• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Human CDC14 phosphatases are not essential for viability : and do not regulate mitotic exit /

Berdougo, Eli. January 2009 (has links)
Thesis (Ph. D.)--Cornell University, January, 2009. / Vita. Includes bibliographical references (leaves 114-122).
2

An investigation of the oncogenic potential and function of the dual specificity phosphatase 12

Cain, Erica L. January 1900 (has links)
Doctor of Philosophy / Department of Biology / Alexander Beeser / Large-scale genomic approaches have demonstrated many atypical dual specificity phosphatases (DUSPs) are differentially expressed or mutated in cancer. DUSPs are proteins predicted to have the ability to dephosphorylate Ser/Thr and Tyr residues, and the atypical DUSP subgroup contains at least 16 members with diverse substrates that include proteins, nucleic acids, and sugars, and some of the atypical DUSPs function in the cell not as phosphatases but as scaffolds in signal transduction pathways. Of the atypical DUSPs, DUSP12 is one of the most evolutionarily conserved with homologs found in organisms ranging from yeast to humans. DUSP12 is of particular interest as it has been identified to be one of only two candidate genes for the target of a genetic amplification found in liposarcomas. Furthermore, DUSP12 may be an oncogene in that over-expression of dusp12 in cell culture promotes apoptosis resistance, cell motility, and the up-regulation of two established oncogenes, the hepatocyte growth factor receptor (c-met) and integrin alpha 1 (itga1). Additionally, DUSP12 may protect from apoptosis by functioning as a regulator of stress-induced translation repression and stress granule formation that may be due to its interaction with the DEAD Box RNA Helicase, DDX3.
3

Structural analysis of UDP-N-acetylgalactopyranose mutase from Campylobacter jejuni 11168

2012 November 1900 (has links)
UDP-galactopyranose mutase (EC 5.4.99.9; UGM), the product of the glf gene, is an enzyme that catalyzes the conversion of uridine diphosphate galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf). UGM activity is found in bacteria, parasites and fungi, however is absent in higher eukaryotes. This enzyme is essential for the viability of many pathogenic organisms, such as Mycobacterium tuberculosis and Escherichia coli, due to the broad distribution of Galf in crucial structures such as the cell wall or capsular polysaccharide. Not surprisingly, galactofuranose biosynthesis has become an attractive antimicrobial target due to the absence of these sugars in higher eukaryotes. The UGM homologue, UDP-Nacetylgalactopyranose mutase (UNGM), was identified in Campylobacter jejuni 11168, encoded for by the cj1439c gene. UNGM is known to function as a bifunctional mutase, which catalyzes the reversible ring contraction between the pyranose-furanose forms of UDPgalactose (UDP-Gal) and UDP-N-acetylgalactosamine (UDP-GalNAc). UNGM is essential for the virulence of C. jejuni, due to the incorporation of UDP-N-acetylgalactofuranose into the capsular polysaccharide. We report the first structure of UNGM determined by X-ray crystallography, to a resolution of 1.9 Å. Analysis of the dimeric, holoenzyme structure of UNGM has identified that the cofactor flavin adenine dinucleotide is bound within each monomer of the enzyme. Comparative analysis with UGM homologues has confirmed the conserved active site residues involved in the binding of various substrates. Docking studies suggest that UNGM binds its natural substrates in a productive binding mode for catalysis with the flavin cofactor, which is consistent with the proposed mechanism for UNGM. The mobile loops are essential for substrate binding, and we have identified that the conserved arginine residue, Arg169, and the neighboring Arg168, function to stabilize the diphosphate region of UDP, although not concurrently. The non-conserved arginine residue, Arg168, appeared to favor the stabilization of N-acetylated sugars, which is in agreement with the enzyme’s higher binding affinity for UDP-GalNAc over UDP-Gal by a factor of 0.9. We have also identified that the active site Arg59 exists in two conformations in the structure of UNGM, with one conformation directed toward the active site. Arg59 is 2.5 to 3.0 Å from the acetamido moiety of GalNAc, which is favorable for stabilization and is believed to confer specificity for this substrate.
4

The phosphatase MKP1 as a target to enhance replicative stress and apoptosis in tumor cells

