Spelling suggestions: "subject:"einzelzell""
1 |
A microfluidic approach for the initiation and investigation of surface-mediated signal transduction processes on a single-cell levelKirschbaum, Michael January 2009 (has links)
For the elucidation of the dynamics of signal transduction processes that are induced by cellular interactions, defined events along the signal transduction cascade and subsequent activation steps have to be analyzed and then also correlated with each other. This cannot be achieved by ensemble measurements because averaging biological data ignores the variability in timing and response patterns of individual cells and leads to highly blurred results. Instead, only a multi-parameter analysis at a single-cell level is able to exploit the information that is crucially needed for deducing the signaling pathways involved.
The aim of this work was to develop a process line that allows the initiation of cell-cell or cell-particle interactions while at the same time the induced cellular reactions can be analyzed at various stages along the signal transduction cascade and correlated with each other. As this approach requires the gentle management of individually addressable cells, a dielectrophoresis (DEP)-based microfluidic system was employed that provides the manipulation of microscale objects with very high spatiotemporal precision and without the need of contacting the cell membrane. The system offers a high potential for automation and parallelization. This is essential for achieving a high level of robustness and reproducibility, which are key requirements in order to qualify this approach for a biomedical application.
As an example process for intercellular communication, T cell activation has been chosen. The activation of the single T cells was triggered by contacting them individually with microbeads that were coated with antibodies directed against specific cell surface proteins, like the T cell receptor-associated kinase CD3 and the costimulatory molecule CD28 (CD; cluster of differentiation). The stimulation of the cells with the functionalized beads led to a rapid rise of their cytosolic Ca2+ concentration which was analyzed by a dual-wavelength ratiometric fluorescence measurement of the Ca2+-sensitive dye Fura-2. After Ca2+ imaging, the cells were isolated individually from the microfluidic system and cultivated further. Cell division and expression of the marker molecule CD69 as a late activation event of great significance were analyzed the following day and correlated with the previously recorded Ca2+ traces for each individual cell.
It turned out such that the temporal profile of the Ca2+ traces between both activated and non-activated cells as well as dividing and non-dividing cells differed significantly. This shows that the pattern of Ca2+ signals in T cells can provide early information about a later reaction of the cell.
As isolated cells are highly delicate objects, a precondition for these experiments was the successful adaptation of the system to maintain the vitality of single cells during and after manipulation. In this context, the influences of the microfluidic environment as well as the applied electric fields on the vitality of the cells and the cytosolic Ca2+ concentration as crucially important physiological parameters were thoroughly investigated. While a short-term DEP manipulation did not affect the vitality of the cells, they showed irregular Ca2+ transients upon exposure to the DEP field only. The rate and the strength of these Ca2+ signals depended on exposure time, electric field strength and field frequency. By minimizing their occurrence rate, experimental conditions were identified that caused the least interference with the physiology of the cell.
The possibility to precisely control the exact time point of stimulus application, to simultaneously analyze short-term reactions and to correlate them with later events of the signal transduction cascade on the level of individual cells makes this approach unique among previously described applications and offers new possibilities to unravel the mechanisms underlying intercellular communication. / Zelluläre Interaktionen sind wirkungsvolle Mechanismen zur Kontrolle zellulärer Zustände in vivo. Für die Entschlüsselung der dabei beteiligten Signaltransduktionsprozesse müssen definierte Ereignisse entlang der zellulären Signalkaskade erfasst und ihre wechselseitige Beziehung zueinander aufgeklärt werden. Dies kann von Ensemble-Messungen nicht geleistet werden, da die Mittelung biologischer Daten die Variabilität des Antwortverhaltens individueller Zellen missachtet und verschwommene Resultate liefert. Nur eine Multiparameteranalyse auf Einzelzellebene kann die entscheidenden Informationen liefern, die für ein detailliertes Verständnis zellulärer Signalwege unabdingbar sind.
