• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 8
  • 8
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elektrischer und thermoelektrischer Transport in den Metalloxiden ß-Ga2O3 und ZnGa2O4

Boy, Johannes 27 August 2021 (has links)
Diese Arbeit konzentriert sich auf die Charakterisierung der elektrischen und thermoelektrischen Eigenschaften zwischen T<50 K und Raumtemperatur mittels elektrischer Transportmessungen. Für ZnGa2O4 werden zusätzlich die thermischen Eigenschaften untersucht. Für die Herstellung von elektrischen Bauelementen in der Halbleiterindustrie sind dünne epitaktische Schichten von besonderem Interesse und werden daher hier für ß−Ga2O3 systematisch studiert. Dabei wird zwischen Schichtdicken von d = 25 bis 225 nm unterschieden und die Resultate mit Volumenkristallen verglichen. Für ZnGa2O4 werden erste Untersuchungen an Einkristallen durchgeführt. Für diese Arbeit wird eine neue Messplattform entwickelt, um die elektrischen und thermoelektrischen Eigenschaften charakterisieren zu können. Die Probenprozessierung wird mittels optischer Lithographie, Magnetron-Sputtern und Lift-Off umgesetzt. Für ß−Ga2O3 wird untersucht, welchen Einfluss das Wachstum und die Schichtdicke auf die elektrischen und thermoelektrischen Eigenschaften hat. Durch nicht perfektes Wachstum der Kristalle entstehen zweidimensionale Gitterfehler wodurch die Beweglichkeit ab und der Betrag des Seebeck-Koeffizienten zunimmt. Zusätzlich ist das Wachstum schichtdickenabhängig. Dünne Schichten weisen mehr null- und zweidimensionale Defekte auf, was zu einer Abnahme der Beweglichkeit führt. Durch das Studium der Streuprozesse im ß−Ga2O3 wird eine Aufteilung des Seebeck- Koeffizienten in den thermodiffusiven und Phonon-Drag-Anteil durchgeführt. Für dünne Schichten (d<100 nm) nimmt der Phonon-Drag-Parameter bei T<150 K mit abnehmender Schichtdicke um eine Größenordnung zu, was für eine Zunahme der Phonon-Phonon- zu Elektron-Phonon-Streuzeit spricht. Erste Messungen an ZnGa2O4-Volumenmaterial zeigen, dass es sich um einen entarteten Halbleiter handelt. Der Seebeck-Koeffizient zeigt ebenfalls den Phonon-Drag-Effekt mit einem Maximum bei 60 K. Die Wärmeleitfähigkeit bei Raumtemperatur ist lambda=(22.9 ± 0.2) W/mK. / This work focuses on the characterization of the electric and thermoelectric transport properties between T<50 K and room temperature using electrical transport measurements. Furthermore the thermal transport properties of ZnGa2O4 are investigated. For the manufacturing of electrical devices in the semiconductor industry thin epitaxial films are of interest, hence they are studied extensively here for ß-Ga2O3. The film thicknesses are varied between d = 25 and 225 nm and their properties are compared to those of bulk material. For ZnGa2O4 first investigations are carried out on bulk material. For this work, a novel measurement platform is developed to perform the electric and thermoelectric characterization. The processing of the samples includes photolithography, magnetron sputtering and lift-off. The influence of the growth and film thickness of ß−Ga2O3 on the electric and thermoelectric properties is studied. Due to non-perfect growth of the crystals twodimensional defects are formed, which decrease the mobility and increase the absolute value of the Seebeck-coefficient. Additionally the growth depends on the film thickness. Very thin films exhibit more zero- and twodimensional defects, which decrease the mobility. The knowledge of the scattering mechanisms in ß−Ga2O3 allow a splitting of the Seebeck coefficient into the thermodiffusive and Phonon-Drag-part. For thin films (d<100 nm) and T<150 K the Phonon-Drag-parameter increases by an order of magnitude, which is explained by an increase of phonon-phonon- to electron-phonon-scattering times. First measurements of ZnGa2O4-bulk material show, that it is a degenerate semiconductor. The Seebeck-coefficient shows the Phonon-Drag-effect as well, with a maximum at 60 K. The thermal conductivity at room temperature is lambda= (22.9 ± 0.2) W/mK.
2

