Spelling suggestions: "subject:"ebud"" "subject:"bud""
101 |
Molecular and genetic basis of bud dormancy regulation in Japanese apricot (Prunus mume) / ウメ(Prunus mume)越冬芽における休眠制御に関する分子生物学的・遺伝学的研究HSIANG, Tzu-Fan 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(農学) / 甲第24654号 / 農博第2537号 / 新制||農||1097(附属図書館) / 学位論文||R5||N5435(農学部図書室) / 京都大学大学院農学研究科農学専攻 / (主査)教授 田尾 龍太郎, 教授 土井 元章, 准教授 中野 龍平 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
|
102 |
Jazz music: the technological mediation of an aural traditionJarvis, Brent 28 September 2021 (has links)
Jazz music is transmitted by aural and oral means. As recording and broadcast mediums became increasingly ubiquitous, starting in the mid twentieth-century, an ever greater proportion of jazz’s aural transmission would be mediated by these developing technologies. Many commentators address sound’s mediation from one state to another by identifying the resulting recording as an object. This object transcends temporal and spacial proximity, possessing inherent authority with implications for authorship, related work-concepts, and even issues of cultural assimilation. From a perspective informed by writings in musicology, philosophy, and sound studies, I examine recorded jazz music from the twentieth-century.
I begin by positioning the history of jazz music in relation to the emergence of recording technologies to establish recordings as authoritative texts. I then translate (by transcription) primarily non-literate jazz recordings into the primarily literate discourse of musicology. In the course of examining music by James Moody, Eddie Jefferson, Bud Powell, Chick Corea, and others, I conclude that they all exemplify musical intertextuality. In some cases, technological mediation connects the texts.
I then turn to an examination of recordings specifically. I begin by questioning musical notation as an adequate description of sound and move to developing a broader analytical framework. This thesis culminates with a comparison of Bud Powell’s 1949 recording of Bouncin’ With Bud and Chick Corea’s 1997 recording. Using the framework mentioned, disparate potentialities afforded by each recording’s mediation are connected to musical characteristics. / Graduate
|
103 |
Exogenous modulation of embryonic tissue and stem cells to form nephronal structuresSebinger, David Daniel Raphael 04 July 2013 (has links) (PDF)
Renal tissue engineering and regenerative medicine represent a significant clinical objective because of the very limited prospect of cure after classical kidney treatment. Thus, approaches to isolate, manipulate and reintegrate structures or stimulating the selfregenerative potential of renal tissue are of special interest. Such new strategies go back to knowledge and further outcome of developmental biological research. An understanding of extracellular matrix (ECM) structure and composition forms thereby a particularly significant aspect in comprehending the complex dynamics of tissue regeneration. Consequently the reconstruction of these structures offers beneficial options for advanced cell and tissue culture technology and tissue engineering. In an effort to investigate the influence of natural extracellular structures and components on embryonic stem cell and renal embryonic tissue, methodologies which allow the easy application of exogenous signals on tissue in vitro on the one hand and the straight forward evaluation of decellularization methods on the other hand, were developed. Both systems can be used to investigate and modulate behaviour of biological systems and represent novel interesting tools for tissue engineering. The novel technique for culturing tissue in vitro allows the growing of embryonic renal explants in very low volumes of medium and optimized observability, which makes it predestined for testing additives. In particular, this novel culture set up provides an ideal opportunity to investigate renal development and structure formation. Further studies indicated that the set is universally applicable on all kinds of (embryonic) tissue. Following hereon, more than 20 different ECM components were tested for their impact on kidney development under 116 different culture conditions, including different concentrations and being either bound to the substrate or dissolved in the culture medium. This allowed to study the role of ECM constituents on renal structure formation. In ongoing projects, kidney rudiments are exposed to aligned matrix fibrils and hydrogels with first promising results. The insights gained thereof gave rise to a basis for the rational application of exogenous signals in regenerative kidney therapies. Additionally new strategies for decellularization of whole murine adult kidneys were explored by applying different chemical agents. The obtained whole matrices were analysed for their degree of decellularization and their residual content and composition. In a new straight forward approach, a dependency of ECM decellularization efficiency to the different agents used for decellularization could be shown. Moreover the capability of the ECM isolated from whole adult kidneys to direct stem cell differentiation towards renal cell linage phenotypes was proved. The data obtained within this thesis give an innovative impetus to the design of biomaterial scaffolds with defined and distinct properties, offering exciting options for tissue engineering and regenerative kidney therapies by exogenous cues.
