium-Tin Oxide (ITO) for the substrate, thin film from nanoparticles of titanium dioxide (TiO2), organic pigments, liquid/solid iodide electrolyte and counter electrode. In addition, testing devices and cell fabrication procedures, from national and international laboratories covering the developments in the field of photosensitive solar cells, are also included. In the experimental part, the procedure for the synthesis of photo-sensitized solar cells is extensively described. The used materials and the synthesis mode to achieve new cell types with increased efficiencies and substrate stability are presented. According to Shockley-Queisser theory, the theoretically maximum efficiency of solar cell is up to 30%, which in other methods it has been extended to 68%. In the same part, experimental procedures for other semiconductor application are additionally presented, aiming to a reduction in material and cost. The study and the characterization of the used materials were performed by using suitable equipment as XRD, UV, PL and SEM. The solar cell efficiency was measured in a dark room using electrometer and the efficiency were obtained.
35

Estudo sobre a estrutura eletrônica de ftalocianinas metaladas para aplicação em células solares sensibilizadas por corante

Gomes, Weverson Rodrigues 16 February 2012 (has links)
Fundação de Amparo a Pesquisa do Estado de Minas Gerais / The electronic properties of push-pull substituted, zinc(II) (ZnPc), aluminum(III) (AlPc), and ruthenium(II) (RuPc), metal-phthalocyanine derivatives, presenting two electron donating groups (diethylamine) and two electron withdrawing groups (carboxylic) was studied using the Density Functional Theory (DFT) with B3LYP exchange-correlation functional in the vacuum and under the presence of solvent (DMSO), aiming their application in dye-sensitized solar cells (DSSC). For the excited states, the time-dependent approach of DFT (TD-DFT) was applied. In the transition for the excited state it was evidenced a charge transfer from donor to acceptor groups which results in large electronic rearrangement inducing the bathochromism when adding DMSO (a polar solvent). This electronic transfer is directed to the acceptor groups (benzoic groups), mainly in RuPc molecule, which enables bigger probability in the electronic injection into the semiconductor s conduction band. HOMO s energy to the ZnPc and AlPc are sufficiently below the redox potential of the electrolyte and LUMO s energy, in all compounds, is above the conduction band of the oxide. Those push-pull molecules present panchromism, important for the application of these compounds in DSSC since they can absorb photons in a large range of energies. NBO analysis suggests that the ruthenium presents strong coordination with the nitrogen atoms of the macrocycle, which allows a larger participation of this metal in the electronic transition. The ionization energy and electron affinity were calculated aiming to quantify the energetic barrier in the electron gain / loss. / As propriedades eletrônicas de derivados de ftalocianinas metaladas push-pull de zinco(II) (FtZn), alumínio(III) (FtAl) e rutênio(II) (FtRu) apresentando dois grupos doadores de elétrons (N,N-dietilanilina) e dois grupos retiradores de elétrons (ácido benzóico), foram estudadas usando a teoria do funcional de densidade (DFT) com o funcional híbrido B3LYP na presença do solvente (DMSO) e no vácuo, visando sua aplicação em células solares sensibilizadas por corante (CSSC). Para a descrição dos estados excitados usou-se a extensão dependente do tempo da DFT (TD-DFT). Na transição para o estado excitado destes compostos há uma transferência de carga dos grupos doadores para os grupos aceptores, que resulta em rearranjo eletrônico induzindo o efeito batocrômico observado com a adição de DMSO. Essa transferência eletrônica está direcionada para o grupo aceptor (grupo benzóico), principalmente na FtRu, que possibilita uma maior probabilidade na injeção eletrônica na banda de condução do semicondutor. A energia do HOMO para a FtZn e FtAl estão suficientemente abaixo do potencial redox do eletrólito e o LUMO, em todos os compostos, está acima da banda de condução do TiO2. Essas moléculas push-pull apresentam pancromismo, importante para a aplicação destes compostos em CSSC uma vez que podem absorver fótons de diferentes energias. Análises NBO sugerem que o rutênio apresenta forte coordenação com os nitrogênios do macrociclo que possibilita grande participação deste metal nestas transições eletrônicas. As energias de ionização e eletroafinidades foram calculadas com o objetivo de quantificar a barreira energética no ganho/perda de um elétron. / Mestre em Química
36

MATERIAL PROPERTY STUDY ON DYE SENSITIZED SOLAR CELLS AND CU(GA,IN)SE2 SOLAR CELLS

Pan, Jie 27 April 2009 (has links)
No description available.
37

Production et stockage d'énergie : de la DSSC au photo-accumulateur / Energy production and storage : from DSSC to a photo-accumulator