Transport Properties and Nanosensors of Oxide Nanowires and Nanobelts

Lao, Changshi 29 October 2007 (has links)
ZnO is one of the most important materials for electronics, optoelectronics, piezoelectricity and optics. With a wide band gap of 3.37eV and an exiton binding energy of 60meV, ZnO 1D nanostructures exhibit promising properties in a lot of optical device applications. It is also an important piezoelectric material and has applications in a new category of nanodevices, nano-piezotronics. Demonstrated prototype of devices includes nanogenerators, piezoelectric-FET, and a series of evolutive devices based on the concept of nanogenerator. This is based on working principle of a semiconductor and piezoelectric coupled property. This thesis is about the growth, characterization and device fabrication of ZnO nanowires and nanobelts for sensors and UV detectors. First, the fundamental synthesis of ZnO nanostructurs is investigated, particularly polar surface dominated nanostructues, to illustrate the unique growth configurations of ZnO. Detail study in this part includes nanobelts, nanorings, nanocombs, nanonetworks, and nanodiskettes synthesis. Important factors in driving the nanostructure synthesis mechanism are analyzed, such as the chemical activities of different surface of ZnO and the polar surface dominated effects. Then, the devices fabricated methods using individual nanowires/nanobelts and their electrical transport properties were carefully characterized. In this part, dominant factors which are critical for nanobelt device performance are investigated, such as the contact properties, interface effects, and durability testing. Also, a metal doping method is studied to explore the controlling and modification of nanowire electric and optical properties. Further more, I will present the surface functionalization of nanobelt for largely improving its electrical, optoelectronic and chemical performance. Surface functionalization of nanobelts is proven to be an effective method in enhancing the semiconductor and metal contact. Piezoelectric field-effect transistors will be demonstrated as a powerful approach as chemical sensors. Finally, a technique is illustrated for functionalizing the surfaces of ZnO nanobelts for enhancing its UV sensitivity by over five orders of magnitude. This demonstrates an effective approach for fabricatiing ultrasensitive UV detectors. The research results presented in this thesis have made great contribution to the growth, device fabrication and novel applications of ZnO nanostructures for photonics, optoelectronics and sensors.
3

Safety Aware Platooning of Automated Electric Transport Vehicles

Jackson, Spencer Scott 01 May 2013 (has links)
Safety is a paramount concern when considering implementation of an automated highway where computers control the vehicles. Even with computer-fast reaction time there is inevitably some delay and if vehicles do not follow at safe distances, emergency braking maneuvers can cause dangerous collisions. This research investigates situations that might make automated vehicles have dangerous collisions and what standards the system design must hold to keep passengers safe.
4

Influence of the electric polarization on carrier transport and recombination dynamics in ZnO-based heterostructures

Brandt, Matthias 15 September 2010 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit dem Einfluss der elektrischen Polarisation auf Eigenschaften freier Träger in ZnO basierten Halbleiterheterostrukturen. Dabei werden insbesondere Transporteigenschaften freier Träger sowie deren Rekombinationsdynamik untersucht. Die Arbeit behandelt vier inhaltliche Schwerpunkte. Der erste Schwerpunkt liegt auf den physikalischen Eigenschaften der verwendeten Materialen, hier wird der Zusammenhang der Bandlücke und der Gitterkonstanten von MgZnO Dünnfilmen und deren Magnesiumgehalt beschrieben. Weiterhin wird die Morphologie solcher Filme diskutiert. Auf unterschiedliche Substrate und Abscheidebedingungen wird dabei detailliert eingegangen. Der zweite Schwerpunkt behandelt die Eigenschaften undotierter und phosphordotierter ZnO und MgZnO Dünnfilme. Die strukturellen, Transport- und Lumineszenzeigenschaften werden hier verglichen und Rückschlüsse auf die Züchtungsbedingungen gezogen. Im dritten Schwerpunkt werden Quanteneffekte an ZnO/MgZnO Grenzflaechen behandelt. Hierbei wird insbesondere auf den Einfluss der elektrischen Polarisation eingegangen. Die Präsenz eines zweidimensionalen Elektronengases wird nachgewiesen, und die notwendigen Bedingungen zur Entstehung des sogenannten qunatum confined Stark-effects werden dargelegt. Insbesondere wird hier auf züchtungsrelevante Parameter eingegangen. Den vierten Schwerpunkt stellen Kopplungsphänomene in ZnO/BaTiO3 Heterostrukturen dar. Dabei werden zuerst die experimentell beobachten Eigenschaften verschiedener Heterostrukturen die auf unterschiedlichen Substraten gezüchtet wurden aufgezeigt. Hier stehen strukturelle und Transporteigenschaften im Vordergrund. Ein Modell zur Beschreibung der Ausbildung von Raumladungszonen in derartigen Heterostrukturen wird eingeführt und zur Beschreibung der experimentellen Ergebnisse angewandt. Die Nutzbarkeit der ferroelektrischen Eigenschaften des Materials BaTiO3 in Kombination mit halbleitendem ZnO wurden untersucht. Hierzu wurden ferroelektrische Feldeffekttransistoren unter Verwendung beider Materialien hergestellt. Die prinzipielle Eignung der Bauelemente als nichtflüchtige Speicherelemente wurde nachgewiesen.
5