Jagannathan, Veena 06 May 2015 (has links)
No description available.
5

炭素と窒素の栄養バランス応答における緑藻のタンパク質リン酸化酵素TAR1の機能

新川, はるか 23 July 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(生命科学) / 甲第22021号 / 生博第418号 / 新制||生||55(附属図書館) / 京都大学大学院生命科学研究科統合生命科学専攻 / (主査)教授 福澤 秀哉, 教授 河内 孝之, 教授 荒木 崇 / 学位規則第4条第1項該当 / Doctor of Philosophy in Life Sciences / Kyoto University / DFAM
6

The role of MKP-1 in autophagy, apoptosis and necrosis during ischaemia/reperfusion injury in the heart

Vermeulen, Michelle 12 1900 (has links)
Thesis MSc (Physiological Sciences))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Ischaemic heart disease is a leading cause of death worldwide and is also largely contributing to deaths in Africa. Better treatment or even prevention of ischaemia/reperfusion injury in the heart, necessitates a better understanding of the molecular pathways and mechanisms of cell death. Three types of cell death can occur in the diseased myocardium. Type I, better known as apoptotic cell death, is characterised by cell shrinkage and chromatin condensation, type II, known as autophagic cell death, is characterised by intracellular accumulation of double membranes vacuoles and type III, necrotic cell death, is characterised by cellular swelling and loss of membrane integrity. Many signaling pathways are activated during ischaemia/reperfusion injury which include the mitogen activated protein kinases (MAPKs), such as extracellular signal-regulated protein kinase (ERK), c-Jun NH2-terminal protein kinase (JNK) and p38 MAPK. These kinases are dephosphorylated by appropriate phosphatases. MAPK phosphatase-1 (MKP-1), a dual specificity phosphatase, inactivates the MAPKs by dephosphorylating specific Thr/Tyr residues. Upregulation of MKP-1 during ischaemia/reperfusion injury has been shown to be cardioprotective, however no knowledge regarding a role of MKP-1 in autophagy exists. Therefore the aim of this study is to investigate the role of MKP-1 in autophagy, apoptosis and necrosis during simulated ischaemia/reperfusion injury in the heart.METHOD: H9C2 cells (rat cardiomyocytes) were cultured under standard conditions. Upon reaching 75-80% confluency, cells were treated for 30 min during normoxic conditions with dexamethasone, to induce MKP-1 expression, or sanguinarine, to inhibit MKP-1 induction. Thereafter, they were exposed to 3 hrs simulated ischaemia (induced by an ischaemic buffer and 5% CO2/1% O2) in the presence of the above mentioned treatments. Cells were then allowed to reperfuse for 30 min in the presence of dexamethasone or sanguinarine. Samples were analysed after simulated ischaemia and after reperfusion. Cell viability was measured by MTT assay. Propidium iodide and Hoechst staining were used to assess morphological markers of apoptosis and necrosis. LDH release during reperfusion was assessed as indicator of necrotic cell death. LysoTracker®Red was used to visualise the autophagic flux occurring during ischaemia/reperfusion in the cell. Flow cytometry was used to quantify cells stained with acridine orange as indicator for autophagy. Autophagic and apoptotic protein markers as well as MAPK and MKP-1 activity were analysed by Western Blotting. RESULTS: Our results indicate a clear relationship between MKP-1 induction, autophagy and cell survival during simulated ischaemia/reperfusion (SI/R). MKP-1 inhibition during SI/R resulted in decreased autophagy activity accompanied by significant apoptotic and necrotic cell death. Increased MKP-1 induction, on the other hand, during SI/R resulted in increased levels of autophagy activity and subsequent attenuation of apoptotic and necrotic cell death. p38 MAPK phosphorylation was significantly higher