• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 4
  • 3
  • Tagged with
  • 23
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Régulation traductionnelle en réponse à la fécondation et en conditions perturbées dans l'embryon d'oursin

Costache, Vlad 16 December 2012 (has links) (PDF)
La traduction est une étape critique de la régulation de l'expression des gènes. Chez l'oursin, la fécondation induit une augmentation de la synthèse protéique, qui dépend essentiellement de la traduction d'ARN messagers maternels. Cette synthèse protéique est indispensable au déroulement des cycles cellulaires du développement précoce. Le développement embryonnaire de l'oursin constitue ainsi un modèle de choix pour étudier la régulation de la traduction. Dans le cadre de cette thèse, le contrôle de la traduction a été étudié chez l'oursin dans deux situations : le contexte physiologique de la fécondation et le contexte de l'induction de l'apoptose. Nous nous sommes interrogés d'abord sur les mécanismes régulateurs impliqués dans la synthèse protéique après fécondation. L'une des étapes limitantes de la traduction est l'initiation. Dans ce cadre, le facteur d'initiation eIF2 joue un rôle clé. eIF2 est responsable de l'apport de la méthionine initiatrice au niveau du ribosome. Lorsque la sous-unité alpha d'eIF2 est phosphorylée, la synthèse protéique globale est inhibée et la traduction sélective de certains ARNm est stimulée. Dans les ovules non fécondés d'oursin, eIF2alpha est physiologiquement phosphorylé et la fécondation provoque sa déphosphorylation. En micro-injectant dans les ovules non fécondés un variant d'eIF2alpha mimant l'état phosphorylé, nous avons montré que la déphosphorylation d'eIF2alpha est nécessaire pour la première division mitotique chez l'oursin. Nous nous sommes intéressés au lien entre la phosphorylation d'eIF2alpha et l'induction de l'apoptose chez l'oursin. En effet, la traduction d'ARNm codant pour des protéines pro- ou anti- apoptotiques influence directement la survie des cellules. L'embryon d'oursin possède la machinerie nécessaire pour le déclenchement de l'apoptose, après induction par l'agent génotoxique MMS. Le traitement au MMS des embryons provoque la phosphorylation d'eIF2alpha. Dans cette situation, nous avons trouvé que la kinase GCN2 est impliquée dans la phosphorylation d'eIF2alpha. En fin, dans le but d'étudier comment la machinerie traductionnelle module le recrutement polysomal, nous avons analysé le traductome en réponse à la fécondation et après le traitement au MMS. Nous avons effectué une approche de séquençage à haut-débit des transcrits purifiés par gradients de polysomes. L'analyse de ces transcrits nous permettra d'appréhender le réseau des gènes régulés au niveau traductionnel lors de la fécondation et de l'induction de l'apoptose dans les embryons d'oursin.
12

B Virus Uses a Different Mechanism to Counteract the PKR Response

Zhu, Li 14 September 2007 (has links)
B virus (Cercopithecine herpesvirus 1), which causes an often fatal zoonotic infection in humans, shares extensive homology with human herpes simplex virus type 1 (HSV-1). The ƒ×134.5 gene of HSV-1 plays a major role in counteracting dsRNA-dependent protein kinase (PKR) activity. HSV-1 Us11 protein, if expressed early as a result of mutation, binds to PKR and prevents PKR activation. The results of experiments in this dissertation revealed that although B virus lacks a ƒ×134.5 gene homolog, it is able to inhibit PKR activation, and subsequently, eIF2ƒÑ phosphorylation. The initial hypothesis was that B virus Us11 protein substitutes for the function of ƒ×134.5 gene homolog by blocking cellular PKR activation. Using western blot analysis, Us11 protein (20 kDa) of B virus was observed early following infection (3 h post infection). Expression of B virus Us11 protein was not blocked by phosphonoacetic acid (PAA), an inhibitor of DNA replication, confirming Us11 is not a ¡§true late¡¨ gene of B virus as it is in HSV-1. Analysis of these results suggested that B virus Us11 protein compensates for the lack of the ƒ×134.5 gene homolog and prevents PKR activation. Next, the results demonstrated that B virus Us11 recombinant protein prevented PKR activation by dsRNA in vitro. A B virus Us11 protein stable expression cell line (U373-BVUs11) was established to investigate whether Us11 protein inhibited PKR activation in vivo. Experiments revealed that B virus Us11 protein stably expressed in U373 cells prevented PKR activation and subsequent eIF2ƒÑ phosphorylation induced by the infection of these cells with ƒ´ƒ×134.5 of HSV-1. As the consequence of preventing PKR activation and subsequent eIF2ƒÑ phosphorylation, B virus Us11 protein complemented ƒ´ƒ×134.5 HSV-1 in U373 cells as evidenced by restoration of virus protein synthesis and replication in U373 cells. Furthermore, pull-down assays showed that B virus Us11 protein binds to PKR. In addition, the results demonstrated that B virus Us11 protein stably expressed in U373 cells counteracted the inhibiting effect of IFN-ƒÑ on HSV-1 replication by preventing PKR activation. These data suggested that B virus and HSV-1, two closely related viruses, use different mechanisms to counteract PKR activity.
13