Phénomènes électriques et thermiques dans des nanostructures supraconductrices / Thermoelectric phenomena in superconducting nanostructures

Di Marco, Angelo 02 March 2015 (has links)
Ma thèse de doctorat traite de l'étude théorique des phénomènes thermoélectriques qui se produisent dans des nanostructures supraconductrices qui sont l'objet de plusieurs lignes de recherche de la physique de la matière condensée. Nous nous focalisons sur quatre dispositifs basés sur les supraconducteurs et de minces barrières isolantes où le transport de la charge et de la chaleur est gouverné par l'effet tunnel quantique. Nous commençons par analyser une jonction métal Normal-Isolant-Supraconducteur (N-I-S). En principe, aucun courant à une particule ne peut s'écouler dans ce circuit quand le voltage de polarisation est en dessous du gap d'énergie de S. Pourtant, un courant de fuite en dessous du gap est observé dans la courbe caractéristique courant-voltage (I-V) expérimental de ce dispositif, même à très basses températures. Nous montrons que l'absorption de photons de l'environnement électromagnétique à haute température connecté à la jonction est une origine possible du processus de tunnel à un électron en dessous du gap. Nous considérons une jonction N-I-S connectée à l'environnement soit directement soit indirectement au moyen d'une ligne de transmission résistif à basse température. Nous analysons analytiquement et numériquement le courant en dessous du gap dans ces deux circuits. Ensuite nous considérons un transistor hybride à un électron (SET) constitué d'une île de métal normal N contrôlée avec une tension de grille et connectée, au moyen de deux jonctions à effet tunnel, à deux fils supraconducteurs S polarisés en tension (S-I-N-I-S). Lorsque l'on fait varier le voltage de N correctement dans le temps, un courant contrôlable à un électron s'écoule entre les deux supraconducteurs. En principe, la réflexion d'Andreev, c'est-à-dire l'effet tunnel à deux électrons de N à S, peut être interdite. Expérimentalement, ce processus à deux particules contribue aussi au courant total à travers le SET. Nous montrons que l'échange de photons entre ce dispositif et l'environnement électromagnétique où il est disposé rend la réflexion d'Andreev énergétiquement possible. De plus, nous discutons comment cet effet limite la précision du processus de tunnel à un électron nécessaire pour les applications métrologiques. Ensuite nous nous focalisons sur les caractéristiques thermodynamiques des jonctions supraconductrices à effet tunnel. Nous discutons d'abord des capacités de refroidissement électronique des dispositifs à double jonction S1-I-N-I-S1 et S2-I-S1-I-S2, où les supraconducteurs S2 et S1 ont un gap d'énergie différent. Après nous étudions le design et le fonctionnement d'un nanoréfrigérateur électronique à cascade basé sur une combinaison de ces deux structures. Nous montrons numériquement que une île de métal normal peut être réfrigérée au dessous de 100 mK à partir d'une température de 500 mK. Nous discutons ensuite de la réalisation pratique et des limitations d'un tel dispositif. Enfin, nous considérons la dynamique d'une jonction à sauts de phase quantique (QPSJ) connectée à une source de micro-ondes. En ce qui concerne une jonction Josephson ordinaire, une QPSJ peut montrer des marches de Shapiro duals, c'est-à-dire des plateaux de courant bien définis situés à des multiples entiers de la fréquence des micro-ondes dans la courbe caractéristique I-V. Aucune observation expérimentale n'a abouti jusqu'à maintenant. Les fluctuations thermiques et quantiques peuvent nettement étaler la courbe I-V. Pour comprendre ces effets, nous déterminons la caractéristique I-V d'une QPSJ polarisée en courant, irradiée avec des micro-ondes et connectée à un environnement résistif et inductif. Nous montrons que l'effet de ces fluctuations est gouverné par la résistance de l'environnement et par le rapport entre l'énergie de phase-slip et l'énergie inductive. Nos résultats sont importants pour les expériences qui visent à l'observation