|
104 |
Functional Anatomy and Development of Cactus RamificationsSchwager, Hannes 12 November 2015 (has links) (PDF)
Cacti (Cactaceae) represent a family of highly specialized angiosperm plants with a native range of distribution restricted to the American continents. Columnar cacti of the sub-family Cactoideae evolved in adaptation to their arid or semi-arid habitats characteristics that distinguish them from most other dicot plants, e.g. the stem succulence with a strongly vascularized storage parenchyma and the presence of the spine wearing areoles.
Although cacti have been in cultivation since the discovery of America, some studies even suggest the agricultural use in pre-colombian times, and many scientific investigations were carried out on the functional morphology and anatomy with regard to biomechanical adaptations of the found structures, no research focused on the branch-stem attachment.
The most conspicuous features of such a ramification are the pronounced constrictions at the branch-stem junctions that are also present in the lignified vascular structures within the succulent cortex. Based on Finite Element Analyses of ramification models it could be demonstrated that these indentations in the region of high flexural and torsional stresses are not regions of structural weakness, e.g. allowing vegetative propagation. On the contrary, they can be regarded as anatomical adaptations to increase the stability by fine-tuning the stress state and stress directions in the junction along prevalent fiber directions.
The development of the woody support structure within the succulent cortex of the parental shoot can be traced back to the leaf and bud traces of the dormant axillary buds. Surprisingly, these initials also develop into another woody structure supporting the flowers of the cacti. As these two support structures differ significantly in their macroscopic and microscopic anatomy and as they develop from the same initial state as leaf/bud traces, another objective of this work was to analyze the secondary growth of the two structures with traditional botanic investigation methods.
The results of these investigations reveal a wood dimorphism consisting of an early parenchymatous phase followed later by fibrous wood in both kind of support structure. In vegetative branches, the woody support structures have the typical ringlike arrangement as found in the stele of the parental shoot, whereas the flower support structures have a reticular arrangement of interconnected woody strands. This fundamentally different anatomy of the support structures results from the formation of an interfascicular cambium between the leaf/bud traces when a vegetative branch forms or its absence in the case of a flower.
After shedding light on the functional morphology and anatomy of the cactus ramification and their development the question arises if the found load adaptation strategies may serve to improve technical fiber composite structures analogue to the design recommendation developed from the biomechanical analyses of tree ramifications. Such a biomimetic transfer from the cactus ramification as biological role model to a technical implementation and the adaptation of the fine-tuned geometric shape and arrangement of lignified strengthening tissues might contribute to the development of alternative concepts for branched fiber-reinforced composite structures within a limited design space.
|
105 |
Ekologická omezení odnožování z kořenů u mokřadních rostlin / Ecological constraints limiting the root-sprouting ability in wetland plant speciesSOSNOVÁ, Monika January 2010 (has links)
Wetland plant species rely largely on vegetative reproduction. Although all types of clonal growth organs are found in wetlands, special adaptations, e.g., turions, fragmentation and budding, are more frequent in true aquatic communities. However, root-sprouting is underrepresented, although it can be beneficial under disturbed conditions. This thesis focuses on ecological constrains potentially hindering root-sprouting in wetlands. This ability was studied in a wetland herb Rorippa palustris in relation to life history, injury timing and carbon economy of a plant. In addition, plant regeneration following submergence and severe disturbance was assessed.