Integration of general amino acid control and TOR regulatory pathways in yeast

Staschke, Kirk A. January 2010 (has links)
Thesis (Ph.D.)--Indiana University, 2010. / Title from screen (viewed on July 21, 2010). Department of Biochemistry and Molecular Biology, Indiana University-Purdue University Indianapolis (IUPUI). Advisor(s): Ronald C. Wek, Howard J. Edenberg, Peter J. Roach, Martin Bard. Includes vitae. Includes bibliographical references (leaves 125-132).
14

Distribuição da proteína IMPACT em encéfalos de camundongos, ratos e sagüis / Distribution of the protein IMPACT in the mouse, marmoset brain

Bittencourt, Simone [UNIFESP] 26 November 2009 (has links) (PDF)
Made available in DSpace on 2015-07-22T20:49:53Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-11-26. Added 1 bitstream(s) on 2015-08-11T03:25:56Z : No. of bitstreams: 1 Publico-11799a.pdf: 349560 bytes, checksum: cca4bdf72b1818d4420ba1d77b40d5ab (MD5). Added 1 bitstream(s) on 2015-08-11T03:25:56Z : No. of bitstreams: 2 Publico-11799a.pdf: 349560 bytes, checksum: cca4bdf72b1818d4420ba1d77b40d5ab (MD5) Publico-11799b.pdf: 1411368 bytes, checksum: 7647f02bc586bb75d8a3063fe4c079b7 (MD5). Added 1 bitstream(s) on 2015-08-11T03:25:56Z : No. of bitstreams: 3 Publico-11799a.pdf: 349560 bytes, checksum: cca4bdf72b1818d4420ba1d77b40d5ab (MD5) Publico-11799b.pdf: 1411368 bytes, checksum: 7647f02bc586bb75d8a3063fe4c079b7 (MD5) Publico-11799c.pdf: 1827462 bytes, checksum: f22b15b6532e13ed81fcb5cc03bd94d3 (MD5). Added 1 bitstream(s) on 2015-08-11T03:25:56Z : No. of bitstreams: 4 Publico-11799a.pdf: 349560 bytes, checksum: cca4bdf72b1818d4420ba1d77b40d5ab (MD5) Publico-11799b.pdf: 1411368 bytes, checksum: 7647f02bc586bb75d8a3063fe4c079b7 (MD5) Publico-11799c.pdf: 1827462 bytes, checksum: f22b15b6532e13ed81fcb5cc03bd94d3 (MD5) Publico-11799d.pdf: 1508086 bytes, checksum: c23704c54c66c2f055b6baad75bca9a8 (MD5). Added 1 bitstream(s) on 2015-08-11T03:25:57Z : No. of bitstreams: 5 Publico-11799a.pdf: 349560 bytes, checksum: cca4bdf72b1818d4420ba1d77b40d5ab (MD5) Publico-11799b.pdf: 1411368 bytes, checksum: 7647f02bc586bb75d8a3063fe4c079b7 (MD5) Publico-11799c.pdf: 1827462 bytes, checksum: f22b15b6532e13ed81fcb5cc03bd94d3 (MD5) Publico-11799d.pdf: 1508086 bytes, checksum: c23704c54c66c2f055b6baad75bca9a8 (MD5) Publico-11799e.pdf: 2097532 bytes, checksum: 00337589b7dcb910560086ee546163d2 (MD5). Added 1 bitstream(s) on 2015-08-11T03:25:57Z : No. of bitstreams: 6 Publico-11799a.pdf: 349560 bytes, checksum: cca4bdf72b1818d4420ba1d77b40d5ab (MD5) Publico-11799b.pdf: 1411368 bytes, checksum: 7647f02bc586bb75d8a3063fe4c079b7 (MD5) Publico-11799c.pdf: 1827462 bytes, checksum: f22b15b6532e13ed81fcb5cc03bd94d3 (MD5) Publico-11799d.pdf: 1508086 bytes, checksum: c23704c54c66c2f055b6baad75bca9a8 (MD5) Publico-11799e.pdf: 2097532 bytes, checksum: 00337589b7dcb910560086ee546163d2 (MD5) Publico-11799f.pdf: 1713202 bytes, checksum: 303d00451d30973051c69786a0a82151 (MD5). Added 1 bitstream(s) on 2015-08-11T03:25:57Z : No. of bitstreams: 7 Publico-11799a.pdf: 349560 bytes, checksum: cca4bdf72b1818d4420ba1d77b40d5ab (MD5) Publico-11799b.pdf: 1411368 bytes, checksum: 7647f02bc586bb75d8a3063fe4c079b7 (MD5) Publico-11799c.pdf: 1827462 bytes, checksum: f22b15b6532e13ed81fcb5cc03bd94d3 (MD5) Publico-11799d.pdf: 1508086 bytes, checksum: c23704c54c66c2f055b6baad75bca9a8 (MD5) Publico-11799e.pdf: 2097532 bytes, checksum: 00337589b7dcb910560086ee546163d2 (MD5) Publico-11799f.pdf: 1713202 bytes, checksum: 303d00451d30973051c69786a0a82151 (MD5) Publico-11799g.pdf: 