Cisneros, Robin 25 September 2015 (has links)
L’objectif de ce travail a été de mettre en place un système original capable de produire et stocker l’énergie à partir de la lumière dans un dispositif unique. Pour ce faire, nous avons choisi d’adapter l’électrode photo-sensible d’une DSSC sur un système d’accumulateur électrochimique. La première partie de ce travail a été de mettre en place la technique de spectroscopie EIS-λ, basée sur la spectroscopie d’impédance électrochimique couplée à un balayage en longueur d’onde de la lumière incidente. L’objectif de cette mesure est d’identifier et de quantifier les différents mécanismes de transfert électroniques, photo-dépendant ou non, ayant lieu à la surface de l’électrode photo-sensible, ainsi que les processus de désactivation des états excités des sensibilisateurs. Nous nous sommes ensuite penchés sur la recherche des conditions optimales d’utilisation de deux coadsorbants — l’acide bismethoxyphenyl phosphinique ou BMPP et l’acide chenodesoxycholique ou CDCA — avec le sensibilisateur de référence N719. Nous avons également quantifié leurs activités shield et anti-π-stacking grâce à la technique EIS-λ. Nous avons ainsi réalisé une DSSC présentant un rendement de photo-conversion de 8,3% en utilisant le co-adsorbant BMPP dans un ratio [co-ads]/[S] = 1, contre 7,2% dans les conditions de référence — avec le coadsorbant CDCA utilisé dans un ratio [co-ads]/[S] = 10. Par la suite, nous avons imaginé et synthétisé trois complexes de ruthénium hydrophiles originaux dont nous avons testé le pouvoir de photo-conversion dans des DSSC à électrolyte 100% aqueux, en présence des co-adsorbants sélectionnés. Ces systèmes ont permis de dépasser le pouvoir de photo-conversion du sensibilisateur N719, dans l’eau, avec un rendement maximal obtenu de 1,31%. Enfin, nous avons sélectionné la meilleure combinaison sensibilisateur / co-adsorbant afin de réaliser une électrode photo-sensible que nous avons implémentée dans un système original d’accumulateur électrochimique à base d’électrolytes aqueux. Le système ainsi mis en place constitue aujourd’hui le premier dispositif fonctionnel d’accumulateur 100% aqueux photo-rechargeable à partir d’une électrode mésoporeuse photo-sensibilisée / The aim of this work was to imagine and to develop a new system able to produce and store energy from sunlight in a single device. For this purpose, the photo-sensitive electrode of a DSSC has been adapted to an electrochemical accumulator. The first part of this work was to develop a new spectroscopic technique, called EIS-λ and based on electrochemical impedance spectroscopy combined to incident light wavelength sweep. This technique has proved its capacity to identify and quantify the different mechanisms of electron transfer over the surface of the semiconducting material and their dependency to incident wavelength, together with the various deactivation processes of the excited state of the sensitizer. Then, we investigated the best conditions to use two different co-adsorbents — namely bis-methoxyphenylphosphinic acid, or BMPP, and chenodesoxycholic acid, or CDCA — with the reference sensitizer N719. The shield and anti-π-stacking activities of the two coadsorbents has been characterized using EIS-λ technique. DSSC with a photo-conversion yield of 8,3% has been prepared in the lab using BMPP in a ratio [co-ads]/[S] = 1 while reference conditions – namely with CDCA in a ratio [co-ads]/[S] = 10 — only gave 7,2%. Besides, we have designed and synthesized three original hydrophilic ruthenium complexes, then tested their photo-conversion properties in DSSC with 100% aqueous electrolytes. Such systems, with the selected co-adsorbents, allowed 1,31% photo-conversion yield to be obtained, which is two times larger than the efficiency exhibited by N719 in the same electrolyte conditions. Finally the best combination sensitizer / co-adsorbent has been selected to achieve a photo-sensitive electrode which has been implemented in an original electrochemical accumulator with aqueous electrolytes. This system represents the first functional device of a 100% aqueous accumulator, which is photo-reloadable with a photosensitized mesoporous electrode
38

Nové přístupy k chemické modifikaci diamantových povrchů / Novel approaches to chemical modification of diamond surface

