Spelling suggestions: "subject:"dsc"" "subject:"dss""
11 |
Utilisation de ressources issues de la biomasse pour la synthèse de complexes de ruthénium à ligands 2,2’ : 6’,2’’-terpyridines comme colorants au sein de cellules solaires DSSC / Use of derived-biomass resources for synthesis of ruthenium complexes with 2,2’ : 6’,2’’-terpyridine ligands as dyes in DSSC solar cellsCharrier, Florian 01 December 2017 (has links)
Tout au long de cette thèse, de nouveaux colorants organométalliques ont été élaborés dont le but est de les utiliser en tant que photosensibilisateurs au sein des cellules solaires DSSC dont la simplicité de mise en œuvre, le faible coût de production et un design attractif en sont les atouts majeurs. Des analogues du black dye ont dans un premier temps été élaborés, une étude approfondie par des calculs DFT a permis une approche plus constructive sur le choix des designs moléculaires. Des aldéhydes dérivés de la biomasse comme la vanilline, le syringaldéhyde ou le 5-hydroxyméthylfurfural ont permis de substitués le ligand terpyridine par différents groupes (hétéro)aromatiques en position 4’ pour moduler les transferts de charges. Dans un second temps, une chaîne hexyloxyméthyle est introduite en position 4’’ pour diminuer les recombinaisons de charges lors du fonctionnement de la cellule solaire et par la même occasion placer la LUMO plus proche des points d’ancrages pour de meilleures injections de charges vers le semi-conducteur. L’utilisation de groupes cyanoacrylates a aussi été envisagé à la place des acides carboxyliques afin d’obtenir des absorptions plus panchromatiques. Des complexes du type [Ru(tpy)2] et [Ru(tpy)(bpy)NCS] ont également été synthétisés et étudiés pour leur stabilités plus accrues au cours du temps au sein de la cellule solaire par rapport aux complexes à ligands NCS. Certains colorants ont été testés en cellules solaires en combinaison du dioxyde de titane comme semi-conducteur et du couple I3-/I- en tant que médiateur rédox. / Throughout this thesis, new organometallic dyes have been developed to use them as photosensitizers in dye-sensitized solar cells (DSSCs), whose simplicity of implementation, low cost production and attractive design are major assets. Black dye analogues were first developed, a thorough study of DFT calculations allowed a more constructive approach to the choice of molecular designs. Biomass-derived aldehydes such as vanillin, syringaldehyde or 5-hydroxymethylfurfural have been used to substitute the terpyridine ligand by different (hetero)aromatic groups in the 4’ position in order to modulate charge transfers. In a second step, a hexyloxymethyl chain was introduced in the 4'' position with the aim of reduce charge recombination during the solar cell operation and in the same time to place the LUMO closer to the anchoring groups for better charge injections to the semiconductor. The use of cyanoacrylate groups was also considered in place of the carboxylic acids in order to obtain more panchromatic absorptions. [Ru(tpy)2] and [Ru(tpy)(bpy)NCS] complexes have also been synthesized and studied for their increased stability over time in the solar cell compared to the NCS ligand complexes. Some dyes have been tested in solar cells in combination of titanium dioxide as the semiconductor and the I3-/I- couple as the redox mediator.
