• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling of Alzheimer’s disease in adult zebrafish brain and characterization of pathology-induced neural stem cell plasticity

Cosacak, Mehmet Ilyas 11 October 2021 (has links)
Die Alzheimer-Krankheit ist eine gewaltige Bedrohung für eine alternde Gesellschaft. Millionen von Menschen leben weltweit mit der Alzheimer-Krankheit, für die es keine aktuelle Behandlung gibt. Die Amyloidkaskaden-Hypothese (AKH) ist die aktuell am meisten akzeptierte Hypothese zur Ursache der Alzheimer-Krankheit. Die AKH bietet eine mechanistische Sicht auf die pathologische Kaskade, ausgehend von der Amyloid-Aggregation über die chronische Entzündung bis hin zur TAU-Pathologie. Die Medikamente, die auf der Grundlage der AKH entwickelt wurden, konnten Amyloid-Plaques bei Alzheimer-Patienten entfernen, brachten aber keine Verbesserung der kognitiven Fähigkeiten. Diese Misserfolge legen nahe, dass die Alzheimer-Krankheit nicht nur theoretisch im Rahmen der AKH betrachtet werden kann. Neuere Hypothesen kulminieren die Auswirkungen verschiedener Zelltypen (z.B. neurale Stammzellen, Astrozyten, Oligodendrozyten) auf den Ausbruch der Alzheimer-Erkrankung. Komplexe Rückkopplungs- und Feed-Forward-Mechanismen sind in der Pathophysiologie der Alzheimer-Demenz wahrscheinlich. Das Zusammenspiel zwischen der Pathologie und der Beteiligung anderer Zelltypen macht diese Krankheit multifaktoriell und komplex. Kürzlich zeigten zwei Studien (Moreno-Jimenez et al., 2019; Tobin et al., 2019), dass die Produktion neuer Neuronen im menschlichen Gehirn bei der Alzheimer-Erkrankung dramatisch abnimmt. Eine interessante Hypothese wurde durch diese Studien gestützt: Die pathologisch induzierte Erzeugung neuer Neuronen (regenerative Neurogenese) bei Alzheimer-Patienten könnte helfen, die Pathologie der Alzheimer-Erkrankung rückgängig zu machen. Da die Regenerationsfähigkeit bei Säugetieren entwicklungsmäßig wenig ausgeprägt ist (Tanaka und Ferretti, 2009), kann uns die Untersuchung der Neurodegeneration in einem Modellorganismus mit Regenerationsfähigkeit daher lehren, wie man die Proliferation und Neurogenese neuraler Stammzellen unter pathologischen Bedingungen induzieren kann. Für diese spezielle Frage können uns Modellorganismen mit natürlicher Regenerationsfähigkeit zeigen, wie man Proliferation und Neurogenese unter den pathologischen Bedingungen der Alzheimer-Erkrankung induzieren kann. Der Zebrafisch bietet eine beispiellose Möglichkeit, die Neurodegeneration und Regeneration zu modellieren, um die molekularen Mechanismen zu untersuchen, wie anhand der Neurogenese in Wirbeltiergehirnen die Alzheimer-Krankheit verbessert werden kann. Dies wurde in unserem Labor bereits in mehreren Publikationen gezeigt. Aus diesem Grund habe ich in meiner Doktorarbeit Zebrafische verwendet, um die Plastizität neuraler Stammzellen (NSZ) zu untersuchen. Besonders interessierte mich die Heterogenität von NSZ-Populationen in Bezug auf ihre molekularen Programme und die molekulare Grundlage der regenerativen Neurogenese von NSZ auf das Amyloid-β-42 (Aβ42) und TAU-Pathologien.
2

Molecular functions of the transcriptional regulator AP-2 alpha (TFAP2A) in the renal collecting duct