while MKP-1 was inhibited and significantly lower while MKP-1 was induced. This strongly indicates that upregulation of MKP-1, known to attenuate ischaemia/reperfusion injury, has an important role in cell survival during ischaemia/reperfusion injury in the heart, through its involvement in the regulation of autophagic activity as a stress response against apoptotic or necrotic cell death. / AFRIKAANSE OPSOMMING: Iskemiese hartsiekte is een van die grootste oorsake van sterftes wêreldwyd en dra ook beduidend by tot sterftes in Afrika. Om iskemiese hartsiektes te behandel of selfs te voorkom, is 'n goeie begrip van die molekulêre paaie wat betrokke is tydens iskemie/herperfusie, noodsaaklik. Drie tipes seldood kom tydens patologiese toestande in die hart voor. Tipe I, ook bekend as apoptotiese seldood, word gekenmerk deur selkrimping en kromatien kondensasie, tipe II, ook bekend as autofagiese seldood word gekenmerk deur intrasellulêre opeenhoping van dubbelmembraan vakuole en tipe III, bekend as nekrotiese seldood, word deur sellulêre swelling en verlies van membraan integriteit gekenmerk. Iskemie/herperfusie lei tot die aktivering van seintransduksiepaaie wat die MAPKs, soos p38, ERK en JNK insluit. Hierdie kinases word deur die gepaste fosfatases gedefosforileer. MKP-1, 'n dubbele spesifieke fosfatase, deaktiveer MAPKs deur hul Thr/Tyr eenhede te defosforileer. Alhoewel daar al voorheen getoon is dat verhoogte MKP-1 ‘n beskermende funksie in die hart tydens iskemie/herperfusie het, is daar nog geen bewyse vir ‘n rol van MKP-1 tydens autofagie nie. Die doel van hierdie studie is dus om die rol van MKP-1 in autofagie, apoptose en nekrose te ondersoek tydens gesimuleerde iskemie/herperfusie in die hart. METODE: H9C2 selle (rot ventrikulêre hartselle) is onder standaard toestande gekweek. Wanneer die selle 75-80% konfluensie bereik het, is dit behandel met dexamethasone of sanguinarine onder standaard toestande vir 30 min. Daarna is selle blootgestel aan 3 ure iskemie, in die teenwoordigheid van dexamethasone of sanguinarine. Selle is dan toegelaat om vir 30 min te herperfuseer, weer in die teenwoordigheid van dexamethasone of sanguinarine. Monsters is na iskemie en herperfusie geneem vir analise. Selvatbaarheid is gekwantifiseer deur ‘n MTT bepaling. Morfologiese merkers van seldood is bepaal met behulp van propidium iodide en Hoechst kleuringsmetodes. Laktaatdehidrogenase (LDH) vrystelling tydens herperfusie is as merker van nekrose gebruik. Autofagie is gevisualiseer deur gebruik te maak van LysoTracker®Red kleuring tydens iskemie en herperfusie. Akridienoranje is gebruik om suur kompartemente te kleur. Vloeisitometrie is as kwantifiseringstegniek vir autofagie gebruik. Western Blotting is gebruik om uitdrukking van merkerproteïene van autofagie en apoptose sowel as MAPK en MKP-1 aktiwiteit tydens iskemie/reperfisie te bepaal. RESULTATE: Ons resultate toon ‘n verband tussen MKP-1 induksie, autofagie en seloorlewing gedurende gesimuleerde iskemie/herperfusie (SI/R) aan. MKP- 1 inhibisie gedurende SI/R het tot ‘n afname in autofagie gelei tesame met ‘n beduidende toename in apoptotiese en nekrotiese seldood. Verhoogde MKP-1 induksie gedurende SI/R, daarteenoor, het autofagiese aktiwiteit verhoog, gepaardgaande met ‘n verlaging in apoptose en nekrose. p38 MAPK fosforilasie was beduidend hoër tydens MKP-1 inhibisie en laer met MKP-1 induksie. Hierdie resultate toon dat MKP-1 ‘n belangrike rol in seloorlewing speel tydens iskemie/herperfusiesskade in die hart, deur sy deelname in die regulering van autofagiese aktiwiteit as ‘n stres reaksie teen apoptotiese en nekrotiese seldood.
7

Pharmacological targeting of the mitochondrial phosphatase PTPMT1.