|
12 |
Nouveaux ligands polypyridiniques à motifs dithiénylpyrroles et complexes de ruthénium correspondants. Propriétés électroniques et applications en photosensibilisation dans les cellules solaires à colorants (DSSC) / New Dithienylpyrrole-containing bipyridine ligands and corresponding Ruthenium complexes. Electronic properties and applications to photosensitization in Dye-Sensitized Solar CellsNoureen, Sajida 04 June 2012 (has links)
Les cellules solaires à colorant (DSSC) sont une alternative sérieuse aux cellules à base de silicium. Le principe de fonctionnement repose sur la photosensibilisation d'un semi-conducteur par un colorant qui est en général un complexe polypyridinique du ruthénium (II). La modulation des propriétés de ces complexes permet d'optimiser les performances des cellules solaires correspondantes. Dans cette thèse, nous avons synthétisé et étudié l'effet de nouveaux ligands bipyridiniques à substituants électro-donneurs [pi]-délocalisés à base de dithiénylpyrroles (DTP). Ces motifs induisent, dans les complexes homoleptiques, bis- et tris-hétéroleptiques du Ru(II), des effets bathochromes (lorsque les motifs DTP sont liés par leur cycle thiophénique à la bipyridine) et d'importantes augmentations des coefficients d'extinction molaires. Les nouveaux composés ont été caractérisés par spectroscopies, électrochimie, photophysique et calcul théorique. Deux complexes hétéroleptiques ont été testés en cellule DSSC. Si la collecte de photons est excellente, les performances restent en dessous de celles de colorants de référence. Comme en attestent les courbes J/V et les courbes IPCE. Ce résultat peut-être dû à une limitation lors de l'injection dans la bande de conduction ou encore à une gêne stéréo-électronique provoquée par le ligand lors de la réduction du colorant oxydé (Ru(III) par le médiateur / Dye-sensitized Solar Cells (DSSC) appear to be promising devices. Operation principle relies on the photosensitization of a wide-gap semiconductor with a dye, the latter typically being a polypyridinyl ruthenium(II) complex. Modulation of the properties of such complexes enables the optimization of the corresponding solar cells' performances. In the present work, we synthesized and investigated the effect of new bipyridine ligands bearing electron-donating dithienylpyrroles (DTP). These moieties induced red-shifts of the absorption spectra in homoleptic, bis- and tris-heteroleptic Ru(II) complexes especially when the DTP was bound by its thiophene unit to the bipyridine ligand. A notable increase of the molar extinction coefficients was also obtained. All new compounds have been characterized by using spectroscopic, electrochemical, photophysical and computational chemistry techniques. Two heteroleptic complexes have been tested in DSSCs. Despite excellent light harvesting properties, performances were found lower than those of standard dyes as revealed by J/V and IPCE curves. Stereoelectronic effects could be involved since the bulky DTP moiety could impede an efficient access of the mediator to Ru(III) centers
|
13 |
Synthèse et caractérisation de matériaux organiques transporteurs de trous à base de carbazole : application aux cellules solaires DSSC solides et pérovskite / Synthesis and characterization of carbazole-based organic hole transporting materials : application to solid DSSC solar cells and perovskiteBenhattab, Safia 19 December 2018 (has links)
Ce travail de thèse a permis de concevoir, synthétiser et caractériser de nouveaux verres moléculaires à base de carbazole pour la réalisation de cellules solaires DSSC solide ou de type pérovskite. Ces structures sont une alternative à la molécule de référence à base de spirobifluorène (Spiro-OMeTAD) utilisée majoritairement dans les dispositifs hybrides. Nous avons optimisé une voie de synthèse simple et rapide d’un « synthon carbazole » servant de précurseur à la conception d’une large variété de verres moléculaires transporteur de trous (HTM). Cette voie de synthèse a ainsi permis de réaliser une première génération de molécules possédant un unique synthon carbazole substitué par des groupements aryles (naphtalène, pyrène, triazatruxène) puis une seconde génération incorporant deux synthons carbazole séparés par un espaceur alkylé. Dans les deux cas, les voies de synthèse sont simples et les rendements de conversion d’énergie générés en DSSC solides sont prometteurs (entre 2,22 et 2,47 % avec le colorant D102). Une étude préliminaire de vieillissement consistant à analyser la dégradation en thermolyse et photolyse d’un film mince utilisant un HTM carbazole montre que ce dernier (Cz-P) possède une stabilité comparable au Spiro-OMeTAD en