• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 7
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 35
  • 12
  • 12
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Anabolic Androgenic Steroids : Effects on Neuropeptide Systems in the Rat Brain

Hallberg, Mathias January 2005 (has links)
<p>Anabolic-androgenic steroids (AAS) have been used in clinics for decades. The misuse of AAS has previously been attributed merely to sport athletes, taking AAS with intentions to increase muscle mass, enhance physical performance and to improve results in competitions. Today, the misuse of AAS has spread to adolescents and young adults not connected to sports. Alarmingly, many reports are pointing at severe psychiatric adverse effects among AAS abusers, which include mood swings, mania, anxiety, depression and aggression. Numerous examples of severe and often unprovoked violence and brutal crimes have been connected to AAS abuse and there is a strong need for a better understanding of the underlying biochemical events that might account for the adverse behaviors induced by AAS. The general aim of this thesis was to study the effect of chronic AAS administration on neuropeptide circuits in the rat brain associated with the regulation of rewarding effects, memory, anxiety, depression and aggression, using nandrolone decanoate as a prototype AAS.</p><p>Results demonstrated that daily administration of AAS to rats in doses comparable to those taken by AAS abusers, in certain brain structures significantly affected, <i>a</i>) the levels of the opioid peptides dynorphin B and Met-enkephalin-Arg<sup>6</sup>Phe<sup>7</sup>, <i>b</i>) the levels of the tachykinin substance P (SP), <i>c</i>) the density of the SP neurokinin 1 (NK1) receptor, <i>d</i>) the level of the SP metabolite SP<sub>1-7 </sub>that frequently exerts opposite effects to SP, <i>e</i>) the SP<sub>1-7 </sub>generating enzyme substance P endopeptidase (SPE) and finally, <i>f</i>) the levels of the neuropeptide calcitonin gene-related peptide (CGRP) often co-localized with SP. The alterations seen in the levels and activities of these neurochemical components are in many aspects compatible with behaviors typified among AAS abusers.</p>
32

Anabolic Androgenic Steroids : Effects on Neuropeptide Systems in the Rat Brain

Hallberg, Mathias January 2005 (has links)
Anabolic-androgenic steroids (AAS) have been used in clinics for decades. The misuse of AAS has previously been attributed merely to sport athletes, taking AAS with intentions to increase muscle mass, enhance physical performance and to improve results in competitions. Today, the misuse of AAS has spread to adolescents and young adults not connected to sports. Alarmingly, many reports are pointing at severe psychiatric adverse effects among AAS abusers, which include mood swings, mania, anxiety, depression and aggression. Numerous examples of severe and often unprovoked violence and brutal crimes have been connected to AAS abuse and there is a strong need for a better understanding of the underlying biochemical events that might account for the adverse behaviors induced by AAS. The general aim of this thesis was to study the effect of chronic AAS administration on neuropeptide circuits in the rat brain associated with the regulation of rewarding effects, memory, anxiety, depression and aggression, using nandrolone decanoate as a prototype AAS. Results demonstrated that daily administration of AAS to rats in doses comparable to those taken by AAS abusers, in certain brain structures significantly affected, a) the levels of the opioid peptides dynorphin B and Met-enkephalin-Arg6Phe7, b) the levels of the tachykinin substance P (SP), c) the density of the SP neurokinin 1 (NK1) receptor, d) the level of the SP metabolite SP1-7 that frequently exerts opposite effects to SP, e) the SP1-7 generating enzyme substance P endopeptidase (SPE) and finally, f) the levels of the neuropeptide calcitonin gene-related peptide (CGRP) often co-localized with SP. The alterations seen in the levels and activities of these neurochemical components are in many aspects compatible with behaviors typified among AAS abusers.
33

Néphrotoxicité des acides aristolochiques: approches expériementales de l'atteinte tubulaire proximale

Lebeau, Catherine 24 April 2006 (has links)
Les acides aristolochiques (AA) présents dans les aristoloches sont impliqués dans le développement d’une insuffisance rénale progressive chez l’homme, appelée néphropathie aux plantes chinoises (CHN). Elle se caractérise par une atrophie tubulaire sévère et une fibrose interstitielle associée à une fréquence élevée de cancers urothéliaux. L’observation en clinique d’une protéinurie tubulaire a suggéré que le tubule proximal était la cible des AA.<p><p>\ / Doctorat en sciences biomédicales / info:eu-repo/semantics/nonPublished
34

Defining the Roles of p300/CBP (CREB Binding Protein) and S5a in p53 Polyubiquitination, Degradation and DNA Damage Responses: A Dissertation

Shi, Dingding 08 January 2010 (has links)
p53, known as the “guardian of the genome”, is the most well-characterized tumor suppressor gene. The central role of p53 is to prevent genome instability. p53 is the central node in an incredibly elaborate genome defense network for receiving various input stress signals and controlling diverse cellular responses. The final output of this network is determined not only by the p53 protein itself, but also by other p53 cooperating proteins. p300 and CBP (CREB-Binding Protein) act as multifunctional regulators of p53 via acetylase and ubiquitin ligase activities. Prior work in vitro has shown that the N-terminal 595 aa of p300 encode both generic ubiquitin ligase (E3) and p53-directed E4 functions. Analysis of p300 or CBP-deficient cells revealed that both coactivators were required for endogenous p53 polyubiquitination and the normally rapid turnover of p53 in unstressed cells. Unexpectedly, p300/CBP ubiquitin ligase activities were absent in nuclear extracts and exclusively cytoplasmic. In the nucleus, CBP and p300 exhibited differential regulation of p53 gene target expression, C-terminal acetylation, and biologic response after DNA damage. p300 activated, and CBP repressed, PUMA expression, correlating with activating acetylation of p53 C-terminal lysines by p300, and a repressive acetylation of p53 lysine-320 induced by CBP. Consistent with their gene expression effects, CBP deficiency augmented, and p300 deficiency blocked, apoptosis after doxorubicin treatment. Subcellular compartmentalization of p300/CBP’s ubiquitination and transcription activities reconciles seemingly opposed functions—cytoplasmic p300/CBP E4 activities ubiquitinate and destabilize p53, while nuclear p300/CBP direct p53 acetylation, target gene activation, and biological outcome after genotoxic stress. p53 is a prominent tumor suppressor gene and it is mutated in more than 50% of human tumors. Reactivation of endogenous p53 is one therapeutic avenue to stop cancer cell growth. In this thesis, we have identified S5as a critical regulator of p53 degradation and activity. S5a is a non-ATPase subunit in the 19S regulatory particle of the 26S proteasome. Our preliminary data indicates that S5a is required for p53 instability and is a negative regulator of p53 tranactivation. As a negative regulator of p53, S5a may therefore also represent a new target for cancer drug development against tumors that specifically maintain wild type p53.
35

LIQUID CHROMATOGRAPHY - MASS SPECTROMETRIC ANALYSIS OF CLINICALLY AND PHARMACOLOGICALLY RELEVANT MOLECULES

Kakarla, Raghavi 13 December 2019 (has links)
No description available.

Page generated in 0.0372 seconds