Doughty-Shenton, D, Joseph, JD, Zhang, J, Pagliarini, DJ, Kim, Y, Lu, D, Dixon, JE, Casey, PJ 05 1900 (has links)
The dual-specificity protein tyrosine phosphatases (PTPs) play integral roles in the regulation of cell signaling. There is a need for new tools to study these phosphatases, and the identification of inhibitors potentially affords not only new means for their study, but also possible therapeutics for the treatment of diseases caused by their dysregulation. However, the identification of selective inhibitors of the protein phosphatases has proven somewhat difficult. PTP localized to mitochondrion 1 (PTPMT1) is a recently discovered dual-specificity phosphatase that has been implicated in the regulation of insulin secretion. Screening of a commercially available small-molecule library yielded alexidine dihydrochloride, a dibiguanide compound, as an effective and selective inhibitor of PTPMT1 with an in vitro concentration that inhibits response by 50% of 1.08 microM. A related dibiguanide analog, chlorhexidine dihydrochloride, also significantly inhibited PTPMT1, albeit with lower potency, while a monobiguanide analog showed very weak inhibition. Treatment of isolated rat pancreatic islets with alexidine dihydrochloride resulted in a dose-dependent increase in insulin secretion, whereas treatment of a pancreatic beta-cell line with the drug affected the phosphorylation of mitochondrial proteins in a manner similar to genetic inhibition of PTPMT1. Furthermore, knockdown of PTPMT1 in rat islets rendered them insensitive to alexidine dihydrochloride treatment, providing evidence for mechanism-based activity of the inhibitor. Taken together, these studies establish alexidine dihydrochloride as an effective inhibitor of PTPMT1, both in vitro and in cells, and support the notion that PTPMT1 could serve as a pharmacological target in the treatment of type II diabetes. / Dissertation
8

Synthèse et évaluation biologique de nouveaux inhibiteurs de kinases : identification d‘inhibiteurs de kinases parasitaires / Synthesis and biological evaluation of new kinase inhibitors : identification of inhibitors of several parasite protein kinases

Bendjeddou, Lyamin 14 October 2014 (has links)
La phosphorylation des protéines par les kinases est l’une plus importantes modification post-traductionnelle dans les processus cellulaires tels que la division, la différenciation, la prolifération et l’apoptose. Due à leur rôle clef, un dérèglement des protéines kinases peut entrainer de nombreuses pathologies proliférative telles que le cancer et non prolifératives telles que les maladies neurodégénératives. Le travail de thèse s’est construit autour de 2 séries d’inhibiteurs de protéine kinases comportant les noyaux imidazo[1,2-b]pyridazine et imidazo[4,5-b]pyridine. L’objectif est d’inhiber sélectivement les protéines kinases choisies, pour leurs implications dans les pathologies visées au laboratoire. Les imidazo[1,2-b]pyridazines ont été préparées pour identifier des inhibiteurs de CLK1 et DYRK1A, cibles potentielles dans la maladie d’Alzheimer. Parmi les imidazo[1,2-b]pyridazines synthétisées, plusieurs molécules se sont révélées particulièrement sélectives de DYRKs et CLKs, avec des IC50 < 100 nM. Une relation structure-activité basée sur la synthèse de 70 molécules, a permis de dégager des éléments structuraux de la sélectivité des molécules. L’évaluation des produits a également été portée sur les kinases de parasites. Il a ainsi été possible d’identifier quelques inhibiteurs actifs sur PfCLK1. La seconde partie de cette thèse avait pour objectif l’optimisation du protocole de synthèse imidazo[4,5-b]pyridines, analogue de la roscovitine. Des dérivés s’étaient révélés capables d’inhiber la formation de kystes, dans un modèle cellulaire de polykystose rénale. Une synthèse en sept étapes a conduit à plusieurs grammes d’imidazo[4,5-b]pyridine 3,5,7 trisubstitués, qui sont ainsi disponibles pour l’évaluation in vivo. / Phosphorylation by protein kinases is one of the most important post-translational modification in cellular processes such as division, differentiation, proliferation and apoptosis. Kinase deregulation is associated with numerous diseases such as cancer or neurodegenerative diseases. Imidazo[1,2-b]pyridazine and imidazo[4,5-b]pyridine were prepared to inhibit protein kinases involved in diseases targeted in the laboratory. The imidazo[1,2-b]pyridazines were synthesized to identify inhibitors of CLK1 and DYRK1A, potential targets in Alzheimer's disease. Among the imidazo[1,2-b]pyridazines synthesized, several molecules were found selective of DYRKs and CLKs, with IC50 < 100 nM. A structure-activity relationship based on the synthesis of 70 molecules, led to the identification of the structural bases of the selectivity. Products were also evaluated against parasite kinases. It was possible to identify some highly potent inhibitors on PfCLK1. The aim of second part of this thesis was to optimize the synthetic process to obtain imidazo[4,5-b]pyridines, which are close analogues of roscovitine. Derivatives had proved capable of inhibiting the formation of cysts in a cellular model of polycystic kidney disease. A seven-step synthesis has led to several grams of 3,5,7-trisubstituted imidazo[4,5-b]pyridine which is now available for evaluation in vivo.
9