absence de dioxygène. Finalement, deux verres moléculaires ont été étudiés en cellules de type pérovskite permettant d’atteindre des rendement de conversion de 13,08 % et 12,41 % (pour Cz-P et Cz-PF) quasi-identiques à ceux à base de Spiro-OMeTAD (13,45 %) confirmant que ces structures à base de synthon carbazole sont aussi de bons candidats pour la réalisation de cellule pérovskite performantes. / The aim of this work was to design, synthesize and characterize new carbazole based molecular glasses for the realization of solid state DSSC or perovskite solar cells. These structures would be an alternative to the reference molecule based on spirobifluorene (Spiro-OMeTAD) mainly used in hybrid devices. We have optimized a simple way to synthetize a "synthon" as a precursor to the design of a wide variety of efficient hole transporting materials (HTM). This synthesis pathway has allowed producing a first generation of molecules based on a single carbazole synthon substituted by aryl groups (naphthalene, pyrene, triazatruxene) then a second generation incorporating two carbazole synthons separated by an alkyl spacer. In both cases, the synthesis pathways are simple and the energy conversion efficiencies generated in solid DSSCs are promising (between 2.22 % and 2.47 % with the D102 dye). A preliminary ageing study has consisted in analyzing the degradation during thermolysis or photolysis of a carbazole based thin film. It was shown that Cz-P possesses stability similar to Spiro-OMeTAD in the absence of oxygen. Finally, two carbazole molecular glasses were studied in perovskite cells to achieve conversion efficiencies of 13.08 % and 12.41 % (for Cz-P and Cz-PF respectively) almost identical to the one based on Spiro-OMeTAD (13.45 %), confirming that these carbazole based structures are good candidates for the realization of efficient perovskite cells.
|
14 |
Étude de semi-conducteurs de type p nanostructurés à base de métaux de transition pour une application en DSSC-p / Study of nanostructured p-type semiconductors based on transition metals for p-DSSC applicationsPolteau, Baptiste 18 October 2016 (has links)
Dans le but d'améliorer le rendement des cellules à colorant de type p (DSSC-p), ces travaux s'attachent à la synthèse et la caractérisation de matériaux semi-conducteurs de type p (SCs-p) sous forme de nanoparticules. En ce sens, des SCs-p répondant à un cahier des charges (bande de valence basse en énergie, grande surface spécifique, bon conducteur et bonne transparence) ont été étudiés. Dans ce cadre, une stratégie a été développée pour améliorer les propriétés de NiO (l'actuel matériau de référence) en optimisant sa nanostructuration, sa forte non-stœchiométrie en nickel et par son dopage à l'azote, paramètres tous favorables à la stabilisation de la valence mixte Ni3+/Ni2+, origine de la conductivité de type p. Cette longue étude a été initiée à partir d'un précurseur de nickel original nanostructuré Ni3O2(OH)4, à forte valence mixte Ni3+/Ni2+. La décomposition sous air et sous ammoniac de ce précurseur à basse température (250 °C) a permis de préparer Ni1-xO nanostructuré, fortement non-stœchiométrique (VNi = 25 %), de grande surface spécifique (240 m2.g-1) et dopé azote (NiO:N). De plus, deux matériaux non oxydes à structure delafossite, que sont les carbodiimides de nickel (NiNCN) et de manganèse (MnNCN) ont été préparés et caractérisés comme de nouveaux semi-conducteurs de type p, permettant de monter la première DSSC-p à base de NiNCN. / To improve the performances of p-Dye Sensitized Solar Cell (p-DSSC), this thesis work focuses on the synthesis and the characterization of p-type semiconductors (p-SCs) nanomaterials. These p-SCs with some specifications (low energy valence band, high specific surface area, high conductivity and transparency) were thoroughly studied. In this context, a strategy was developed to improve the NiO nanoparticles properties (commonly used as a reference) with higher nickel non-stoichiometry and nitrogen doping to promote the stabilization of the Ni3+/Ni2+ mixed valence (origin of the p-typness). This study was initiated with a nanostructured mixed valent Ni3O2(OH)4 precursor. Its thermal decomposition in air and ammonia at low temperature (250 °C) allows the formation of nanostructured Ni1-xO with a large amount of Ni vacancies (VNi = 25 %), a high specific surface area (240 m2.g-1) and a nitrogen doping (NiO:N). Moreover, two non-oxides materials with delafossite structure type, namely - nickel carbodiimide (NiNCN) and manganese carbodiimide (MnNCN) - were prepared and characterized as new p-type semiconductors. Thus, the first p-DSSC with NiNCN material was built with success.