Ziel der vorliegenden Arbeit war die Entwicklung einer Methode, welche die gezielte Kontaktierung einzelner Zellen mit anderen Zellen oder Partikeln ermöglicht und mit der die dadurch ausgelösten zellulären Reaktionen auf unterschiedlichen zeitlichen Ebenen analysiert und miteinander korreliert werden können. Da dies die schonende Handhabung einzeln adressierbarer Zellen erfordert, wurde ein auf Dielektrophorese (DEP) basierendes mikrofluidisches System eingesetzt, welches die berührungslose Manipulation mikroskaliger Objekte mit hoher zeitlicher und örtlicher Präzision erlaubt. Das System besitzt ein hohes Potential zur Automatisierung und Parallelisierung, was für eine robuste und reproduzierbare Analyse lebender Zellen essentiell, und daher eine wichtige Voraussetzung für eine Anwendung in der Biomedizin ist.
Als Modellsystem für interzelluläre Kommunikation wurde die T-Zell-Aktivierung gewählt. Die Aktivierung der einzelnen T-Zellen wurde durch ihre gezielte Kontaktierung mit Mikropartikeln („beads“) induziert, welche mit Antikörpern gegen spezielle Oberflächenproteine, wie die dem T-Zell-Rezeptor assoziierte Kinase CD3 oder das kostimulatorische Protein CD28, beschichtet waren. Die Stimulation der Zellen mit den funktionalisierten beads führte zu einem raschen Anstieg der intrazellulären Ca2+-Konzentration, welche über eine ratiometrische Detektion des Ca2+-sensitiven Fluoreszenzfarbstoffs Fura-2 gemessen wurde. Anschließend wurden die einzelnen Zellen aus dem mikrofluidischen System isoliert und weiterkultiviert. Am nächsten Tag wurden Zellteilung und die CD69-Expression – ein wichtiger Marker für aktivierte T-Zellen – analysiert und auf Ebene der individuellen Zelle mit dem zuvor gemessenen Ca2+-Signal korreliert.
Es stellte sich heraus, dass der zeitliche Verlauf des intrazellulären Ca2+-Signals zwischen aktivierten und nicht aktivierten, sowie zwischen geteilten und nicht geteilten Zellen signifikant verschieden war. Dies zeigt, dass Ca2+-Signale in stimulierten T-Zellen wichtige Informationen über eine spätere Reaktion der Zelle liefern können.
Da Einzelzellen äußerst empfindlich auf ihre Umgebungsbedingungen reagieren, war die Anpassung der experimentellen Vorgehensweise im Hinblick auf die Zellverträglichkeit von großer Bedeutung. Vor diesem Hintergrund wurde der Einfluss sowohl der mikrofluidischen Umgebung, als auch der elektrischen Felder auf die Überlebensrate und die intrazelluläre Ca2+-Konzentration der Zellen untersucht. Während eine kurzzeitige DEP-Manipulation im mikrofluidischen System die Vitalität der Zellen nicht beeinträchtigte, zeigten diese unregelmäßige Fluktuationen ihrer intrazellulären Ca2+-Konzentration selbst bei geringer elektrischer Feldexposition. Die Ausprägung dieser Fluktuationen war abhängig von der Expositionszeit, der elektrischen Feldstärke und der Feldfrequenz. Über die Minimierung ihres Auftretens konnten experimentelle Bedingungen mit dem geringsten Einfluss auf die Physiologie der Zellen identifiziert werden.
Die Möglichkeit, einzelne Zellen zeitlich definiert und präzise mit anderen Zellen oder Oberflächen zu kontaktieren, die unmittelbare Reaktion der Zellen zu messen und diese mit späteren Ereignissen der Zellantwort zu korrelieren, macht die hier vorgestellte Methode einzigartig im Vergleich mit anderen Ansätzen und eröffnet neue Wege, die der interzellulären Kommunikation zugrunde liegenden Mechanismen aufzuklären.