des marches de Shapiro duals dans les QPSJ pour la définition du courant quantique standard. / The aim of my Ph.D. thesis is to study theoretically the thermoelectric phenomena occurring in some superconducting nanostructures which are the object of various research lines in condensed matter physics. Specifically, we focus on four different devices based on superconductors and insulating tunnel barriers where both charge and heat transport are governed by the quantum tunneling effect. We start by considering a voltage-biased Normal metal-Insulator-Superconductor (N-I-S) tunnel junction. No single-particle current is expected to flow in this circuit when the applied voltage is below the superconducting energy gap of S. However, in real experiments, a subgap leakage current is observed in the current-voltage (I-V) characteristic of this device, even at very low temperatures. We show that the absorption of photons from the high-temperature electromagnetic environment connected to the junction is a possible origin of the single-particle tunneling below the gap. We first consider a N-I-S junction directly coupled to the environment. Then we focus on a circuit where a low-temperature lossy transmission line is inserted between them. For both these circuits, we analyze analytically and numerically the subgap leakage current. We find, in particular, that it is exponentially suppressed as the length and the resistance per unit length of the line are increased. Then, we go beyond the single N-I-S junction considering a hybrid single-electron transistor (SET) constituted by a gate-controlled normal-metal island (N) connected to two voltage-biased superconducting leads (S) by means of two tunnel junctions (S-I-N-I-S). A controlled single-electron current flows between the two superconductors by properly changing in time the gate potential of N. In principle, the Andreev reflection, i.e., the tunneling of two electrons from N to S can be ideally suppressed when the charging energy of N is larger than the energy gap of S. Actually, in real experiments, this two-particle tunneling process also contributes to the total current through the SET. We show that the exchange of photons between the S-I-N-I-S device and the high-temperature electromagnetic environment where it is embedded makes the Andreev reflection energetically possible. We discuss how this effect limits the single-electron tunneling accuracy needed for metrological applications. Next, we focus on the thermodynamical features of the superconductor-based tunnel junctions. We first consider the well-known electronic cooling capabilities of the S1-I-N-I-S1 and S2-I-S1-I-S2 double-junction devices, where S2 and S1 are superconductors with different energy gaps. Then, we study the design and operation of an electronic nanorefrigerator based on a combination of these two structures, i.e., a cascade cooler. We show numerically that a normal-metal island can be cooled down to about 100 mK starting from a bath temperature of 500 mK. We discuss the practical implementation, potential performance and limitations of such a device. Finally, we consider the dynamics of a quantum phase-slip junction (QPSJ) connected to a microwave source. With respect to an ordinary Josephson junction, a QPSJ can sustain dual Shapiro steps, consisting of well-defined current plateaus at multiple integers of the microwave frequency in the I-V characteristic. Their experimental observation has been elusive up to now. We argue that thermal and quantum fluctuations can smear the I-V curve considerably. To understand these effects, we determine the I-V characteristic of a current-biased QPSJ under microwave irradiation and connected to an inductive and resistive environment. We find that the effect of these fluctuations is governed by the resistance of the environment and by the ratio of the phase-slip energy and the inductive energy. Our results are of interest for experiments aimed at the observation of dual Shapiro steps in QPSJ devices for the definition of the quantum current standard.
6