|
15 |
Adsorption of molecular thin films on metal and metal oxide surfacesBesharat, Zahra January 2016 (has links)
Metal and metal oxides are widely used in industry, and to optimize their performance their surfaces are commonly functionalized by the formation of thin films. Self-assembled monolayers (SAMs) are deposited on metals or metal oxides either from solution or by gas deposition. Thiols with polar terminal groups are utilized for creating the responsive surfaces which can interact electrostatically with other adsorbates. Surface charge effects wetting and adhesion, and many other surface properties. Polar terminal groups in thiols could be used to modify these factors. Mixed SAMs can provide more flexible surfaces, and could change the resulting surface properties under the influence of factors such as pH, temperature, and photo-illumination. Therefore, in order to control these phenomena by mixed polar-terminated thiols, it is necessary to understand the composition and conformation of the mixed SAMs and their response to these factors. In this work, mixtures of thiols with carboxylic and amino terminal groups were studied. Carboxylic and amino terminal groups of thiol interact with each other via hydrogen bonding in solution and form a complex. Complexes adsorb to the surface in non-conventional orientations. Unmixed SAMs from each type, either carboxylic terminated thiols or amino terminated thiols are in standing up orientation while SAMs from complexes are in an axially in-plane orientation. Selenol is an alternative to replace thiols for particular applications such as contact with biological matter which has a better compatibility with selenol than sulfur. However, the Se-C bond is weaker than the S-C bond which limits the application of selenol. Understanding the selenol adsorption mechanism on gold surfaces could shed some light on Se-C cleavage and so is investigated in this work. Se-C cleavage happens in the low coverage areas on the step since atoms at steps have lower coordination making them more reactive than atoms on the terraces. Another area where the self-assembly of molecules is of importance is for dye sensitized solar cells, which are based on the adsorption of the dye onto metal oxides surfaces such as TiO2.The interface between the SAM of dye and the substrate is an important factor to consider when designing dyes and surfaces in dye sensitized solar cells (DSSCs). The quality of the self-assembled monolayers of the dye on the TiO2 surface has a critical influence on the efficiency of the DSSCs. Creation of just a monolayer of dye on the surface could lead to an efficient current of photo-excited electrons to the TiO2 and degeneration of the dye by redox. This work, T-PAC dye showed island growth with some ad-layer that is not in contact with the surface, whereas the MP13 dye adsorption is laminar growth. Cuprite (Cu2O) is the initial and most common corrosion product for copper under atmospheric conditions. Copper could be a good replacement for noble metal as catalysts for methanol dehydrogenation. Knowledge about the structure of Cu2O(100) and Cu2O(111) surfaces could be used to obtain a deeper understanding of methanol dehydrogenation mechanisms with respect to adsorption sites on the surfaces. In this work, a detailed study was done of Cu2O(100) surface which revealed the possible surface structures as the result of different preparation conditions. Studies of the structure of Cu2O(100) and Cu2O(111) surfaces show that Cu2O(100) has a comparatively stable surface and reduces surface reactivity. As a consequence, dehydrogenation of methanol is more efficient on the Cu2O(111) surface. The hydrogen produced from methanol dehydrogenation is stored in oxygen adatom sites on both surfaces. / <p>QC 20161107</p>
|
16 |
Study of Coordination and Adsorption of Dye and Improvement of Dye-sensitized Solar Cell EfficiencyYen, Han 27 July 2011 (has links)
Alternative energy sources such as solar energy have attracted an extensive interest in the petroleum shortage era. Among solar cells, dye-sensitized solar cell (DSSC) attracts the attention of widespread research teams because of the easy-production process, low cost, and good photon-to-electron conversion efficiency.
In this study, both UV and acid solution such as HCl are used to improve the efficiency of DSSC. The UV illumination can eliminate organic contaminates on TiO2 by photocatalysis and enhance the adsorption of dye molecules. Meanwhile, the coordination mode between TiO2 and dye could be changed and lower the electron transportation. If the HCl solution is used after UV illumination, the coordination mode can be preserved. Moreover, H+ from HCl can attract the COO¡Ð anchoring group of dye by electrostatic force. It further increases the adsorption of dye and improves the DSSC efficiency.