|
2 |
Molekulare Endospektroskopie: Neue instrumentell-analytische Methoden zur medizinischen DiagnostikKrafft, Christoph 13 December 2007 (has links) (PDF)
Diese Arbeit entstand im Rahmen des Projektes „Molekulare Endospektroskopie“ an der Technischen Universität Dresden. Der Titel drückt aus, dass durch Kopplung von Endoskopie und Spektroskopie Gewebe auf molekularer Ebene charakterisiert wird. Infrarot- (IR-) und Raman-Spektroskopie bieten dabei besondere Vorteile, da sie zu den molekülspektroskopischen Verfahren mit dem höchsten Informationsgehalt gehören. Beide Methoden beruhen auf Molekülschwingungen, deren Spektren einen chemischen Fingerabdruck über die Zusammensetzung und Struktur der Proben liefern. Der Autor leitete eine wissenschaftliche Nachwuchsgruppe, die die Grundlagen der schwingungs-spektroskopischen Methoden zur Bildgebung von Gewebe und Zellen entwickelte und auf klinische Probleme – vor allem aus dem neuroonkologischen Bereich – anwendete. Diese kumulative Habilitationsschrift fasst vierzehn Veröffentlichungen zusammen, wobei in der letzten die Untersuchung eines Hirntumormodells von Mäusen mit einer faseroptischen Sonde beschrieben wurde. Zunächst werden verschiedene Methoden der Biophotonik verglichen, um die hier eingesetzten Techniken in diesen Kontext zu stellen. Danach werden biomedizinische Anwendungen von Fourier-Transform-Infrarot- (FTIR-) und Raman-Imaging beschrieben. Die eigenen Beiträge sind untergliedert in (i) Raman- und FTIR-Imaging in der Neuroonkologie, (ii) FTIR-mikroskopisches Imaging von Gewebedünnschnitten und (iii) Raman- und FTIR-mikroskopisches Imaging von einzelnen Zellen. Abschließend wird in den Schlussfolgerungen und dem Ausblick diskutiert, welche Rolle die molekulare Endospektroskopie als neue instrumentell-analytische Methode in der medizinischen Diagnostik übernehmen kann. / This work summarizes the results of the project “Molecular Endospectroscopy” at the Dresden University of Technology. The title expresses that tissue is characterized on the molecular level by coupling endoscopy and spectroscopy. Infrared (IR) and Raman spectroscopy offer advantages for these applications because they belong to the methods of molecular spectroscopy with the highest information content. Both methods probe molecular vibrations that provide a chemical fingerprint for the composition and structure of samples. The author was leader of a junior research group which developed vibrational spectroscopic methods for imaging of cells and tissues and applied them to clinical problems, in particular from the field of neuro-oncology. The current cumulative habilitation thesis is based on fourteen publications. The last one describes studies of a murine brain tumor model using a fiber-optic probe. In the first part various biophotonic methods are compared. Then biomedical applications of Fourier transform infrared (FTIR) and Raman imaging are reported. The papers are grouped into the chapters (i) Raman and FTIR imaging in neuro-oncology, (ii) FTIR microscopic imaging of tissue sections and (iii) Raman and FTIR microscopic imaging of single cells. It is discussed in the conclusions and outlook how molecular endospectroscopy as a new analytical tool can complement the standard diagnostic methods.
|
3 |
Crossing the scalesTelenczuk, Bartosz 14 November 2011 (has links)
Während seiner normalen Funktion generiert das Gehirn starke elektrische Signale, die technisch gemessen werden können. Das schon seit über einem Jahrhundert bekannte Phänomen ermöglicht es die Signalverarbeitung im Gehirn räumlich und zeitlich zu beobachten. Heute versteht man die zellulären Prozesse die zur Generierung der elektrischen Signale in einzelnen Neuronen führen. Jedoch rekrutieren die meisten neuronalen Ereignisse große Populationen von Zellen, dessen Aktivität zeitlich und räumlich koordiniert ist. Diese Koordinierung führt dazu, dass ihre elektrische Aktivität auch weit von den Quellen gemessen werden kann, sodass die Beobachtung des Gehirns auch nicht invasiv auf der Schädeloberfläche mittels dem sogenannten Elektroenzephalogramm (EEG) möglich ist. Der zeitliche Verlauf des Signals hängt nicht nur von den Eigenschaften einzelner Zellen ab sondern auch von ihrer Wechselwirkung mit anderen Neuronen, die oft komplex oder gar nicht bekannt ist. Diese Komplexität verhindert die Auswertung der gemessen Signale im Bezug auf die Anzahl von aktiven Neuronen, die Art der Antwort (Inhibition, Exzitation), die Synchronisationsstärke und den Einfluss anderer aktiver Prozesse (wie zum Beispiel: Lernen, Aufmerksamkeit usw.). In dieser Arbeit werden die Zusammenhänge zwischen diesen mikroskopischen Parametern (einzelne Neurone) und ihrer makroskopischen Wirkung (EEG) experimentell, datenanalytisch und theoretisch untersucht. / During its normal function the brain generates strong and measurable electric signals. This phenomenon, which has been known for more than a century, makes it possible to investigate the signal processing in the brain. Nowadays the cellular processes taking part in the generation of the electric signals are well understood. However, most of the neuronal events recruit large populations of cells, whose activities are coordinated spatially and temporally. This coordination allows for summation of activities generated by many neurons leading to extracellular electric signals that can be recorded non-invasively from the scalp by means of electroencephalography (EEG). The temporal structure of the EEG signal does not depend only on the properties of single neurons, but also on their interactions that may be very complex. The complexity hinders the evaluation of the recoded signal with respect to the number of active neurons, the type of response, the degree of synchronisation and the contribution of other processes (such as, learning and attention). In the thesis, the relations between the microscopic (single-neuron) and their macroscopic (EEG) properties will be investigated by means of experimental, data-analytic and theoretical approaches.