Electric Transport of Rare-earth Metal Oxy-hydride Thin Films

Kazi, Suraya January 2021 (has links)
In this project, I investigate the photoconductivenature of photochromic rare-earth metal oxy hydrides (REMHO). Such materials have received increasingscientific attention since they show a color-neutralphotochromic effect that can be applied, e.g., in smartwindows or chromogenic devices. Photochromicmaterials reversibly turn opaque from transparentunder illumination with light of optical wavelength. Inrecent studies it was found that these materials alsoshow an instant decrease in resistivity whenilluminated which can be used in optical sensors. Tounderstand the nature of this photoconductive effect,I grew yttrium oxy hydride thin films by reactivemagnetron sputtering. I measured the resistivity forillumination from front and substrate side, opticaltransmission and compositions of the samples andrelated the results to photoconductivity. I show thatphotoconductivity is a bulk effect and not directlyrelated to photochromism. Samples that almost lostphotochromism due to aging, still show strongphotoconductivity. Moreover, it was observed that theresistance increased faster during bleaching for frontillumination than for back illumination.
7

Influence of the electric polarization on carrier transport and recombination dynamics in ZnO-based heterostructures

Brandt, Matthias 06 July 2010 (has links)
Die vorliegende Arbeit befasst sich mit dem Einfluss der elektrischen Polarisation auf Eigenschaften freier Träger in ZnO basierten Halbleiterheterostrukturen. Dabei werden insbesondere Transporteigenschaften freier Träger sowie deren Rekombinationsdynamik untersucht. Die Arbeit behandelt vier inhaltliche Schwerpunkte. Der erste Schwerpunkt liegt auf den physikalischen Eigenschaften der verwendeten Materialen, hier wird der Zusammenhang der Bandlücke und der Gitterkonstanten von MgZnO Dünnfilmen und deren Magnesiumgehalt beschrieben. Weiterhin wird die Morphologie solcher Filme diskutiert. Auf unterschiedliche Substrate und Abscheidebedingungen wird dabei detailliert eingegangen. Der zweite Schwerpunkt behandelt die Eigenschaften undotierter und phosphordotierter ZnO und MgZnO Dünnfilme. Die strukturellen, Transport- und Lumineszenzeigenschaften werden hier verglichen und Rückschlüsse auf die Züchtungsbedingungen gezogen. Im dritten Schwerpunkt werden Quanteneffekte an ZnO/MgZnO Grenzflaechen behandelt. Hierbei wird insbesondere auf den Einfluss der elektrischen Polarisation eingegangen. Die Präsenz eines zweidimensionalen Elektronengases wird nachgewiesen, und die notwendigen Bedingungen zur Entstehung des sogenannten qunatum confined Stark-effects werden dargelegt. Insbesondere wird hier auf züchtungsrelevante Parameter eingegangen. Den vierten Schwerpunkt stellen Kopplungsphänomene in ZnO/BaTiO3 Heterostrukturen dar. Dabei werden zuerst die experimentell beobachten Eigenschaften verschiedener Heterostrukturen die auf unterschiedlichen Substraten gezüchtet wurden aufgezeigt. Hier stehen strukturelle und Transporteigenschaften im Vordergrund. Ein Modell zur Beschreibung der Ausbildung von Raumladungszonen in derartigen Heterostrukturen wird eingeführt und zur Beschreibung der experimentellen Ergebnisse angewandt. Die Nutzbarkeit der ferroelektrischen Eigenschaften des Materials BaTiO3 in Kombination mit halbleitendem ZnO wurden untersucht. Hierzu wurden ferroelektrische Feldeffekttransistoren unter Verwendung beider Materialien hergestellt. Die prinzipielle Eignung der Bauelemente als nichtflüchtige Speicherelemente wurde nachgewiesen.
8

Characterization of the electronic properties of LaIrIn5: calculations, transport-, heat capacity- and de Haas-van Alphen-experiments / Bestimmung der elektronischen Eigenschaften von LaIrIn5: Rechnungen, Transport-, Wärmekapazitäts- und de Haas-van Alphen-Experimente

Forzani, Eugenio Angelo 12 January 2007 (has links)
No description available.

Page generated in 0.0815 seconds