Leiz, Janna 26 June 2023 (has links)
Tfap2a gehört zur Familie der AP-2-Transkriptionsfaktoren. Heterozygote Mutationen von TFAP2A im Menschen führen zum Branchio-Okulo-Fazialen-Syndrom (BOFS) und sind mit Nierenanomalien assoziiert. Molekulare Mechanismen, die zu diesen BOFS-assoziierten Nierenanomalien führen, sind noch unbekannt. In diesem Projekt wurde die Expression von Mitgliedern der AP-2-Familie in neugeborenen und erwachsenen Wildtyp-Mäusen analysiert. Tfap2a wurde in der Ureterknospe und der distalen Region des S-förmigen Körpers in den Nieren neugeborener Mäuse exprimiert. Die Expression blieb in ausgereiften distalen Tubuli und Sammelrohren erhalten. Tfap2b, ein zweites Mitglied der AP-2-Familie, das in der Niere exprimiert wird und mit Zystenbildung assoziiert ist, wurde im aufsteigenden Ast der Henleschen Schleife sowie in den distalen Tubuli und dem in der Nierenrinde liegenden Sammelrohr exprimiert. Um die Rolle von Tfap2a in der Niere zu untersuchen, wurden Mäuse mit einer sammelrohrspezifischen Deletion von Tfap2a (Tfap2a-KO) erzeugt. Phänotypische und morphologische Analysen ergaben, dass Tfap2a-KO-Mäuse mäßig reduzierte Nierengewichte und eine fortschreitende Dilatation der äußeren medullären Sammelrohre aufwiesen. Einzelkern- und RNA-Sequenzierung der Nieren adulter Mäuse zeigte eine deregulierte Expression von Genen, die mit der Organisation von Aktinfilamenten, Zelladhäsion, Wnt-Signalen und anderen Signalwegen der Nierenentwicklung in Verbindung stehen. In einem isolierten Modell von kultivierten Sammelrohrzellen mit einer Deletion von Tfap2a waren ähnliche Signalwege dereguliert. Insgesamt deutet diese Studie darauf hin, dass Tfap2a für die Differenzierung des Sammelrohrepithels und die Regulierung des Durchmessers des Tubuluslumens erforderlich ist. Dies ermöglicht Einblicke in die molekularen Grundlagen der beim BOFS beobachteten Nierenfehlbildungen. / The transcriptional regulator Tfap2a is part of the AP-2 transcription factor family. Heterozygous mutations of TFAP2A in humans lead to branchio-oculo-facial syndrome (BOFS) and are associated with renal anomalies. Molecular mechanisms leading to BOFS-associated renal anomalies are still unknown. In this project, expression patterns of AP-2 family members were analyzed in newborn and adult wildtype mice. Tfap2a was expressed in the ureteric bud and distal region of the S-shaped body in kidneys of newborn mice. Expression was maintained in mature distal tubules and collecting ducts. Tfap2b, a second AP-2 family member expressed in the kidney and associated with cyst formation, was found in the ascending limb and showed overlapping expression with Tfap2a in distal tubules and the cortical collecting duct. To investigate the role of Tfap2a in the kidney, mice with a collecting duct-specific deletion of Tfap2a (Tfap2a-KO) were generated by crossing mice carrying a Cre-recombinase under the Hoxb7 promotor and mice with floxed Tfap2a alleles. Phenotypic and morphological analyses revealed that Tfap2a-KO mice displayed moderately reduced kidney weights and a progressive dilation of outer medullary collecting ducts. Single-nucleus and bulk RNA sequencing of kidneys of three months old Tfap2a-KO mice and littermate controls indicated deregulated expression of genes associated with actin filament organization, cell adhesion, Wnt signaling, and other kidney developmental pathways. Genes deregulated in Tfap2a-deficient mice included several genes previously implicated in the development of congenital anomalies of the kidney and urinary tract. In an isolated model of cultured collecting duct cells carrying a Tfap2a knockout similar pathways were deregulated. Taking together, this study indicates that Tfap2a is required for collecting duct epithelium differentiation and tubular lumen diameter regulation, providing insights into the molecular basis of renal defects observed in BOFS.
3