|
106 |
Architecture de la pousse de pommier en réponse à des températures hivernales froides et douces : typologie de la ramification axillaire au printemps et relation avec le statut hydrique du bourgeon pendant l'hiver précédent / Arquitetura da macieira em regimes térmicos hibernais contrastantes : tipologia da ramificação primaveril e sua relaç ão com o estado hídrico de gemas durante o invernoSchmitz, Juliano 03 December 2014 (has links)
Le pommier (Malus Xdomestica Borkh.) cultivé en climat à hiver doux, avec un manque d'une quantité suffisante d'heures de températures froides, présente des anomalies morphologiques et physiologiques. Sur le plan de la phénologie, il s'agit notamment d'un débourrement printanier tardif et désynchronisé entre les différents bourgeons d'un même arbre. Sur le plan agronomique, la floraison et la nouaison sont irrégulières et étalées dans le temps et conduisent à une faible production de fruits. L'objectif de ce travail de thèse est premièrement de mieux caractériser les effets des températures hivernales sur le débourrement et la croissance des bourgeons axillaires en distinguant les effets respectifs des températures hivernales et du génotype. Il s'agit ensuite de vérifier l'hypothèse que les effets des températures sur le débourrement du bourgeon s'effectue via les effets sur son statut hydrique. Les travaux ont été réalisés en France et au Brésil. En France, les expérimentations ont porté sur quatre cultivars à fort besoin (‘Granny Smith', ‘Royal Gala', ‘Starkrimson') ou faible besoin (‘Condessa') en froid, cultivés en hiver froid (conditions extérieures) et doux (serres climatisées). Nous montrons que le débourrement résulte d'une séquence d'évènements où la température hivernale joue un rôle primordial sur les mécanismes de sortie de dormance et donc sur le débourrement proprement dit, durant la période froide. Les caractéristiques propres du cultivar jouent par contre un rôle dans la croissance ultérieure des bourgeons et donc dans l'architecture finale de la pousse du pommier. Par ailleurs, la chute tardive des feuilles, caractéristique du pommier en hiver doux, a peu d'effets sur le débourrement et la croissance des bourgeons. L'analyse du statut hydrique des bourgeons a été réalisée sur le tiers distal des pousses de pommier caractérisé par une forte fréquence de ramification en climat à hiver froid. Nous montrons que, dans la période allant de l'endordormance à la phase de pré-débourrement, la conductance hydraulique à la jonction entre l'axe porteur et le bourgeon varie peu au cours de l'hiver et entre cultivars. Par ailleurs, durant cette même période le potentiel hydrique intra-bourgeon reste négatif, entre -4.35 and -2.24 MPa. Enfin, quel que soit le cultivar, nous ne montrons pas de relation entre les températures hivernales, le potentiel hydrique ou la teneur relative en eau des bourgeons, et l'aptitude au débourrement ultérieur. Ces résultats suggèrent que le bourgeon est hydrauliquement isolé de son axe porteur pendant toute la période hivernale jusqu'à quelques jours précédant le débourrement. Les expérimentations au Brésil ont porté sur le cultivar ‘Eva ‘ à faible besoin en froid, cultivés en conditions naturelles d'hiver doux. Il s'agissait de vérifier les effets possibles de la position du bourgeon le long de l'axe porteur sur sa taille et sa teneur relative en eau. Nous montrons que, tout au long de l'hiver, les bourgeons distaux sont caractérisés par une plus grande taille et une teneur relative en eau plus élevée que les bourgeons proximaux avec une forte augmentation de la teneur relative en eau une semaine avant le débourrement printanier. Le débourrement acrotone semble donc résulter d'une évolution rapide du statut hydrique du bourgeon en fin d'écodormance. L'ensemble des résultats acquis en France et au Brésil, sur des cultivars caractérisés par des besoins variables en froid hivernal, indique que l'aptitude au débourrement printanier des bourgeons de pommier est davantage lié à un « effet rameau entier » qu'au statut hydrique proprement dit des bourgeons individuels, tout au moins jusqu'à quelques jours avant le débourrement effectif. La pousse annuelle de pommier apparait donc comme une unité morphologique et physiologique intégrée qui, dans un contexte climatique donné, conditionne le statut hydrique de chaque bourgeon et son aptitude au débourrement. / The apple tree (Malus Xdomestica Borkh.) presents morphological and physiological anomalies when grown in mild winter climates with insufficient winter chilling to overcome winter dormancy. Symptoms are typically delayed and erratic budburst, entailing desynchronized flowering and fruit-set and poor agronomic performances. This thesis aimed at gaining more insights on the following issues. Firstly, what are the effects of winter temperatures on axillary burdburst and bud outgrowth, and what are the respective effects of winter temperatures and cultivar?, and secondly, is there a link between the temperature-dependent budburst and bud water status? Works were done in France and Brazil. In France, experiments were carried out in controlled conditions on four apple cultivars characterized by either high chilling (‘Granny Smith', ‘Royal Gala', ‘Starkrimson') or low chilling (‘Condessa') requirements and were submitted to outdoor-cold and greenhouse-mild winter temperatures. We