1348194 bytes, checksum: 2299ee773536dcafc777d99e7b2f180f (MD5). Added 1 bitstream(s) on 2015-08-11T03:25:57Z : No. of bitstreams: 8 Publico-11799a.pdf: 349560 bytes, checksum: cca4bdf72b1818d4420ba1d77b40d5ab (MD5) Publico-11799b.pdf: 1411368 bytes, checksum: 7647f02bc586bb75d8a3063fe4c079b7 (MD5) Publico-11799c.pdf: 1827462 bytes, checksum: f22b15b6532e13ed81fcb5cc03bd94d3 (MD5) Publico-11799d.pdf: 1508086 bytes, checksum: c23704c54c66c2f055b6baad75bca9a8 (MD5) Publico-11799e.pdf: 2097532 bytes, checksum: 00337589b7dcb910560086ee546163d2 (MD5) Publico-11799f.pdf: 1713202 bytes, checksum: 303d00451d30973051c69786a0a82151 (MD5) Publico-11799g.pdf: 1348194 bytes, checksum: 2299ee773536dcafc777d99e7b2f180f (MD5) Publico-11799h.pdf: 2060018 bytes, checksum: f106b09c3c93ec5b6fe1eb8eef012be1 (MD5). Added 1 bitstream(s) on 2015-08-11T03:25:57Z : No. of bitstreams: 9 Publico-11799a.pdf: 349560 bytes, checksum: cca4bdf72b1818d4420ba1d77b40d5ab (MD5) Publico-11799b.pdf: 1411368 bytes, checksum: 7647f02bc586bb75d8a3063fe4c079b7 (MD5) Publico-11799c.pdf: 1827462 bytes, checksum: f22b15b6532e13ed81fcb5cc03bd94d3 (MD5) Publico-11799d.pdf: 1508086 bytes, checksum: c23704c54c66c2f055b6baad75bca9a8 (MD5) Publico-11799e.pdf: 2097532 bytes, checksum: 00337589b7dcb910560086ee546163d2 (MD5) Publico-11799f.pdf: 1713202 bytes, checksum: 303d00451d30973051c69786a0a82151 (MD5) Publico-11799g.pdf: 1348194 bytes, checksum: 2299ee773536dcafc777d99e7b2f180f (MD5) Publico-11799h.pdf: 2060018 bytes, checksum: f106b09c3c93ec5b6fe1eb8eef012be1 (MD5) Publico-11799i.pdf: 2039585 bytes, checksum: d6a9c77d6d355998fa44bb0ee849370d (MD5). Added 1 bitstream(s) on 2015-08-11T03:25:57Z : No. of bitstreams: 10 Publico-11799a.pdf: 349560 bytes, checksum: cca4bdf72b1818d4420ba1d77b40d5ab (MD5) Publico-11799b.pdf: 1411368 bytes, checksum: 7647f02bc586bb75d8a3063fe4c079b7 (MD5) Publico-11799c.pdf: 1827462 bytes, checksum: f22b15b6532e13ed81fcb5cc03bd94d3 (MD5) Publico-11799d.pdf: 1508086 bytes, checksum: c23704c54c66c2f055b6baad75bca9a8 (MD5) Publico-11799e.pdf: 2097532 bytes, checksum: 00337589b7dcb910560086ee546163d2 (MD5) Publico-11799f.pdf: 1713202 bytes, checksum: 303d00451d30973051c69786a0a82151 (MD5) Publico-11799g.pdf: 1348194 bytes, checksum: 2299ee773536dcafc777d99e7b2f180f (MD5) Publico-11799h.pdf: 2060018 bytes, checksum: f106b09c3c93ec5b6fe1eb8eef012be1 (MD5) Publico-11799i.pdf: 2039585 bytes, checksum: d6a9c77d6d355998fa44bb0ee849370d (MD5) Publico-11799j.pdf: 1166850 bytes, checksum: 1e1b75bae16ba92fae79db4618475e98 (MD5). Added 1 bitstream(s) on 2015-08-11T03:25:57Z : No. of bitstreams: 11 Publico-11799a.pdf: 349560 bytes, checksum: cca4bdf72b1818d4420ba1d77b40d5ab (MD5) Publico-11799b.pdf: 1411368 bytes, checksum: 7647f02bc586bb75d8a3063fe4c079b7 (MD5) Publico-11799c.pdf: 1827462 bytes, checksum: f22b15b6532e13ed81fcb5cc03bd94d3 (MD5) Publico-11799d.pdf: 1508086 bytes, checksum: c23704c54c66c2f055b6baad75bca9a8 (MD5) Publico-11799e.pdf: 2097532 bytes, checksum: 00337589b7dcb910560086ee546163d2 (MD5) Publico-11799f.pdf: 1713202 bytes, checksum: 303d00451d30973051c69786a0a82151 (MD5) Publico-11799g.pdf: 1348194 bytes, checksum: 2299ee773536dcafc777d99e7b2f180f (MD5) Publico-11799h.pdf: 2060018 bytes, checksum: f106b09c3c93ec5b6fe1eb8eef012be1 (MD5) Publico-11799i.pdf: 2039585 bytes, checksum: d6a9c77d6d355998fa44bb0ee849370d (MD5) Publico-11799j.pdf: 1166850 bytes, checksum: 1e1b75bae16ba92fae79db4618475e98 (MD5) Publico-11799k.pdf: 1900985 bytes, checksum: dada039227737dd231f4769e2f9849e0 (MD5). Added 1 