The coordination mode was measured by Fourier-transform infrared spectrometer (FTIR). The internal resistance was measured by electrical impedance spectroscopy (EIS). The chemical properties were characterized by X-ray photoelectron spectroscopy (XPS). The light absorbance was measured by ultraviolet-visible spectroscopy (UV-Vis). The morphology was observed by field emission scanning electron microscope (FE-SEM). The performance of the cells was measured by a semiconductor device analyzer.
In our results, the conversion efficiency was improved from 6.29% of untreated one to 6.71 and 7.39% for UV and UV + HCl treated ones.
|
17 |
The Effects Of Platinum Particle Size To The Efficiency Of A Dye Sensitized Solar Cell (dssc)Giray, Hasan Berk 01 January 2010 (has links) (PDF)
The aim of this study was to modify the platinum particle size to observe the effects on the efficiency of a Dye Sensitized Solar Cell (DSCC). DSSC was prepared as follows: On the anode side, TiO2 was annealed on the transparent conducting oxide (TCO) which is SnO2:F coated and a cis-bis (isothiocyanato) bis (2,2' / -bipyridyl-4,4' / -dicarboxylato)&ndash / ruthenium(II) dye was adsorbed on the TiO2. On the cathode side, platinum was coated on TCO from an alcohol based solution of platinum (plasitol) by thermal decomposition method. Potassium iodide and iodine were dissolved in ethylene glycol to prepare the electrolyte.
Four cathode surfaces were prepared by thermal decomposition method at 400 oC and 5 min. Cathode surface morphology was changed by changing the annealing conditions. Current-voltage measurements were performed for determining the cell efficiency. One cathode glass was used as such giving a cell efficiency of 2.36%. Three glasses were further thermally treated at 450 oC, 500 oC and 550 oC for 30 min. highest efficiency was measured with the counter electrode annealed at 550 oC for 30 min as 2.89%.
SEM micrographs of the substrate which was SnO2:F coated TCO revealed a decrease in average surface particle size with an increase in annealing temperature. EDX mappings showed that as the annealing temperature increased, Pt particles segregated together to form porous patches.
In this study, it was demonstrated that as the annealing temperature of cathode increased, DSSC efficiency increased. These results can be used to design cheaper DSSCs with higher efficiencies.
|
18 |
From old porphyrins to novel materialsRoznyatovskiy, Vladimir 03 January 2013 (has links)
The fascinating role that porphyrins play in natural processes such as photosynthesis and respiration, continues to provide a compelling motivation to study these chromophores and to design new analogues with improved functions.
This dissertation describes the interdisciplinary study of several classes of compounds that include π-extended porphyrins, expanded porphyrins, porphycenes, polypyrroles and porphyrins.
Dictated by the need to capture efficiently red and near-infrared light, the so-called π-extension approach has been established as a powerful tool in the synthesis of large aromatic chromophores. Many of these artificial systems demonstrate properties similar to natural porphyrins. Often, however, a reduced bandgap is seen due to a greater π-system. Synthetic challenges associated with the preparation of the linearly annulated porphyrins have long been recognized. Many of these have now beed overcome as the result of a newly developed synthetic protocol described in Chapter 1. This protocol allows for the synthesis of a pyrrolic building block under milder conditions. As a continuation of this work, naphthobipyrroles were obtained via the π-extension strategy applied to a benzobipyrrole. The utility of this new building block was demonstrated with the syntheses of an electrochromic polynaphthobipyrrolic polymer (Chapter 3) and a dinaphthoporphycene (Chapter 2), a chromophore isomeric to porphyrin.
Chapter 4 describes a different approach to porphyrin functionalization. Here, the goal was to effect substitution at the so-called β pyrrolic positions with using two bithiophene groups. Although, the resulting product is not completely rigid, enhancement in the sensitizing properties of the basic porphyrin chromophore was seen in a dye sensitized solar cell (DSSC) assembly, as studied by scanning electrochemical microscopy (SECM). The synthetic contributions concerning this work, carried in collaboration with Bard group, are expected to lay the groundwork for the development future photovoltaic materials.