Molecular and Cellular Mechanisms Leading to Similar Phenotypes in Down and Fetal Alcohol Syndromes

Solzak, Jeffrey Peter 22 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Down syndrome (DS) and Fetal Alcohol Syndrome (FAS) are two leading causes of birth defects with phenotypes ranging from cognitive impairment to craniofacial abnormalities. While DS originates from the trisomy of human chromosome 21 and FAS from prenatal alcohol consumption, many of the defining characteristics for these two disorders are stunningly similar. A survey of the literature revealed over 20 similar craniofacial and structural deficits in both human and mouse models of DS and FAS. We hypothesized that the similar phenotypes observed are caused by disruptions in common molecular or cellular pathways during development. To test our hypothesis, we examined morphometric, genetic, and cellular phenotypes during development of our DS and FAS mouse models at embryonic days 9.5-10.5. Our preliminary evidence indicates that during early development, dysregulation of Dyrk1a and Rcan1, cardinal genes affecting craniofacial and neurological precursors of DS, are also dysregulated in embryonic FAS models. Furthermore, Caspase 3 was also found to have similar expression in DS and FAS craniofacial neural crest derived tissues such as the first branchial arch (BA1) and regions of the brain. This may explain a developmental deficit by means of apoptosis. We have also investigated the expression of pAkt, a protein shown to be affected in FAS models, in cells located within the craniofacial precursor of Ts65Dn. Recent research shows that Ttc3, a gene that is triplicated and shown to be overexpressed in the BA1 and neural tube of Ts65Dn, targets pAkt in the nucleus affecting important transcription factors regulating cell cycle and cell survival. While Akt has been shown to play a role in neuronal development, we hypothesize that it also affects similar cellular properties in craniofacial precursors during development. By comparing common genotypes and phenotypes of DS and FAS we may provide common mechanisms to target for potential treatments of both disorders. One of the least understood phenotypes of DS is their deficient immune system. Many individuals with DS have varying serious illnesses ranging from coeliac disease to respiratory infections that are a direct result of this immunodeficiency. Proteasomes are an integral part of a competent and efficient immune system. It has been observed that mice lacking immunoproteasomes present deficiencies in providing MHC class I peptides, proteins essential in identifying infections. A gene, Psmg1 (Dscr2), triplicated in both humans and in Ts65Dn mice, is known to act as a proteasome assembly chaperone for the 20S proteasome. We hypothesized that a dysregulation in this gene promotes a proteasome assembly aberration, impacting the efficiency of the DS immune system. To test this hypothesis we performed western blot analysis on specific precursor and processed β-subunits of the 20S proteasome in thymic tissue of adult Ts65Dn. While the β-subunits tested displayed no significant differences between trisomic and euploid mice we have provided further insight to the origins of immunodeficiency in DS.
10

Destins des S-RNases et interactions moléculaires dans le tube pollinique dans le cadre de l’auto-incompatibilité gamétophytique chez Solanum chacoense