bitstream(s) on 2015-08-11T03:25:58Z : No. of bitstreams: 12 Publico-11799a.pdf: 349560 bytes, checksum: cca4bdf72b1818d4420ba1d77b40d5ab (MD5) Publico-11799b.pdf: 1411368 bytes, checksum: 7647f02bc586bb75d8a3063fe4c079b7 (MD5) Publico-11799c.pdf: 1827462 bytes, checksum: f22b15b6532e13ed81fcb5cc03bd94d3 (MD5) Publico-11799d.pdf: 1508086 bytes, checksum: c23704c54c66c2f055b6baad75bca9a8 (MD5) Publico-11799e.pdf: 2097532 bytes, checksum: 00337589b7dcb910560086ee546163d2 (MD5) Publico-11799f.pdf: 1713202 bytes, checksum: 303d00451d30973051c69786a0a82151 (MD5) Publico-11799g.pdf: 1348194 bytes, checksum: 2299ee773536dcafc777d99e7b2f180f (MD5) Publico-11799h.pdf: 2060018 bytes, checksum: f106b09c3c93ec5b6fe1eb8eef012be1 (MD5) Publico-11799i.pdf: 2039585 bytes, checksum: d6a9c77d6d355998fa44bb0ee849370d (MD5) Publico-11799j.pdf: 1166850 bytes, checksum: 1e1b75bae16ba92fae79db4618475e98 (MD5) Publico-11799k.pdf: 1900985 bytes, checksum: dada039227737dd231f4769e2f9849e0 (MD5) Publico-11799l.pdf: 1837938 bytes, checksum: 065b07947771d1445d562235ad39df28 (MD5). Added 1 bitstream(s) on 2015-08-11T03:25:58Z : No. of bitstreams: 13 Publico-11799a.pdf: 349560 bytes, checksum: cca4bdf72b1818d4420ba1d77b40d5ab (MD5) Publico-11799b.pdf: 1411368 bytes, checksum: 7647f02bc586bb75d8a3063fe4c079b7 (MD5) Publico-11799c.pdf: 1827462 bytes, checksum: f22b15b6532e13ed81fcb5cc03bd94d3 (MD5) Publico-11799d.pdf: 1508086 bytes, checksum: c23704c54c66c2f055b6baad75bca9a8 (MD5) Publico-11799e.pdf: 2097532 bytes, checksum: 00337589b7dcb910560086ee546163d2 (MD5) Publico-11799f.pdf: 1713202 bytes, checksum: 303d00451d30973051c69786a0a82151 (MD5) Publico-11799g.pdf: 1348194 bytes, checksum: 2299ee773536dcafc777d99e7b2f180f (MD5) Publico-11799h.pdf: 2060018 bytes, checksum: f106b09c3c93ec5b6fe1eb8eef012be1 (MD5) Publico-11799i.pdf: 2039585 bytes, checksum: d6a9c77d6d355998fa44bb0ee849370d (MD5) Publico-11799j.pdf: 1166850 bytes, checksum: 1e1b75bae16ba92fae79db4618475e98 (MD5) Publico-11799k.pdf: 1900985 bytes, checksum: dada039227737dd231f4769e2f9849e0 (MD5) Publico-11799l.pdf: 1837938 bytes, checksum: 065b07947771d1445d562235ad39df28 (MD5) Publico-11799m.pdf: 712324 bytes, checksum: 045cf67852c1de984973142eb424a0ec (MD5) / O controle da síntese protéica tem papel fundamental em diversas condições fisiológicas, mecanismos homeostáticos e diversos fenômenos de plasticidade neuronal. Um dos principais mecanismos de regulação da síntese protéica é a fosforilacão do fator de iniciação eIF2α. O aumento de fosforilação de eIF2α leva ao bloqueio do início de tradução geral da célula e tradução de genes específicos a exemplo do ATF4 (fator de ativação transcricional 4). Há 4 cinases específicas que fosforilam eIF2α, cada uma ativada sob condições distintas de estresse. A cinase GCN2, por exemplo, está presente em abundância no encéfalo, e faz parte do controle alimentar, memória e aprendizado de mamíferos. A proteína IMPACT, preferencialmente expressa no encéfalo, atua como uma inibidora da ativação de GCN2. Nesse contexto, torna-se relevante uma análise sistemática da distribuição de IMPACT no encéfalo e do possível envolvimento dessa proteína em condições fisiológicas e/ou patológicas. Um conjunto de resultados foi observado: (i) A proteína IMPACT é preferencialmente expressa em núcleos encefálicos associados ao ritmo circadiano, como também núcleos importantes na geração de ritmos, como o theta hipocampal; ii) A elevada intensidade e densidade de IMPACT no hipotálamo e hipocampo pode condizer com o envolvimento de IMPACT em