Developmental Gene Regulatory Principles via a Single Cell-Resolved Multimodal Embryo Blueprint

Faxel, Miriam Josephine 21 February 2024 (has links)
Einzelzellomics bieten unvoreingenommene Einblicke in Transkriptionsprogramme und Genom-Zugänglichkeiten auf zellulärer Ebene, auch wenn der zelluläre Kontext verloren geht. Wir haben einen virtuellen Multi-omic Embryo der Drosophila melanogaster erstellt, basierend auf den Datentypen RNA (Transkriptom) und ATAC (Zugänglichkeit der DNA), welche gleichzeitig auf Einzelzell Ebene erhoben wurden. Mithilfe des Tools novoSpaRc, welches den räumlichen Ursprung der Zellen rekonstruiert, konnte ein regulatorischen Bauplan erstellt werden, der die Genexpression und die Zugänglichkeit von Enhancern widerspiegelt. Diese Ressource hilft beim Verständnis der regulatorischen Dynamik in der Entwicklung. Bei der Untersuchung von ATAC-Peaks konnten wir Überschneidungen zwischen den Mustern der Chromatin Zugänglichkeit und der Aktivität unabhängiger getesteter Enhancer feststellen, was die Bedeutung der Zugänglichkeit unterstreicht. Die nicht-negative Matrixfaktorisierung identifizierte Archetypen der Genexpression und der Chromatin-Zugänglichkeit. Archetypen, die möglicherweise durch Transkriptionsfaktoren (TFs) reguliert werden, wurden einer Motiv-Anreicherungsanalyse für Archetyp-assoziierte CRMs unterzogen. Ein Ansatz zur Vorhersage von Enhancern, ordnete die Enhancer den Genen auf der Grundlage partieller Ähnlichkeit der Muster zu. Zusammenfassend dient unser multimodaler virtueller Embryo als Ressource und präsentiert zum ersten Mal räumliche Chromatin-Zugänglichkeiten für genomische Regionen für einen ganzen Organismus. Die Ergebnisse geben Aufschluss über die Prinzipien der Genregulation und zeigen den regulatorischen Einfluss von Transkriptionsfaktoren auf den Chromatinzustand von Enhancern. / Single-cell-omics techniques provide unbiased insights into transcriptional programs and genomic accessibility patterns at the cellular level despite sacrificing spatial information. We created a multi-omic virtual Drosophila melanogaster stage 6 embryo by simultaneously assessing genome accessibility and transcriptional states in individual cells. Using novoSpaRc, a spatial mapping tool, we accurately reconstructed the spatial origin of cells, yielding a regulatory blueprint reflecting gene expression and enhancer accessibilities. This resource aids in understanding developmental regulatory dynamics. Examining ATAC-peaks, we observed overlapping chromatin accessibility patterns with the activity of independently testes enhancers, emphasizing accessibility's importance. Non-negative matrix factorization identified archetypes in gene expression and chromatin accessibility. Accessibility archetypes, potentially regulated by transcription factors (TFs), were subjected to motif enrichment analysis for archetype-associated CRMs. An enhancer prediction approach, utilizing a generalized linear model, assigned enhancers to genes based on partial pattern similarity. In summary our multi-modal virtual embryo serves as a resource and presents for the first time single-cell chromatin accessibilities for genomic regions reconstructed in space for a whole organism in a single developmental stage. The results shed light on gene regulatory principles, highlighting the regulatory impact of TFs on chromatin states of enhancers.
4

Modelling and Quantification of scRNA-seq Experiments and the Transcriptome Dynamics of the Cell Cycle