|
4 |
Cellular heterogeneity in the DNA damage response is determined by cell cycle specific p21 degradationSheng, Caibin 23 January 2018 (has links)
Die zelluläre Antwort auf einen spezifischen Stimulus wird nicht nur durch den Stimulus selbst, sondern auch von dem Zustand der Zelle bestimmt. Um ein tieferes Verständnis für die Variabilität in einer Zellpopulation zu gewinnen, ist es notwendig, die verschiedenen zellulären Antworten mit definierten zellulären Zuständen zu verbinden. In dieser Arbeit wurde ein System etabliert, welches es ermöglicht, die zelluläre Antwort auf DNA-Schäden und den Einfluss unterschiedlicher zellulärer Zustände zu studieren sowie die zu Grunde liegenden molekularen Mechanismen zu identifizieren.
Im Zuge dessen wurde eine auf CRISPR/Cas9 basierende Methode entwickelt, mit der Fluoreszenzreporter für endogene Signalproteine in nicht transformierten Brustepithelzellen (MCF10A) generiert wurden. Anhand dieses Reportersystems konnte durch time-lapse Mikroskopie die Dynamik des Tumorsuppressors p53 und eines seiner Zielgene, des Zellzyklusinhibitors p21, verfolgt werden. Dabei wurde deutlich, dass die p21 Antwort der einzelnen Zellen auf DNA-Schäden sehr heterogen ausfällt.
Über eine Form-basierte Gruppierungsmethode wurden vier verschiedene Subpopulationen mit charakteristischen p21 Dynamiken identifiziert. Um den Einfluss der Zellzyklusphase zu untersuchen, wurde die Zellteilung vor Bestrahlung analysiert und so Rückschlüsse auf die initiale Zellzyklusphase gezogen. 24h nach Bestrahlung wurde ein EdU labeling durchgeführt und der Zellzyklus mittels semi-supervised Klassifizierung bestimmt.
Durch Einführen einer Mutation in der Bindedomäne von p21 wurde gezeigt, dass proliferating cellular nuclear antigen (PCNA) für die Heterogenität der p21 Antwort verantwortlich ist.
Alles in allem bietet mein Projekt eine Pipeline, um auf Einzelzellebene zu erforschen, wie zelluläre Antworten durch den Zellzyklus beeinflusst werden. Dieser Ansatz könnte zukünftig Anwendung in der Erforschung von Medikamentenresistenz finden, zumal zelluläre Heterogenität in der Tumortherapie zu fractional killing führt. / The cellular response to a given stimulus is not only governed by the stimulus itself, but also depends on the state of the cells. However, it remains obscure how cellular states influence cell fate decisions. In this thesis, I established a framework to study how the cellular response to DNA damage is affected by varying cell states and to identify the underlying molecular mechanisms.