mecanismos que envolvam homeostase corporal (função hipotalâmica) e memória (função hipocampal). (iii) Em tecido adulto, poucos grupos neuronais mostraram divergências na expressão de IMPACT entre roedores e primata; (iv) Há evidências de expressão diferencial (em uma mesma espécie) de IMPACT em grupos neuronais específicos (GABAérgicos); (v) Neurônios IMPACT-positivos são resistentes a vários tipos de estresse (leves, intensos, agudos ou crônicos, a exemplo de baixas temperaturas e indução de status epilepticus no modelo de epilepsia por pilocarpina); (vi) A proteína IMPACT é constitutiva, mostrou-se insensível a perturbações in vivo; (vii) IMPACT é detectada a partir do estágio embrionário E16. De acordo com os dados aqui dispostos sobre a expressão de IMPACT em neurônios e a evidência de sua expressão áreas encefálicas e em diversas condições, nós podemos especular sobre sua possível relevância na neurofisiologia. Assim, juntos esses dados sugerem que neurônios IMPACT-positivos tem função importante no encéfalo de mamíferos e podem estar envolvidos na geração e controle de ritmos encefálicos e na homeostase. / The control of protein synthesis plays a major role in several physiological conditions, homeostatic mechanisms and several phenomenon of neuronal plasticity. One of the most important mechanisms in regulation of protein synthesis is the phosphorylation of the initiation factor 2 (eIF2α). Increase in the eIF2α phosphorylation blocks general translation and enhance translation of specific genes such ATF4 (activating transcription factor 4) for example. In response to specific stress stimuli four specific kinases can phosphorylate eIF2α. The GCN2 kinase, for instance, is abundant in the brain, and is involved in feeding behavior control, learning and memory of mammalians. The IMPACT protein, preferentially expressed in the brain, acts as an inhibitor of the activation of GCN2. Therefore, a systematic analysis of the distribution of IMPACT in the brain and its possible involvement in physiological and/or pathological conditions are relevant. The following results were observed: (i) The IMPACT protein is preferentially expressed in brain nuclei involved in circadian rhythms, as well as in important nuclei involved in rhythm generation, such as the hippocampal theta rhythm; (ii) The high density and intensity of IMPACT labeling in the hypothalamus and hippocampus may reflect its involvement in homeostatic mechanisms (hypothalamic function) and memory (hippocampal function). (iii) In adult tissue, only a few neuronal groups showed divergence in IMPACT expression between rodents and primate; (iv) Within a single species there was differential expression of IMPACT in specific neuronal groups (e.g. GABAergic neurons); (v) IMPACT-positive neurons were resistant to several types of stress (weak, strong, acute or chronic), such as low temperature and status epilepticus induced by pilocarpine in a model of epilepsy; (vi) IMPACT is a constitutive protein, insensitive to perturbations in vivo; (vii) The detection of IMPACT starts at E16 embryonic stage. According to these results on the neurons expressing IMPACT and the evidence of its presence in some brain areas, we speculate on its possible relevance in neurophysiology. Thus, these data taken together suggest that IMPACT-positive neurons have important functions in the mammalian brains and may be involved in generation and control of brain rhythms and physiological homeostasis in general. / TEDE / BV UNIFESP: Teses e dissertações
15