showed that the actual shoot architecture and budburst resulted from an ordered sequence of events with a pivotal role of winter temperatures on the dormancy completion of individual lateral buds. Endogenous factors related to the cultivar branching pattern overtook the temperature effect on the lateral bud outgrowth. Furthermore, the delayed senescence and subsequent leaf persistence during winter, characterizing the apple tree in the mild winter temperature conditions, had only a weak effect on the topological distribution of budburst and lateral outgrowth. The analyses of bud water status were done on distal buds only, characterized by high budburst frequency in cold winter conditions. We showed that, from endodormancy to the pre-budburst stage, xylem conductance at the stem-to-bud junction did not show consistent changes across cultivars and winter temperature treatments. Bud water potential had negative values, between -4.35 and -2.24 MPa, depending on cultivars and winter temperature treatments. Moreover, whatever the cultivar, there were no significant trends across dates for the effects of winter temperatures on bud water potential and relative water content without a consistent relationship with actual spring budburst frequency. These results suggested that lateral buds were hydraulically isolated from the parent stem during winter until a few days before budburst. The other set of experiments was carried out in Brazil, under mild winter conditions, on the low chilling apple cultivar ‘Eva'. The objectives were to gain more insights on the effect of the position of the over-wintering lateral bud along the whole-parent shoot on bud size and water content. Results highlighted that distal buds were larger and had a higher water content than proximal buds with a strong increase of water content a week before spring budburst. It was concluded that the acrotonic pattern of budburst was mainly established during ecodormancy. As a whole, we showed that spring budburst seemed more related to a whole-shoot effect than to the water status of the individual bud during winter dormancy. Our study substantiated the importance of the whole shoot as an integrated morphological and physiological unit in driving budburst and further growth.
|
107 |
Studie tvorby dimerů komplexu asociovaného s nascentním polypeptidem a jeho efektorů v huseníčku rolním / Studying dimer formation and effectors of Arabidopsis thaliana nascent polypeptide-associated complexKlodová, Božena January 2019 (has links)
The development of plant flowers represents a complex process controlled by numerous mechanisms. The creation of double homozygous mutant of both β subunits (sometimes also referred to as basic transcription factor 3) of nascent polypeptide associated complex in Arabidopsis thaliana (further referred to as nacβ1 nacβ2) caused quite a strong defective phenotype including abnormal number of flower organs, shorter siliques with a reduced seed set, and inferior pollen germination rate together with a lower ovule targeting efficiency. Previously, NAC complex was described to be formed as a heterodimer composed of an α- and β-subunit, which binds ribosome and acts as a chaperone in Saccharomyces cerevisiae. In plants, NACβ is connected to stress tolerance and to plant development as a transcription regulator. However, little is known of NAC heterodimer function in plants. In this thesis, yeast two hybrid system (Y2H) and bimolecular fluorescence complementation (BiFC) assays were used to verify the NAC heterodimer formation in A. thaliana and to establish any potential interaction preferences between both NACβ paralogues and five NACα paralogues. To deepen the understanding about molecular mechanisms behind the nacβ1 nacβ2 phenotype, flower bud transcriptome of the nacβ1 nacβ2 double homozygous mutants...
|
108 |
Functional Anatomy and Development of Cactus RamificationsSchwager, Hannes 09 July 2015 (has links)
Cacti (Cactaceae) represent a family of highly specialized angiosperm plants with a native range of distribution restricted to the American continents. Columnar cacti of the sub-family Cactoideae evolved in adaptation to their arid or semi-arid habitats characteristics that distinguish them from most other dicot plants, e.g. the stem succulence with a strongly vascularized storage parenchyma and the presence of the spine wearing areoles.
Although cacti have been in cultivation since the discovery of America, some studies even suggest the agricultural use in pre-colombian times, and many scientific investigations were carried out on the functional morphology and anatomy with regard to biomechanical adaptations of the found structures, no research focused on the branch-stem attachment.
The most conspicuous features of such a ramification are the pronounced constrictions at the branch-stem junctions that are also present in the lignified vascular structures within the succulent cortex. Based on Finite Element Analyses of ramification models it could be demonstrated that these indentations in the region of high flexural and torsional stresses are not regions of structural weakness, e.g. allowing vegetative propagation. On the contrary, they can be regarded as anatomical adaptations to increase the stability by fine-tuning the stress state and stress directions in the junction along prevalent fiber directions.
