• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 2
  • 2
  • Tagged with
  • 21
  • 21
  • 21
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Directional Emission of Light in Hyperbolic Metamaterials and Its Application in Miniature Polarimeter

Chen, Hongwei 26 September 2019 (has links)
No description available.
12

Développement et évaluation d'une théorie de milieu effectif combinée à un facteur de structure polydisperse pour la caractérisation ultrasonore de l'agrégation érythrocytaire / Development and validation of an effective medium theory combined to a polydisperse structure factor for modeling the scattering by aggregating red blood cells

Monchy, Romain de 16 December 2016 (has links)
Ce travail de thèse a pour objectif de développer et de valider expérimentalement un modèle de diffusion adapté au sang agrégeant, prenant en compte une forte fraction volumique de globules rouges (hématocrite de 40%) et des structures d’agrégats polydisperses. Un modèle développé récemment pour l’estimation de la microstructure du sang est la théorie de milieu effectif combinée à un modèle de facteur de structure monodisperse. Pour augmenter le domaine de validité de ce modèle en hautes fréquences, nous proposons une théorie de milieu effectif prenant en compte la composante incohérente de la diffusion par des agrégats de globules rouges. A l’aide de simulation numériques tridimensionnelles, nous montrons que la nouvelle modélisation permet de prédire les coefficients de rétrodiffusion de façon satisfaisante pour un produit $kR<2$ ($k$ étant le nombre d’ondes et $R$ le rayon d’un agrégat). Par ailleurs, nous proposons une théorie de milieu effectif combinée à un facteur de structure polydisperse afin d’estimer, à partir de la mesure expérimentale du coefficient de rétrodiffusion, des paramètres de structure des agrégats : le rayon moyen de la distribution de tailles, son étalement, et la compacité des agrégats. Des expériences réalisées sur du sang de porc cisaillé dans un dispositif de Couette couplé à une sonde ultrasonore montrent que le modèle polydisperse permet d’obtenir de meilleures courbes d’ajustement des coefficients de rétrodiffusion en comparaison des modèles monodisperses classiques. Les tailles d’agrégats estimées par ultrasons sont corrélées de façon satisfaisante (r$^2$ $\approx$ 0.92) avec les tailles estimées par ailleurs dans un dispositif optique. / This thesis aims to develop and evaluate a scattering model for aggregating blood, taking into account the high volume fraction of red blood cells in blood (40%) and the polydispersity in terms of aggregate size. The effective medium theory combined with the monodisperse structure factor model was recently developed to estimate blood microstructure. In order to improve the modeling at high frequency range, we proposed an effective medium theory that takes into account the incoherent component of the scattering by aggregates of RBCs. Three dimensional simulations were performed and showed that the consideration of the incoherent component allows to approximate the simulation satisfactorily for a product of the wavenumber times the aggregates radius $kR$ up to 2. Besides, we proposed an effective medium theory combined with a polydisperse structure factor. From the measured BSC, this model allows to estimate three structural parameters: the mean radius of the aggregate size distribution, the width of the distribution, and the compactness of the aggregates. Experiments were performed on pig blood shared in a Couette device coupled with an ultrasonic probe, and showed that the polydisperse modeling provides better fitting to the experimental BSC data, when compared to the classical monodisperse models. Satisfactory correlation is obtained (r$^2$ $\approx$ 0.92) between the aggregate sizes estimated with ultrasound and the aggregate sizes estimated on the same sample in an optical device.
13

Optical Propagation in Anisotropic Metamaterials: Application to Analysis and Design of Metallo-Dielectric Filters

AL-Ghezi, Hammid 09 August 2021 (has links)
No description available.
14

Metamaterials: 3-D Homogenization and Dynamic Beam Steering

Hossain, A N M Shahriyar January 2019 (has links)
No description available.
15

Characterization of gold black and its application in un-cooled infrared detectors