Integration of general amino acid control and TOR regulatory pathways in yeast

Staschke, Kirk Alan 21 July 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Two important nutrient sensing and regulatory pathways, the general amino acid control (GAAC) and the target of rapamycin (TOR), participate in the control of yeast growth and metabolism in response to changes in nutrient availability. Starvation for amino acids activates the GAAC through Gcn2p phosphorylation of the translation initiation factor eIF2 and preferential translation of GCN4, a transcription activator. TOR senses nitrogen availability and regulates transcription factors, such as Gln3p. We used microarray analyses to address the integration of the GAAC and TOR pathways in directing the yeast transcriptome during amino acid starvation and rapamycin treatment. We found that the GAAC is a major effector of the TOR pathway, with Gcn4p and Gln3p each inducing a similar number of genes during rapamycin treatment. While Gcn4p activates a common core of 57 genes, the GAAC directs significant variations in the transcriptome during different stresses. In addition to inducing amino acid biosynthetic genes, Gcn4p activates genes required for assimilation of secondary nitrogen sources, such as -amino-butyric acid (GABA). Gcn2p activation upon shifting to secondary nitrogen sources is suggested to occur by means of a dual mechanism. First, Gcn2p is induced by the release of TOR repression through a mechanism involving Sit4p protein phosphatase. Second, this eIF2 kinase is activated by select uncharged tRNAs, which were shown to accumulate during the shift to GABA medium. This study highlights the mechanisms by which the GAAC and TOR pathways are integrated to recognize changing nitrogen availability and direct the transcriptome for optimal growth adaptation.
16

Translation Regulation of UV-induced Transcription Factor NF-κB and Oncogene COX-2

László, Csaba F. 24 April 2009 (has links)
No description available.
17

Impact d'un stress viral sur la transcription des SINE d'Arabidopsis thaliana et influence de l'ARN SINE sur la kinase GCN2