Soulard, Jonathan 01 1900 (has links)
L’auto-incompatibilité (AI) est une barrière reproductive prézygotique qui permet aux pistils d’une fleur de rejeter leur propre pollen. Les systèmes d’AI peuvent prévenir l’autofertilisation et ainsi limiter l’inbreeding. Dans l’AI gamétophytique, le génotype du pollen détermine son propre phénotype d’incompatibilité, et dans ce système, les déterminants mâles et femelles de l’AI sont codés par un locus multigénique et multi-allélique désigné le locus S. Chez les Solanaceae, le déterminant femelle de l’AI est une glycoprotéine stylaire extracellulaire fortement polymorphique possédant une activité ribonucléase et désignée S-RNase. Les S-RNases montrent un patron caractéristique de deux régions hypervariables (HVa et HVb), responsables de leur détermination allélique, et cinq régions hautement conservées (C1 à C5) impliquées dans l’activité catalytique ou la stabilisation structurelle de ces protéines. Dans ce travail, nous avons investigué plusieurs caractéristiques des S-RNases et identifié un nouveau ligand potentiel aux S-RNases chez Solanum chacoense. L’objectif de notre première étude était l’élucidation du rôle de la région C4 des S-RNases. Afin de tester l’hypothèse selon laquelle la région C4 serait impliquée dans le repliement ou la stabilité des S-RNases, nous avons généré un mutant dans lequel les quatre résidus chargés présents en région C4 furent remplacés par des résidus glycine. Cette protéine mutante ne s’accumulant pas à des niveaux détectables, la région C4 semble bien avoir un rôle structurel. Afin de vérifier si C4 est impliquée dans une liaison avec une autre protéine, nous avons généré le mutant R115G, dans lequel un acide aminé chargé fût éliminé afin de réduire les affinités de liaison dans cette région. Ce mutant n’affectant pas le phénotype de rejet pollinique, il est peu probable que la région C4 soit impliquée dans la liaison des S-RNases avec un ligand ou leur pénétration à l’intérieur des tubes polliniques. Enfin, le mutant K113R, dans lequel le seul résidu lysine conservé parmi toutes les S-RNases fût remplacé par un résidu arginine, fût généré afin de vérifier si cette lysine était un site potentiel d’ubiquitination des S-RNases. Toutefois, la dégradation des S-RNases ne fût pas inhibée. Ces résultats indiquent que C4 joue probablement un rôle structurel de stabilisation des S-RNases. Dans une seconde étude, nous avons analysé le rôle de la glycosylation des S-RNases, dont un site, en région C2, est conservé parmi toutes les S-RNases. Afin d’évaluer la possibilité que les sucres conjugués constituent une cible potentielle d’ubiquitination, nous avons généré une S11-RNase dont l‘unique site de glycosylation en C2 fût éliminé. Ce mutant se comporte de manière semblable à une S11-RNase de type sauvage, démontrant que l’absence de glycosylation ne confère pas un phénotype de rejet constitutif du pollen. Afin de déterminer si l’introduction d’un sucre dans la région HVa de la S11-RNase pourrait affecter le rejet pollinique, nous avons généré un second mutant comportant un site additionnel de glycosylation dans la région HVa et une troisième construction qui comporte elle aussi ce nouveau site mais dont le site en région C2 fût éliminé. Le mutant comportant deux sites de glycosylation se comporte de manière semblable à une S11-RNase de type sauvage mais, de manière surprenante, le mutant uniquement glycosylé en région HVa peut aussi rejeter le pollen d’haplotype S13. Nous proposons que la forme non glycosylée de ce mutant constitue un allèle à double spécificité, semblable à un autre allèle à double spécificité préalablement décrit. Il est intéressant de noter que puisque ce phénotype n’est pas observé dans le mutant comportant deux sites de glycosylation, cela suggère que les S-RNases ne sont pas déglycosylées à l’intérieur du pollen. Dans la dernière étude, nous avons réalisé plusieurs expériences d’interactions protéine-protéine afin d’identifier de potentiels interactants polliniques avec les S-RNases. Nous avons démontré que eEF1A, un composant de la machinerie de traduction chez les eucaryotes, peut lier une S11-RNase immobilisée sur résine concanavaline A. Des analyses de type pull-down utilisant la protéine eEF1A de S. chacoense étiquetée avec GST confirment cette interaction. Nous avons aussi montré que la liaison, préalablement constatée, entre eEF1A et l’actine est stimulée en présence de la S11-RNase, bien que cette dernière ne puisse directement lier l’actine. Enfin, nous avons constaté que dans les tubes polliniques incompatibles, l’actine adopte une structure agrégée qui co-localise avec les S-RNases. Ces résultats suggèrent que la liaison entre eEF1A et les S-RNases pourrait constituer un potentiel lien fonctionnel entre les S-RNases et l’altération du