To this end, I generated fluorescent reporters using CRISPR/Cas9 in non-transformed breast epithelial cells (MCF10A) and measured the dynamics of the tumor suppressor p53 and one of its target genes, the cell cycle inhibitor p21 using time-lapse microscopy. I found DNA damage induced highly diverse p21 dynamics in individual cells. A shape-based clustering identified four subpopulations of characteristic p21 dynamics. To examine the source of variability, I analyzed initial cell cycle states by monitoring cell division prior to damage, and determined final cellular state by EdU labelling and a semi-supervised classification 24h post damage. The results suggested that p21 dynamics depend on cell cycle phases and determine cell cycle progression. Furthermore, proliferating cellular nuclear antigen (PCNA)--a cell cycle dependent factor--
was shown to determine p21 heterogeneity using a mutant p21 deficient in interaction with PCNA.
Overall, my project provides a pipeline to study at the single cell level how cellular response is affected by cellular states. Considering that cellular heterogeneity leads to fractional killing in tumor therapies, this approach also suggests future application on studying drug-resistance in cancer therapy.
|
5 |
Molekulare Endospektroskopie: Neue instrumentell-analytische Methoden zur medizinischen DiagnostikKrafft, Christoph 20 November 2007 (has links)
Diese Arbeit entstand im Rahmen des Projektes „Molekulare Endospektroskopie“ an der Technischen Universität Dresden. Der Titel drückt aus, dass durch Kopplung von Endoskopie und Spektroskopie Gewebe auf molekularer Ebene charakterisiert wird. Infrarot- (IR-) und Raman-Spektroskopie bieten dabei besondere Vorteile, da sie zu den molekülspektroskopischen Verfahren mit dem höchsten Informationsgehalt gehören. Beide Methoden beruhen auf Molekülschwingungen, deren Spektren einen chemischen Fingerabdruck über die Zusammensetzung und Struktur der Proben liefern. Der Autor leitete eine wissenschaftliche Nachwuchsgruppe, die die Grundlagen der schwingungs-spektroskopischen Methoden zur Bildgebung von Gewebe und Zellen entwickelte und auf klinische Probleme – vor allem aus dem neuroonkologischen Bereich – anwendete. Diese kumulative Habilitationsschrift fasst vierzehn Veröffentlichungen zusammen, wobei in der letzten die Untersuchung eines Hirntumormodells von Mäusen mit einer faseroptischen Sonde beschrieben wurde. Zunächst werden verschiedene Methoden der Biophotonik verglichen, um die hier eingesetzten Techniken in diesen Kontext zu stellen. Danach werden biomedizinische Anwendungen von Fourier-Transform-Infrarot- (FTIR-) und Raman-Imaging beschrieben. Die eigenen Beiträge sind untergliedert in (i) Raman- und FTIR-Imaging in der Neuroonkologie, (ii) FTIR-mikroskopisches Imaging von Gewebedünnschnitten und (iii) Raman- und FTIR-mikroskopisches Imaging von einzelnen Zellen. Abschließend wird in den Schlussfolgerungen und dem Ausblick diskutiert, welche Rolle die molekulare Endospektroskopie als neue instrumentell-analytische Methode in der medizinischen Diagnostik übernehmen kann. / This work summarizes the results of the project “Molecular Endospectroscopy” at the Dresden University of Technology. The title expresses that tissue is characterized on the molecular level by coupling endoscopy and spectroscopy. Infrared (IR) and Raman spectroscopy offer advantages for these applications because they belong to the methods of molecular spectroscopy with the highest information content. Both methods probe molecular vibrations that provide a chemical fingerprint for the composition and structure of samples. The author was leader of a junior research group which developed vibrational spectroscopic methods for imaging of cells and tissues and applied them to clinical problems, in particular from the field of neuro-oncology. The current cumulative habilitation thesis is based on fourteen publications. The last one describes studies of a murine brain tumor model using a fiber-optic probe. In the first part various biophotonic methods are compared. Then biomedical applications of Fourier transform infrared (FTIR) and Raman imaging are reported. The papers are grouped into the chapters (i) Raman and FTIR imaging in neuro-oncology, (ii) FTIR microscopic imaging of tissue sections and (iii) Raman and FTIR microscopic imaging of single cells. It is discussed in the conclusions and outlook how molecular endospectroscopy as a new analytical tool can complement the standard diagnostic methods.