Panjwani, Deep 01 January 2015 (has links)
Gold black porous coatings were thermally evaporated in the chamber backfilled with inert gas pressure and their optical properties were studied in near-far-IR wavelengths. The porosities of coatings were found to be extremely high around ~ 99%. Different approaches of effective medium theories such as Maxwell-Garnett, Bruggeman, Landau-Lifshitz-Looyenga and Bergman Formalism were utilized to calculate refractive index (n) and extinction coefficient (k). The aging induced changes on electrical and optical properties were studied in regular laboratory conditions using transmission electron microscopy, Fourier transform infrared spectroscopy, and fore-probe electrical measurements. A significant decrease in electrical resistance in as deposited coating was found to be consistent with changes in the granular structure with aging at room temperature. Electrical relaxation model was applied to calculate structural relaxation time in the coatings prepared with different porosities. Interestingly, with aging, absorptance of the coatings improved, which is explained using conductivity form of Bergman Formulism. Underlying aim of this work was to utilize gold blacks to improve sensitivity in un-cooled IR sensors consist of pixel arrays. To achieve this, fragile gold blacks were patterned on sub-mm length scale areas using both stenciling and conventional photolithography. Infrared spectral imaging with sub-micron spatial resolution revealed the spatial distribution of absorption across the gold black patterns produced with both the methods. Initial experiments on VOx-Au bolometers showed that, gold black improved the responsivity by 42%. This work successfully establishes promising role of gold black coatings in commercial un-cooled infrared detectors.
16

Theoretical Description of Hydrogen Atom Scattering off Noble Metals

Janke, Svenja Maria 13 May 2016 (has links)
No description available.
17

High Aspect Ratio Lithographic Imaging at Ultra-high Numerical Apertures: Evanescent Interference Lithography with Resonant Reflector Underlayers

Mehrotra, Prateek January 2012 (has links)
A near-field technique known as evanescent interferometric lithography allows for high resolution imaging. However its primary limitation is that the image exponentially decays within the photoresist due to physical limits. This thesis aims to overcome this limitation and presents a method to considerably enhance the depth of focus of images created using evanescent interferometric lithography by using a material underlay beneath the photoresist. A key enabler of this is the understanding that evanescent fields couple to surface states and operating within proximity of a resonance, the strength of the coupling allows for considerable energy extraction from the incident beam and redistribution of this energy in a photoresist cavity. This led to the analysis of the Fresnel equations, which suggested that such coupling was in fact the result of an enhanced reflectance that takes place at boundaries of carefully chosen materials. While it is known that metals and lossy dielectrics result in surface plasmon polaritons (SPP) and surface exciton polaritons (SEP) as conventional solutions to the Fresnel reflection equations for the TM polarization of light, there is no such naturally occurring surface state that allows evanescent wave enhancement with the TE polarization of light. Further investigation of the Fresnel reflection equations revealed both for TM and TE that in fact another solution exists that is but unconventional to enhance the reflectivity. This solution requires that one of the media have a negative loss. This is a new type of surface resonance that requires that one of the media be a gain medium; not one in the optical pumped sense but one that would naturally supply energy to a wave to make it grow. This new surface resonance is also a key result of this thesis. Clearly, however this is only a hypothetical solution as a real gain medium would violate the conservation of energy. However, as it is only the reflectance of this gain medium that is useful for evanescent wave enhancement, in fact a multilayered stack consisting of naturally occurring materials is one way to achieve the desired reflectivity. This would of course be only an emulation of the reflectivity aspect of the gain medium. This multilayered stack is then an effective gain medium for the reflectivity purposes when imaging is carried out at a particular NA at a particular wavelength. This proposal is also a key idea of this thesis. At λ = 193 nm, this method was used to propose a feasible design to image high resolution structures, NA = 1.85 at an aspect ratio of ~3.2. To experimentally demonstrate the enhancements, a new type of solid immersion test bed, the solid immersion Lloyd's mirror interference lithography test-bed was constructed. High quality line and space patterns with a half-pitch of 55.5 nm were created using λ = 405 nm, corresponding to a NA of 1.824, that is well in the evanescent regime of light. Image depths of 33-40 nm were seen. Next, the evanescent image was coupled to an effective gain medium made up of a thin layer of hafnium oxide (HfO) upon silicon dioxide (SiO2). This resulted in a considerable depth enhancement, and 105 nm tall structures were imaged. The work in this thesis details the construction of the solid immersion lithography test-bed, describes the implementation of the modeling tools, details the theory and analysis required to achieve the relevant solutions and understanding of the physical mechanism and finally experimentally demonstrates an enhancement that allows evanescent interferometric lithography beyond conventional limits.
18