The development of the woody support structure within the succulent cortex of the parental shoot can be traced back to the leaf and bud traces of the dormant axillary buds. Surprisingly, these initials also develop into another woody structure supporting the flowers of the cacti. As these two support structures differ significantly in their macroscopic and microscopic anatomy and as they develop from the same initial state as leaf/bud traces, another objective of this work was to analyze the secondary growth of the two structures with traditional botanic investigation methods.
The results of these investigations reveal a wood dimorphism consisting of an early parenchymatous phase followed later by fibrous wood in both kind of support structure. In vegetative branches, the woody support structures have the typical ringlike arrangement as found in the stele of the parental shoot, whereas the flower support structures have a reticular arrangement of interconnected woody strands. This fundamentally different anatomy of the support structures results from the formation of an interfascicular cambium between the leaf/bud traces when a vegetative branch forms or its absence in the case of a flower.
After shedding light on the functional morphology and anatomy of the cactus ramification and their development the question arises if the found load adaptation strategies may serve to improve technical fiber composite structures analogue to the design recommendation developed from the biomechanical analyses of tree ramifications. Such a biomimetic transfer from the cactus ramification as biological role model to a technical implementation and the adaptation of the fine-tuned geometric shape and arrangement of lignified strengthening tissues might contribute to the development of alternative concepts for branched fiber-reinforced composite structures within a limited design space.
|
109 |
The Physiological Role of Serotonergic Transmission in Adult Rat Taste BudsJaber, Fadi Luc 21 May 2013 (has links)
No description available.
|
110 |
Exogenous modulation of embryonic tissue and stem cells to form nephronal structuresSebinger, David Daniel Raphael 26 April 2013 (has links)
Renal tissue engineering and regenerative medicine represent a significant clinical objective because of the very limited prospect of cure after classical kidney treatment. Thus, approaches to isolate, manipulate and reintegrate structures or stimulating the selfregenerative potential of renal tissue are of special interest. Such new strategies go back to knowledge and further outcome of developmental biological research. An understanding of extracellular matrix (ECM) structure and composition forms thereby a particularly significant aspect in comprehending the complex dynamics of tissue regeneration. Consequently the reconstruction of these structures offers beneficial options for advanced cell and tissue culture technology and tissue engineering. In an effort to investigate the influence of natural extracellular structures and components on embryonic stem cell and renal embryonic tissue, methodologies which allow the easy application of exogenous signals on tissue in vitro on the one hand and the straight forward evaluation of decellularization methods on the other hand, were developed. Both systems can be used to investigate and modulate behaviour of biological systems and represent novel interesting tools for tissue engineering. The novel technique for culturing tissue in vitro allows the growing of embryonic renal explants in very low volumes of medium and optimized observability, which makes it predestined for testing additives. In particular, this novel culture set up provides an ideal opportunity to investigate renal development and structure formation. Further studies indicated that the set is universally applicable on all kinds of (embryonic) tissue. Following hereon, more than 20 different ECM components were tested for their impact on kidney development under 116 different culture conditions, including different concentrations and being either bound to the substrate or dissolved in the culture medium. This allowed to study the role of ECM constituents on renal structure formation. In ongoing projects, kidney rudiments are exposed to aligned matrix fibrils and hydrogels with first promising results. The insights gained thereof gave rise to a basis for the rational application of exogenous signals in regenerative kidney therapies. Additionally new strategies for decellularization of whole murine adult kidneys were explored by applying different chemical agents. The obtained whole matrices were analysed for their degree of decellularization and their residual content and composition. In a new straight forward approach, a dependency of ECM decellularization efficiency to the different agents used for decellularization could be shown. Moreover the capability of the ECM isolated from whole adult kidneys to direct stem cell differentiation towards renal cell linage phenotypes was proved. The data obtained within this thesis give an innovative impetus to the design of biomaterial scaffolds with defined and distinct properties, offering exciting options for tissue engineering and regenerative kidney therapies by exogenous cues.:Table of Contents
LISTS OF FIGURES AND TABLES VI
ACKNOWLEDGEMENTS..................................................................................VII