Laurentino Schwabe, Daniel 26 October 2022 (has links)
In dieser Dissertation modellieren und analysieren wir scRNA-Seq-Daten, um Mechanismen, die biologischen Prozessen zugrunde liegen, zu verstehen In scRNA-Seq-Experimenten wird biologisches Rauschen mit technischem Rauschen vermischt. Mittels eines vereinfachten scRNA-Seq-Modells leiten wir eine analytische Verteilungsfunktion für die beobachtete Verteilung unter Kenntnis einer Ausgangsverteilung her. Charakteristiken und sogar ein allgemeines Moment der Ausgangsverteilung können aus der beobachteten Verteilung berechnet werden. Unsere Formeln stellen den Ausgangspunkt zur Quantifizierung von Zellvariabilität dar. Wir haben eine vollständig lineare Analyse von Transkriptomdaten entwickelt, die zeigt, dass sich Zellen während des Zellzyklus auf einer ebenen zirkulären Trajektorie im Transkriptomraum bewegen. In immortalisierten Zelllinien stellen wir fest, dass die Transkriptomdynamiken des Zellzyklus hauptsächlich unabhängig von den Dynamiken anderer Zellprozesse stattfinden. Unser Algorithmus (“Revelio”) bringt eine einfache Methode mit sich, um unsynchronisierte Zellen nach der Zeit zu ordnen und ermöglicht das exakte Entfernen von Zellzykluseffekten. Die Form der Zellzyklus-Trajektorie zeigt, dass der Zellzyklus sich dazu entwickelt hat, Änderungen der transkriptionellen Aktivitäten und der damit verbundenen regulativen Anstrengungen zu minimieren. Dieses Konstruktionsprinzip könnte auch für andere Prozesse relevant sein. Durch die Verwendung von metabolischer Molekülmarkierung erweitern wir Modelle zur mRNA-Kinetik, um dynamische mRNA-Ratenparameter für Transkription, Splicing und Degradation zu erhalten und die Lösungen auf den Zellzyklus anzuwenden. Wir zeigen, dass unser Modell zwischen Genen mit ähnlicher Genexpression aber unterschiedlicher Genregulation unterscheiden kann. Zwar enthalten scRNA-Seq-Daten aktuell noch zu viel technisches Rauschen, unser Modell wird jedoch für das zukünftige Errechnen von dynamischen mRNA-Ratenparametern von großem Nutzen sein. / In this dissertation, we model and analyse scRNA-seq data to understand mechanisms underlying biological processes. In scRNA-seq experiments, biological noise gets convoluted with various sources of technical noise. With the help of a simplified scRNA-seq model, we derive an analytical probability distribution function for the observed output distribution given a true input distribution. We find that characteristics and even general moments of the input distribution can be calculated from the output distribution. Our formulas are a starting point for the quantification of cell-to-cell variability. We developed a fully linear analysis of transcriptome data which reveals that cells move along a planar circular trajectory in transcriptome space during the cell cycle. Additionally, we find in immortalized cell lines that cell cycle transcriptome dynamics occur largely independently from other cellular processes. Our algorithm (“Revelio”) offers a simple method to order unsynchronized cells in time and enables the precise removal of cell cycle effects from the data. The shape of the cell cycle trajectory indicates that the cell cycle has evolved to minimize changes of transcriptional activity and their related regulatory efforts. This design principle may be of relevance to other cellular processes. By considering metabolic labelling, we extend existing mRNA kinetic models to obtain dynamic mRNA rate parameters for transcription, splicing and degradation and apply our solutions to the cell cycle. We can distinguish genes with similar expression values but different gene regulation strategies. While current scRNA-seq data contains too much technical noise, the model will be of great value for inferring dynamic mRNA rate parameters in future research.
5

Cell Fate Decisions and Transcriptional Regulation in Single Cells at High Temporal Resolution