|
6 |
Modeling synchronization effects in the yeast cell cycleSchlichting, Julia Katharina 03 April 2019 (has links)
Saccharomyces cerevisiae ist ein bekanntester Modellorganismen in der Systembiologie, der häufig zur Untersuchung des mitotischen Zellzyklus eukaryotischer Zellen verwendet wird. Des Zellzyklus wird durch Cycline, Cyclin-abhängige Kinasen (CDK) und CDK-Inhibitoren (CKI) reguliert. Der wichtigste Kontrollpunkt innerhalb des Zellzyklus reguliert den Übergang von der G1 in die S Phase und wird START genannt. Im dieser Arbeit verwenden wir einen stochastischen Modellierungsansatz, um die Auswirkungen verschiedener Synchronisationsmethoden auf den Zellzyklus zu untersuchen. Um Modellparameter zu schätzen, kombinieren wir Phasen aufgelöste mRNA-Verteilungen unsynchronisierter Einzelzellen und Protein-Zeitreihen synchronisierter Zellpopulationen. Somit können wir mRNA-Dynamiken für ausgewählte Synchronisationsmethoden vorhersagen. In einem zweistufigen Optimierungsansatz unterscheiden wir zwischen mRNA- und Protein-Ebene. Die Parameterschätzung basiert auf der Maximum-Likelihood-Methode. Die Phasen aufgelösten mRNA-Verteilungen wurden mithilfe der smFISH-Technik für SIC1, CLN2 und CLB5 gemessen. Die Protein-Zeitreihen wurden mithilfe von Western Blots für entsprechenden Proteine gemessen. Die gemessenen Moleküle sind die Hauptregulatoren des G1-S Phasenübergangs, welche die Komponenten unseres Zellzyklusmodells darstellen. Durch die erfolgreiche Integration von qualitativ unterschiedlichen Datentypen in der Parameterschätzung konnten wir eine systematische Analyse von Synchronisationseffekten auf den Zellzyklus durchführen. Der zeitlicher Ablauf des Zellzyklus ist dabei maßgeblich beeinflusst. Die stärksten zeitlichen Veränderungen weist die Synchronisation mit alpha-Faktor auf. Elutrierte Zellen sind den unsynchronisierten Zellen trotz verlängerter G1 Phase am ähnlichsten. Wir zeigen in dieser Arbeit, dass synchronisierte Zellpopulationen unzureichend sind, um Rückschlüsse auf den Zellzyklus unsynchronisierter Zellen zu ziehen. / cell cycle, G1/S transition, stochastic modeling, parameter estimation, smFISH, singel cells, Western blotting, cell populations Saccharomyces cerevisiae is a famous model organism in systems biology to study the mitotic cell cycle in eukaryotic cells. The cell cycle is a highly controlled process which is regulated by cyclins, cycline-dependent kinases (CDK) and cyclin-dependent kinase inhibitors (CKI). The main kinase involved in cell cycle regulation is Cdc28. START is the most important check point and controls the G1 to S phase transition. At this point, cells decide if they enter a new cell division cycle or not. In this study, we analyze influences of different synchronization methods on the cell cycle and differences between unsynchronized and synchronized cells by using a stochastic modeling approach. We combine phase-resolved mRNA distributions of unsynchronized single cells and protein time courses of synchronized cell populations to estimate model parameters and to predict synchronization specific mRNA dynamics. Parameter estimation is based on a maximum likelihood approach and performed in a 2-step-optimization in which we differentiate between mRNA and protein level. We measured phase-resolved mRNA distributions of mRNA species SIC1, CLN2 and CLB5 by smFISH and protein time courses of protein species Sic1, Cln2 and Clb5 by Western blotting. These molecules are key regulators of the G1 to S phase transition and represent components of our cell cycle model. By integrating qualitatively different data types in parameter estimation, we come up with a systematic analysis of synchronization effects on the cell cycle. Cell cycle timing is mainly responsible for differences between unsynchronized and synchronized cells and is mostly affected in alpha-factor synchronized cells. Ignoring the prolongation of the G1 phase, elutriated cells are most similar to unsynchronized cells. We show that synchronized cell populations are insufficient to derive general cell cycle behavior of unsynchronized cells.
|
Page generated in 0.0623 seconds