Expanded porphyrins are the more diverse group of porphyrinic derivatives. In effort to develop new conjugated expanded porphyrin systems and to understand their spectroscopic behavior in greater detail, a set of expanded porphyrins, based on the direct electrochemical oxidation of terpyrrole-like fragments, was developed in conjunction with the Bucher group (Grenoble, France). This effort is described in Chapter 5. Specifically it is shown that trithiacyclo[9]pyrrole may be prepared by means of an electrochemical synthesis. / text
|
19 |
Dipyrrin complexes as dyes for dye-sensitised solar cells : a thesis submitted in partial fulfilment of the requirements for the degree of Masters in Science in Chemistry at Massey University, Palmerston North, New ZealandSmalley, Serena Jade January 2009 (has links)
With increasing concerns of global warming and the impending exhaustion of fossil fuels attention is being turned to renewable sources of energy. The sun supplies 3 x 1024 J per year to the earth which is around 104 times more energy than what the human race consumes. The world’s energy needs would be satisfied if a mere 0.1% of the planet’s surface was covered with solar cells(< = 10%)1, causing the conversion of solar energy (sunlight) into electricity to represent a very practical renewable source. Past research into solar energy has produced a photovoltaic device, which when coupled with highly coloured coordination compounds, enables this conversion. This device is known as a dye-sensitised solar cell (DSSC). Further research has been conducted into the properties of the dyes, and has shown that highly coloured coordination compounds are able to convert solar energy into electrical energy with the highest efficiencies. The dominant compounds in this area to date have been Grätzel’s ruthenium complexes and porphyrins. However, there exists a class of smaller compounds called dipyrrins, described most simply as “half a porphyrin”, which possess many of the attractive qualities for DSSC dyes. Although there are no examples of ruthenium-dipyrrin complexes in the literature, the combination of advantageous properties from both components represent very attractive synthetic targets with huge potential as dyes for DSSCs. The objectives of this thesis were firstly to develop a series of dipyrrin complexes which would be suitable as dyes for DSSCs; then to fully characterise the complexes and investigate the spectroscopic properties of each complex; and finally to determine the suitability of the complexes as dyes for DSSCs. These objectives were fully met, resulting in a set of generic target compounds characterised via 1H NMR, 13C NMR, mass spectrometry (ESI-MS), elemental analysis, and x-ray crystallography. From analyses of the UV-visible, fluorescence, emission, and Raman spectra; and electrochemistry results; the complexes were concluded to be suitable as dyes for DSSC’s. An additional bonus is that the syntheses for these complexes are applicable to any dipyrrin, thus aiding future studies into the use of dipyrrins as dyes for DSSC’s. This thesis summarises the findings of the above outlined research project.
|
20 |
Dye-Sensitized Solar Cells: the future of consumer electronics?Garcia Mayo, Susana January 2021 (has links)
Dye-sensitized solar cells (DSSCs) or Grätzel cells are electrochemical devices in where physicochemical properties of different materials are combined to obtain electric energy. These photoconversion devices have evolved from a pioneering concept of molecular photovoltaics to industrial development with confirmed record efficiencies of 14.3%. Their efficiency combined with low-cost production methods and a high aesthetic interest enables the production of DSSC products for consumer electronics market. The strengths of this technology and the fact that its drawbacks are not limiting for this application makes consumer electronics and DSSC a perfect match for the development of self-powered devices. Some companies have already spot a potential market and are currently launching different consumer electronics and other devices with embedded DSSC. This thesis provides an overview of the operation principles of DSSC and the possible routes to improve the efficiency of these devices to emerge and thrive. Additionally, improvements in efficiency, stability and manufacturing needed to be addressed in the near future for this technology are discussed and its suitability to represent a breakthrough in the market of consumer electronics. An overview of the main companies developing DSSC and current prototypes and products is included.
|
Page generated in 0.0372 seconds