Bartoň, Jan January 2020 (has links)
1 Abstract Diamond is a unique material for its physical and chemical stability. However, many advance applications rely on surface functionalisation. Here, two types of diamond were modified on the surface - thin layer of chemical vapor deposition (CVD) and nanodiamond particles (NDs) high pressure and high temperature (HPHT). The aim of CVD surface modification was to prepare photosensitised, conductive, diamond electrodes for dye sensitized solar cells (DSSC). For this purpose, a thin diamond layer doped with boron was deposited on the silicon wafer. Boron doping provided p-type (semi)conductivity to diamonds. The surface of the diamond was hydrogenated with H-plasma, and a short carbon linker with a protected amino group was UV-photografted to the surface. In another study, a photoconverting dye (P1) was covalently attached to the amine-linker. Furthermore, a dye designed based on donor-π-acceptor (D-π-A) concepts was attached to the surface. Finally, a systematic study was done for differently conductive diamond layer and the underlying silicon wafer These experiments gradually lead to the highest ever reported photocurrents of 6.6 µA cm2 for a flat photosensitised boron-doped-diamond (BDD) electrode. Monomolecular layer surface functionalizations on CVD diamond are difficult to detect or even quantify...
39

Indigenous natural dyes for Gratzel solar cells : Sepia melanin

Mbonyiryivuze, Agnes 11 1900 (has links)
Dye-sensitized Solar Cells (DSSC), also known as Grätzel cells, have been identified as a cost-effective, easy-to-manufacture alternative to conventional solar cells. While mimicking natural photosynthesis, they are currently the most efficient third-generation solar technology available. Among others, their cost is dominated by the synthetic dye which consists of efficient Ruthenium based complexes due to their high and wide spectral absorbance. However, the severe toxicity, sophisticated preparation techniques as well as the elevated total cost of the sensitizing dye is of concern. Consequently, the current global trend in the field focuses on the exploitation of alternative organic dyes such as natural dyes which have been studied intensively. The main attractive features of natural dyes are their availability, environmental friendly, less toxicity, less polluting and low in cost. This contribution reports on the possibility of using sepia melanin dye for such DSSC application in replacement of standard costly ruthenium dyes. The sepia melanin polymer has interesting properties such as a considerable spectral absorbance width due to the high degree of conjugation of the molecule. This polymer is capable of absorbing light quantum, both at low and high energies ranging from the infrared to the UV region. The comprehensive literature survey on Grätzel solar cells, its operating principle, as well as its sensitization by natural dyes focusing on sepia melanin has been provided in this master’s dissertation. The obtained results in investigating the morphology, chemical composition, crystalline structure as well as optical properties of sepia melanin samples using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy x-ray diffraction, X-ray Diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Raman spectroscopy, UV-VIS absorption spectroscopy as well as Photoluminescence (PL) for Grätzel solar cell application have been reported. These results represent an important step forward in defining the structure of melanin. The results clearly show that sepia melanin can be used as natural dye to DSSC sensitization. It is promising for the realization of high cell performance, low-cost production, and non-toxicity. It should be emphasized here that natural dyes from food are better for human health than synthetic dyes. / Physics / 1 online resource (xii, 101 leaves) : illustrations / M. Sc. (Physics)
40

Indigenous natural dyes for Gratzel solar cells : Sepia melanin

Mbonyiryivuze, Agnes 11 1900 (has links)
Dye-sensitized Solar Cells (DSSC), also known as Grätzel cells, have been identified as a cost-effective, easy-to-manufacture alternative to conventional solar cells. While mimicking natural photosynthesis, they are currently the most efficient third-generation solar technology available. Among others, their cost is dominated by the synthetic dye which consists of efficient Ruthenium based complexes due to their high and wide spectral absorbance. However, the severe toxicity, sophisticated preparation techniques as well as the elevated total cost of the sensitizing dye is of concern. Consequently, the current global trend in the field focuses on the exploitation of alternative organic dyes such as natural dyes which have been studied intensively. The main attractive features of natural dyes are their availability, environmental friendly, less toxicity, less polluting and low in cost. This contribution reports on the possibility of using sepia melanin dye for such DSSC application in replacement of standard costly ruthenium dyes. The sepia melanin polymer has interesting properties such as a considerable spectral absorbance width due to the high degree of conjugation of the molecule. This polymer is capable of absorbing light quantum, both at low and high energies ranging from the infrared to the UV region. The comprehensive literature survey on Grätzel solar cells, its operating principle, as well as its sensitization by natural dyes focusing on sepia melanin has been provided in this master’s dissertation. The obtained results in investigating the morphology, chemical composition, crystalline structure as well as optical properties of sepia melanin samples using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy x-ray diffraction, X-ray Diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Raman spectroscopy, UV-VIS absorption spectroscopy as well as Photoluminescence (PL) for Grätzel solar cell application have been reported. These results represent an important step forward in defining the structure of melanin. The results clearly show that sepia melanin can be used as natural dye to DSSC sensitization. It is promising for the realization of high cell performance, low-cost production, and non-toxicity. It should be emphasized here that natural dyes from food are better for human health than synthetic dyes. / Physics / 1 online resource (xii, 101 leaves) : illustrations / M. Sc. (Physics)

Page generated in 0.0463 seconds