Lageix, Sébastien 07 November 2008 (has links) (PDF)
Chez les mammifères, l'infection par l'adénovirus conduit à l'activation de la transcription de certains éléments SINE Alu. Il s'agit d'un mécanisme conservé car il est observé avec d'autres familles de virus. Adénovirus code pour une protéine, E1A qui est capable d'interagir avec la protéine Rétinoblastome (RB). Cette interaction provoque l'inactivation de RB ce qui provoque probablement l'activation transcriptionelle des éléments Alu. Ainsi, chez les mammifères, certaines protéines virales agissent négativement sur RB ce qui a pour conséquence de déréguler le cycle cellulaire, la transcription pol III de manière générale et la transcription des éléments SINE en particulier. Chez les plantes, l'activation de la transcription des éléments SINE à la suite d'un stress comme l'infection virale reste à démontrer. Cependant, le virus FBNYV possède au sein de son génome une protéine, CLINK, qui est entre autre constituée d'un domaine de liaison à RB similaire à celui retrouvé chez E1A d'adénovirus. La première étape de ce travail de thèse a porté sur l'analyse de la protéine CLINK et plus particulièrement l'effet de cette protéine sur le cycle cellulaire, sur la transcription pol III en général et sur la transcription des SINE endogènes de plantes. La seconde partie de cette étude porte sur la fonction des éléments SINE de plantes au sein de la cellule. Chez les mammifères, l'élément SINE Alu est capable de jouer un rôle dans la physiologie de la cellule en réponse à certains stress. En effet, la transcription de ces éléments est activée à la suite d'une infection par certaines familles de virus. Les transcrits ainsi produits sont alors capables d'interagir avec la protéine PKR, une kinase d'eIF2α. Ainsi, les éléments SINE sont capables d'intervenir dans des processus clefs de la cellule comme le mécanisme de régulation de la traduction. La seule kinase d'eIF2α identifiée chez les plantes est la protéine GCN2. Ainsi, nous avons choisit de caractériser la fonction de cette protéine chez Arabidopsis. Nous avons déterminé les mécanismes de régulation de la protéine en mettant en évidence certains inducteurs spécifiques aux plantes. Ce travail a permis de montrer l'importance de la protéine pour la plante et de découvrir des fonctions potentielles de la protéine dans des voies de stress typiques des végétaux. Enfin, l'impact des SINE de plantes sur l'activité de GCN2 a été analysé.
18

Le rôle des acides aminés dans le métabolisme protéique du foie sous régime hyper protéique : identification du signal des acides aminés et des voies de transduction associées

Chotechuang, Nattida 22 March 2010 (has links) (PDF)
La consommation d'un régime hyper protéique (HP) améliore l'homéostasie glucidique, le gain de poids, l'adiposité, en réduisant le tissus adipeux blanc et la taille des adipocytes. Les adaptations métaboliques dues à l'augmentation de l'apport protéique sont au moins caractérisées, au niveau du foie, par la diminution de la lipogenèse et l'augmentation de la conversion des acides aminés (AA) en glycogène. Cependant, le rôle des acides aminés dans le contrôle de ces adaptations métaboliques et des voies de transduction responsables de la transmission du signal " acides aminés " n'ont pas encore été élucidés. L'objectif de notre étude a été de déterminer l'effet de l'augmentation de l'apport en acides aminés sur la traduction et la protéolyse, et d'identifier les voies de signalisation impliquées dans la détection des acides aminés ainsi que l'acide aminé ou le groupe d'acide aminés responsable de ces effets, en utilisant des approches in vivo et in vitro. Les extraits protéiques ont été analysés par western blots pour examiner l'état de phosphorylation des protéines impliquées dans les voies de signalisation qui participent à la détection des AAs et à la régulation de la traduction, à savoir les voies: " mammalian target of rapamycin " (mTOR), " adenosine monophosphate-activated protein kinase " (AMPK) et " general control non-depressible kinase 2 " (GCN2). Cette étude a montré que l'adaptation à un régime de HP est caractérisée par la stimulation de la traduction dans le foie, au moins au niveau de l'étape d'initiation. Cette activation requiert à la fois la présence de fortes concentrations en AA (au moins la leucine ou des AAs à chaîne branchée) et d'insuline, comme l'indique l'augmentation de la phosphorylation de mTOR, 4E-BP1 et S6 et la diminution de la phosphorylation de l'AMPK et GCN2. L'utilisation de l'AICAR (activateur de l'AMPK) et de la rapamycine (inhibiteur de mTOR) nous a permis de montrer qu'en présence de fortes concentrations en AA et d'insuline, mTOR n'est pas le seul régulateur de 4E-BP1 et de la S6K1 (cibles de mTOR) et que l'AMPK peut également jouer un rôle important dans la régulation de leur état de phosphorylation. En outre, l'augmentation de l'apport protéique provoque une inhibition de la dégradation des protéines dans le foie et une diminution de l'expression des gènes codant les principales protéines du système autophagie et de l'ubiquitine-protéasome. En conséquence, les protéines sont moins ubiquitinées, donc moins dégradées. Les AAs et l'insuline semblent être les principaux régulateurs de la voie de protéolyse ubiquitine-protéasome et les voies mTOR et AMPK seraient les médiateurs des effets acides aminés et de l'insuline. Ces résultats suggèrent que le contrôle des voies cataboliques et anaboliques du métabolisme des protéines sont régulées par les mêmes signaux et font intervenir les mêmes voies de signalisation.
19