cytosquelette d’actine observée lors des réactions d’AI. Par ailleurs, si cette liaison est en mesure de titrer les S-RNases disponibles à l’intérieur du tube pollinique, ce mécanisme pourrait expliquer pourquoi des quantités minimales ou « seuils » de S-RNases sont nécessaires au déclenchement des réactions d’AI. / Self-incompatibility (SI) is a prezygotic reproductive barrier that allows the pistil of a flower to specifically reject their own (self-) pollen. SI systems can help prevent self-fertilization and avoid inbreeding. In gametophytic SI (GSI), the genotype of the pollen determines its breeding behaviour and in this system both female and male specificity determinants of SI are under the control of a multigenic and multiallelic locus called the S-locus. In Solanaceae, the female determinant of SI is a highly polymorphic stylar-expressed extracellular glycoprotein with RNase activity called the S-RNase. S-RNases show a distinct pattern of two hypervariable (HVa and HVb) regions, responsible for their allelic specificity, and five highly conserved regions (C1 to C5) thought to be involved in either the catalytic activity or the structural stabilization of the protein. In this work, we analyzed and characterized several conserved features of the S-RNases and also identified a potential novel S-RNase interactant in Solanum chacoense. The aim of our first study was to investigate the role of the C4 region of S-RNases. To test the hypothesis that the C4 region may be involved in S-RNase folding or stability, we examined a mutant in which the four charged residues in the C4 region were replaced with glycine. This mutant did not accumulate to detectable levels in styles, supporting a structural role for C4. To test the possibility that C4 might be involved in binding another protein, we prepared an R115G mutant, in which a charged amino acid was eliminated to reduce any potential binding to this region. This mutant had no effect on the pollen rejection phenotype of the protein, and thus C4 is likely not involved in either ligand binding or S-RNase entry inside pollen tubes. Finally, a K113R mutant, in which the only conserved lysine residue in all the S-RNases was replaced with arginine, was generated to test if this residue was an S-RNase ubiquitination site. However, S-RNase degradation was not disrupted in this mutant. Taken together, these results indicate that the C4 region likely plays a structural role. In a second study, we analyzed the role of S-RNase glycosylation. All S-RNases share a conserved glycosylation site in the C2 region. To test the possibility that the sugar residues might be a target for ubiquitination, a transgenic S11-RNase lacking its single glycosylation site was examined. This construct behaved similarly to a wild type S11-RNase, demonstrating that the lack of glycosylation does not confer constitutive pollen rejection. To determine if the introduction of an N-linked glycan in the HVa region would affect pollen rejection, a construct containing a second N-glycosylation site inside the HVa region of the S11-RNase and a construct containing only that N-glycosylation site inside the HVa region were prepared. The first construct rejected S11 pollen normally, but surprisingly, plants expressing the construct lacking the C2 glycosylation site rejected both S11 and S13 pollen. We propose that the non-glycosylated form is a dual specific allele, similar to a previously described dual-specific allele that also had amino acid replacements in the HV regions. Interestingly, this phenotype is not observed in the mutant containing two glycosylation sites, which suggests that the sugar residues are not removed during S-RNase entry into the pollen. In the final study, S-RNase-binding assays were performed with pollen extracts to detect potential interacting proteins. We found that concanavalin A-immobilized S11-RNase bound eEF1A, a component of the eukaryotic translational machinery. This interaction was validated by pull-down experiments using a GST-tagged S. chacoense eEF1A. We also found that a previously documented actin binding to eEF1A was markedly increased in the presence of S-RNases, although S-RNases alone do not bind actin. Lastly, we observed that actin in incompatible pollen tubes has an unusual aggregated form which also co-labels with S-RNases. This suggests that binding between S-RNases and eEF1A could provide a potential functional link between the S-RNase and the alteration of the actin cytoskeleton that occurs during the SI reaction. Furthermore, if eEF1A binding to S-RNases acted to titrate the amount of free S-RNase in the pollen tube, this binding may help explain the threshold phenomenon, where a minimum quantity of S-RNase in the style is required to trigger the SI reaction.

Page generated in 0.0754 seconds