Neuschulz, Katrin Anika Elisabeth 03 June 2024 (has links)
RNA ist ein zentrales Molekül in der Zelle und essentiell für ihre Lebensfunktionen. Die durchschnittliche Halbwertszeit von RNA-Molekülen limitiert jedoch die zeitliche Auflösung herkömmlicher RNA-Sequenzierung, da geringe Änderungen im Transkriptom kaum zu erkennen sind, bis eine gewisse Anzahl an Molekülen akkumuliert. Durch metabolische Markierung von RNA (SLAMseq) kann die Auflösung deutlich erhöht werden. Hierfür werden der Probe markierte Nucleotide (4sU/4sUTP) zugesetzt, die dann zufällig in neu transkribierte RNA inkorporiert werden und eine Unterscheidung zwischen ‚neuer‘ und ‚alter‘ RNA erlauben. In dieser Arbeit werden eine der ersten Einzelzell-SLAMseq-Methoden, die dazugehörige Datenanalyse-Software sowie drei Anwendungen der entwickelten Methoden vorgestellt. Die erste Anwendung verwendet Einzelzell-SLAMseq, um zwischen maternaler (alter) und zygotischer (neuer) RNA in sich entwickelnden Zebrafischembryos bis zur Gastrulation zu unterscheiden. Im Rahmen des Projekts entstand der erste Einzelzell-SLAMseq-Datensatz in einem vollständigen Wirbeltier, der es außerdem erlaubt, im Vorfeld identifizierten lokalisierten maternalen Transkripten zeitlich zu folgen. Diese – vorher uncharakterisierten –Transkripte wurden während der Gastrulation in den Keimzellen angereichert gefunden, was Rückschlüsse auf ihre mögliche Funktion erlaubt. Die zweite Anwendung konzentriert sich auf die neu transkribierte RNA und verwendet (Einzelzell-)SLAMseq, um Transkripte, die in Reaktion auf Stress während der Probenaufbereitung hergestellt wurden, zu identifizieren und rechnerisch zu entfernen. Die Vorteile der Methode werden in mehreren Systemen und Geweben (Mausherz, Zebrafischlarve, Maus-Microglia) demonstriert. In der dritten Anwendung wird eine Machbarkeitsstudie für in vivo SLAMseq zur Identifikation der initialen Immunantwort nach Makrophagenstimulation präsentiert, die auf einen deutlichen Gewinn an zeitlicher Auflösung durch SLAMseq hindeutet. / RNA is a central molecule in the cell and essential to its life functions. With the average RNA half life being multiple hours, regular RNA sequencing has an intrinsic limit on temporal resolution, where small changes in the transcriptome are not picked up until a certain amount of transcripts has build up. This resolution can be greatly improved using RNA metabolic labelling (SLAMseq), where labelled nucleotides (4sU/4sUTP) are added to the samples. These nucleotides are randomly incorporated into nascent transcripts and allow distinction between RNA produced before and after introduction of the labelling agent. This thesis presents one of the first high throughput single cell SLAMseq protocols, an accompanying computational pipeline for data analysis as well as three applications for the developed methods. The first application uses single cell SLAMseq to distinguish between maternal (unlabelled) and zygotic (labelled) transcripts in early zebrafish development (up to mid-gastrulation). This project generated the first single cell SLAMseq dataset in a whole vertebrate. Additionally the data allows to follow a previously discovered set of vegetally localised maternal transcripts in time and determine that these specific transcripts are mainly enriched in the primordial germ cells at gastrulation, therefore ascribing a potential function to a set of so far uncharacterised genes. The second application focuses on newly transcribed RNA and uses (single cell) SLAMseq as a technique to identify and remove transcripts generated in response to sample preparation stress. The method’s benefits are demonstrated in multiple systems and tissues, among them mouse cardiomyocytes, zebrafish larvae and mouse microglia. Finally as the third application an in vivo proof of concept study of SLAMseq to identify first response genes in macrophage stimulation is presented, where the introduction of 4sU shows clear advantages in temporal resolution compared to unlabelled data.

Page generated in 0.0786 seconds