Characterisation of critical interactions between translation factors eIF2 and eIF2B

Murphy, Patrick January 2013 (has links)
Eukaryotic translation initiation is a complex and highly regulated process involving the ribosome, mRNA and proteins called eukaryotic initiation factors (eIFs). The overall aim of translation initiation is to position the ribosome at the initiation codon of the mRNA. eIF2, in its GTP-bound conformation, binds the initiator tRNA (Met-tRNAiMet) and delivers it to the 40S ribosomal subunit. When the anticodon of the tRNA is bound to the initiation codon, the GTP on eIF2 is hydrolysed to GDP. The guanine nucleotide exchange factor (GEF) eIF2B regenerates eIF2-GTP. eIF2 and eIF2B are multisubunit/multidomain protein complexes. Because information regarding the interface between each complex is limited, particularly the interface on the eIF2γ subunit, which binds the guanine-nucleotides and Met-tRNAiMet, interactions between the minimal GEF domain of eIF2Bε, εGEF, and eIF2 were mapped using mutagenesis and an in vitro cysteine cross-linking approach, with the cross-linker Mts-Atf-Biotin. Site-directed mutagenesis (SDM) was used to mutate five N-terminal and five C-terminal surface-exposed εGEF residues to cysteines. The mutant alleles were analysed in Saccharomyces cerevisiae and it was found that the gcd6-R574C allele was lethal and the gcd6-T572C was Gcd-. Further gcd6-R574 mutant alleles were also found to be lethal in yeast but expressed in vivo.εGEF-R574C has dramatically reduced GEF activity in vitro and binding assays showed that this mutant has significantly reduced affinity for eIF2. The εGEF-T572C and εGEF-S576C mutants also have severe and minor eIF2-binding defects respectively, while the C-terminal εGEF-Cys mutants have slightly reduced affinity for eIF2. The N-terminal εGEF-Cys mutants cross-link specifically to eIF2γ, while the C-terminal εGEF-Cys mutants interact predominantly with eIF2β. From the data obtained in this study, we propose a new model for eIF2B-mediated guanine-nucleotide exchange that reduces the importance of eIF2β and suggests εGEF resembles other GEFs in binding primarily to its G protein partner eIF2γ.
20

Novel targets of eiF2 kinases determine cell fate during the integrated stress response

Baird, Thomas January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Eukaryotic cells rapidly modulate protein synthesis in response to environmental cues through the reversible phosphorylation of eukaryotic initiation factor 2 (eIF2α~P) by a family of eIF2α kinases. The eIF2 delivers initiator Met-tRNAiMet to the translational apparatus, and eIF2α~P transforms its function from a translation initiation factor into a competitive inhibitor of the guanine nucleotide exchange factor (GEF) eIF2B, which is responsible for the recycling of eIF2-GDP to the translationally-competent eIF2-GTP state. Reduced eIF2-GTP levels lower general protein synthesis, which allows for the conservation of energy and nutrients, and a restructuring of gene expression. Coincident with global translational control, eIF2α~P directs the preferential translation of mRNA encoding ATF4, a transcriptional activator of genes important for stress remediation. The term Integrated Stress Response (ISR) describes this pathway in which multiple stresses converge to phosphorylate eIF2α and enhance synthesis of ATF4 and its downstream effectors. In this study, we used sucrose gradient ultracentrifugation and a genome-wide microarray approach to measure changes in mRNA translation during ER stress. Our analysis suggests that translational efficiencies vary across a broad range during ER stress, with the majority of transcripts being either repressed or resistant to eIF2α~P, while a notable cohort of key regulators are subject to preferential translation. From this latter group, we identify IBTKα as being subject to both translational and transcriptional induction during eIF2α~P in both cell lines and a mouse model of ER stress. Translational regulation of IBTKα mRNA involves the stress-induced relief of two inhibitory uORFs in the 5’-leader of the transcript. Also identified as being subject to preferential translation is mRNA encoding the bifunctional aminoacyl tRNA synthetase EPRS. During eIF2α~P, translational regulation of EPRS is suggested to occur through the bypass of a non-canonical upstream ORF encoded by a CUG start codon, highlighting the diversity by which upstream translation initiation events can regulate expression of a downstream coding sequence. This body of work provides for a better understanding of how translational control during stress is modulated genome-wide and for the processes by which this mode of gene regulation in the ISR contributes to cell fate.

Page generated in 0.0923 seconds