Métamatériaux Electromagnétiques - Des Cristaux Photoniques aux Composites à Indice Négatif

Căbuz, Alexandru Ioan 19 June 2007 (has links) (PDF)
Composite metamaterials are periodic metal-dielectric structures operating at wavelengths larger than the structure period. If properly designed these structures behave as homogeneous media described by effective permittivity and permeability parameters. These effective parameters can be designed to take values in domains that are not available in naturally occurring media; notably it is possible to design composite metamaterials with simultaneously negative permittivity and permeability, or, in other words, with a negative refractive index. However, in many experimental or numerical studies it is far from obvious that the use of a homogeneous model is justified for a given structure at a given wavelength. This issue is often glossed over in the literature. <br />In this work I take a detailed look at the fundamental assumptions on which effective medium models rely and put forward a method for determining frequency domains where a given structure may or may not be accurately described by homogeneous effective medium parameters. This work opens the door to a more detailed understanding of the transition between homogeneous and inhomogeneous behavior in composite metamaterials, in particular by introducing the novel notions of custom made effective medium model, and of meta-photonic crystal.
19

Spectroscopic Ellipsometry Studies of Thin Film a-Si:H Solar Cell Fabrication by Multichamber Deposition in the n-i-p Substrate Configuration

Dahal, Lila R. 11 July 2013 (has links)
No description available.
20

MODELING AND CHARACTERIZATION OF SOLID-STATE AND VACUUM HIGH-POWER MICROWAVE DEVICES

Xiaojun Zhu (8039564) 30 November 2023 (has links)
<p dir="ltr">High-power microwave (HPM) devices are generally vacuum-based devices that transform electron beam energy into microwaves with peak powers above 100 MW from 1-300 GHz. Solid-state HPM devices provide more compactness and greater reliability while consuming less power. Nonlinear transmission lines (NLTLs) provide a solid-state alternative to HPM generation by sharpening the input pulses from a pulse forming network to create output oscillations.</p><p dir="ltr">The first section of this dissertation evaluates and explores the feasibility of using nonlinear composites containing ferroelectric (e.g., Ba<sub>2/3</sub>Sr<sub>1/3</sub>TiO<sub>3</sub>, BST) and/or ferromagnetic (e.g., Ni<sub>1/2</sub>Zn<sub>1/2 </sub>Fe<sub>2</sub>O<sub>4</sub>, NZF) inclusions in a linear polymer host (polydimethylsiloxane, PDMS) to tune NLTL properties for HPM applications. Appropriately modelling and designing NLTLs using nonlinear composites require accurately characterizing their linear and nonlinear electromagnetic properties. We first studied the electromagnetic properties of the composites using theoretical, numerical, and experimental approaches. Incorporating these composite models and characterizations into NLTL simulations will be discussed.</p><p dir="ltr">Vacuum-based HPM devices, such as magnetrons and crossed-field amplifiers, generally operate in the space-charge-limited region, which corresponds to the maximum current possible for insertion into the device. This motivated studying the space-charge-limited current and electron flow in a two-dimensional (2D) planar diode with various crossed-magnetic fields using particle-in-cell (PIC) simulations. For non-magnetically insulated diodes (electrons emitted from the cathode can reach the anode), analytical and/or semi-empirical solutions are derived for electrons with nonzero monoenergetic initial velocity that agree well with PIC simulations. For magnetically insulated conditions, we developed new metrics using simulations and analytic theories to assess electron cycloidal and Brillouin flow to understand the implications of increasing injection current for 2D diodes. These analyses provide details on the operation of these devices at high currents, particularly virtual cathode operation, that may elucidate behavior near their limits of operation.</p>

Page generated in 0.0835 seconds