ABSTRACT ............................................................................................................IX
NOMENCLATURE ................................................................................................X
1 INTRODUCTION...................................................................................................1
2 FUNDAMENTALS..................................................................................................2
2.1 KIDNEY DEVELOPMENT AND REGENERATION ...............................................................................2
2.1.1 Function of the kidney............................................................................................2
2.1.2 Development of the metanephric kidney ................................................................2
2.1.3 Selfregenerative potential of the kidney.................................................................5
2.2 THE EXTRACELLULAR MATRIX AS BIOLOGICAL SCAFFOLD ...............................................................6
2.2.1 Molecular composition of the ECM........................................................................7
2.2.1.1 An overview of the main ECM components..................................................................................8
2.2.2 Cell/tissue-matrix interactions.............................................................................12
2.2.2.1 Biochemical signals....................................................................................................................13
2.2.2.2 Mechanical signals......................................................................................................................14
2.2.2.3 Structural signals........................................................................................................................15
2.3 TISSUE ENGINEERING FOR THERAPEUTIC PURPOSES .....................................................................15
2.3.1 An overview of tissue engineering and regenerative medicine.............................15
2.3.2 Biomaterials for tissue engineering and regenerative medicine...........................18
2.3.2.1 Decellularization approach as tool to extract natural matrices....................................................19
2.3.3 Tissue engineering and regenerative medicine in kidney treatment.....................19
2.4 ORGAN AND TISSUE CULTURE AS TOOL FOR TISSUE ENGINEERING...................................................22
2.4.1 Common organ culture systems............................................................................24
3 OBJECTIVES AND MOTIVATION...................................................................25
4 RESULTS AND DISCUSSION............................................................................27
4.1 A NOVEL, LOW-VOLUME METHOD FOR ORGAN CULTURE OF EMBRYONIC KIDNEYS THAT ALLOWS
DEVELOPMENT OF CORTICO-MEDULLARY ANATOMICAL ORGANIZATION..............................................27
4.1.1 Additional evidences (to Appendix A) for stress reduction of kidney rudiments
cultured in the novel system than those grown in conventional organ culture.....28
4.1.2 Additional evidences (to Appendix A) for corticomedullary zonation and improved
development of kidney rudiments cultured in the novel system for a period of 12
days......................................................................................................................30
4.1.3 Additional evidences (to Appendix A) for the application of the glass based low
volume culture system for other organs................................................................32
4.2 ECM MODULATED EARLY KIDNEY DEVELOPMENT IN ORGAN CULTURE ...........................................34
4.3 ESTABLISHING AND EVALUATING DECELLULARIZATION TECHNIQUES TO ISOLATE WHOLE KIDNEY ECMS
FROM ADULT MURINE KIDNEYS................................................................................................37
4.4 THE ABILITY OF WHOLE DECELLULARIZED ECM CONSTRUCTS TO INFLUENCE MURINE EMBRYONIC STEM
CELL DIFFERENTIATION AND RENAL TISSUE BEHAVIOUR IN A NEW STRAIGHT FORWARD APPROACH..........38
iv
5 SUMMARY AND OUTLOOK.............................................................................39
5.1 SUMMARY..........................................................................................................................39
5.2 OUTLOOK...........................................................................................................................42
6 BIBLIOGRAPHY.................................................................................................49
7 APPENDICES..........................................................................................................I
7.1 APPENDIX A: A NOVEL, LOW-VOLUME METHOD FOR ORGAN CULTURE OF EMBRYONIC KIDNEYS
THAT ALLOWS DEVELOPMENT OF CORTICO-MEDULLARY ANATOMICAL ORGANIZATION......................I
7.2 APPENDIX B: ECM MODULATED EARLY KIDNEY DEVELOPMENT IN EMBRYONIC ORGAN CULTURE ....XIX
7.3 APPENDIX C: THE DEWAXED ECM: AN EASY METHOD TO ANALYZE CELL BEHAVIOUR ON
DECELLULARIZED EXTRACELLULAR MATRICES.......................................................................XLIV
7.4 PUBLICATIONS AND SCIENTIFIC CONTRIBUTIONS......................................................................LXV
7.5 SELBSTSTÄNDIGKEITSERKLÄRUNG......................................................................................LXIX
|
Page generated in 0.038 seconds