• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 730
  • 383
  • 16
  • 9
  • 8
  • 6
  • 5
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 1339
  • 1339
  • 1013
  • 336
  • 195
  • 159
  • 144
  • 135
  • 134
  • 132
  • 130
  • 112
  • 111
  • 106
  • 88
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

Chemical looping combustion : a multi-scale analysis

Schnellmann, Matthias Anthony January 2018 (has links)
Chemical looping combustion (CLC) is a technique for separating pure carbon dioxide from the combustion of fuels. The oxygen to burn the fuel comes from the lattice oxygen contained in solid particles of an inorganic oxide (the 'oxygen carrier'), instead of from oxygen in the air. Thus only CO2 and water leave the combustor, or fuel reactor. Next, the water is condensed, leaving pure CO2. The oxygen carrier is regenerated by oxidising it in air in a second reactor, called the air reactor. Accordingly, a stream of pure carbon dioxide can be produced, uncontaminated with gases such as nitrogen, normally present when the fuel burns in air. This intrinsic separation with CLC enables CO2 to be separated more efficiently than with other techniques, such as post-combustion scrubbing of carbon dioxide from stack gases with amine-based solvents. The design of a CLC system and its performance within an electricity system represents a multi-scale problem, ranging from the behaviour of single particles of oxygen carrier within a reactor to how a CLC-based power plant would perform in an electricity grid. To date, these scales have been studied in isolation, with little regard for the vital interactions and dependences amongst them. This Dissertation addresses this problem by considering CLC holistically for the first time, using a multi-scale approach. A stochastic model was developed, combining the particle-and reactor-scales of CLC. It included an appropriate particle model and can be coupled to a detailed reactor model. The combination represented a significant change from existing approaches, uniquely accounting for all the important factors affecting the assemblage of particles performing in the CLC reactors. It was used to determine the regimes of operation in which CLC is sensitive to factors such as the manner in which the particles are reacting, the residence time distribution of particles in the two reactors, the particle size distribution and the reaction history of particles. To demonstrate that the approach could simulate specific configurations of CLC, as well as a general system, the model was compared with results from experiments in which CLC with methane was conducted in a laboratory-scale circulating fluidised bed. The long-term performance of oxygen carrier materials is important, because, in an industrial process, they would be expected to function satisfactorily for many thousands of hours of operation. Long-term experiments were conducted to evaluate the resistance of different oxygen carrier materials to physical and chemical attrition. The evolution of their chemical kinetics was also determined. The results were used to evaluate the impact of different oxygen carrier materials in a fuel reactor at industrial-scale. Finally, a theoretical approach was developed to simulate how a fleet of CLC-based power plants would perform within the UK's national grid. By understanding how different parameters such as capital cost, operating cost and measures of efficiency, compared with other methods of generation offering carbon reduction, desirable design modifications and needs for improvement for CLC were identified by utilising the theoretical and experimental work conducted at the particle- and reactor-scales.
482

Model razvoja preduzeća iz oblasti elektrodistributivnog sektora / DEVELOPMENT MODEL OF COMPANIES IN THE FIELD OF ELECTRICITY DISTRIBUTION SECTOR

Krunić Gojko 24 November 2017 (has links)
<p>Osnovni cilj istraživanja jeste da se analizom podataka o distribuciji električne energije u prethodnim periodima defini&scaron;u pravci unapređenja koji se odnose na organizaciju i upravljanje sistemima za distribuciju električne energije i razvoj modela efektivnog sistema za tu distribuciju. Nakon analize podataka, uz kori&scaron;ćenje softverskog paketa Balanced Scorecard, uočena su alarmna područja nad kojima je neophodno odrediti odgovarajuće mjere pobolj&scaron;anja. Primjena razvijenog organizaciono - upravljačkog modela preduzeća koje posluje u oblasti elektrodistributivnog sektora treba da omogući bolje rezultate u poslovanju i distribuciji električne energije u budućem periodu.</p> / <p>The main goal of the research is to analyze the data on the distribution of electricity in previous periods by defining the directions of improvement related to the organization and management of systems for distribution of electricity and the development of the model of the effective system for this distribution. After analyzing the data, using the Balanced Scorecard software package, alarm areas were identified over which it is necessary to determine the appropriate improvement measures. The application of the developed organizational-management model of the company operating in the field of the electricity distribution sector should enable better results in the operation and distribution of electricity in the future.</p>
483

Building-Integrated Photovoltaics for a Habitat on Mars : A Design Proposal Based on the Optimal Location and Placement of Integrated Solar Cells

Schylander, Anna January 2019 (has links)
The ever-increasing challenges that we face with our consumption of resources on Earth are factors which have prompted researchers to show interest in studying the possibilities of human habitat on other celestial bodies. Mars is a stone planet and is at such distance from the sun that it could be feasible for future settlements with the right technology and solutions. Future missions to Mars rely on solar panels as their primary power system. Utilizing solar architecture is a solution that reduces both a building’s energy consumption and the extent of environmental damage fossil fuels are causing the Earth. This leads to extensive opportunities to explore how we can increase the use of renewable energy using new technologies developed for use on Earth but also for use in the space industry.   This study used a qualitative method through literature studies and semi-structured interviews as well as a quantitative method through calculations. The literature study was meant to act as a theoretical base for this study and for the interviews by creating an understanding of the world’s usage of renewable and non-renewable energy sources and how solar power works by the means of photovoltaic cells. The interviews were held to identify the opportunities and obstacles regarding a solar power system on Mars as well as the usage of BIPV (building-integrated photovoltaics) in extreme environments. Mathematical calculations were based on the fundamental geometric shape of a cylinder where the walls were set to be the varying parameter. Six locations on Mars with different coordinates and underlying matters were selected to the study based on the knowledge collected from the literature study and the interviews.   Aspects that needs to be considered for building-integrated photovoltaics placed on a building’s envelope on Mars are several. Some of the most crucial are: dust deposition and dust in the atmosphere, a climate with major temperature extremes, the habitats location on the planet and the amount of output energy provided by BIPV partly affected by the Mars-Sun distance. If the fundamental geometric shape of the building is a cylinder, the building’s shape would to form as a truncated cone with smaller wall slopes the closer the equator the habitat is located. If the habitat is placed far away from the equator the walls’ slope, the optimal tilt angle of the photovoltaic module, would be steeper and increase with the higher latitude. The maximized power by using BIPV on a building on Mars is provided as close to the equator as possible due to the big amount of sunlight reaching the surface. If BIPV could be used on the Martian surface is still a relatively extensive hypothesis. Studies about Mars and other planets tend to result in this kind of approach because of the many insecurities that cannot be proven before humans get to the planet or detailed tests have been accomplished and analyzed. A solar power system shows great opportunities for future human missions to Mars but BIPV is not considered an option in the near future without further research and development verifying the option.
484

Off-grid Wind Power Systems: Planning and Decision Making

El Zein, Musadag January 2019 (has links)
There are definitely many reasons for choosing off-grid wind power systems. Few key ones involve the positive enhancement of societies, economies and natural environments. From a project developers’ perspective these systems provide a large potential market, which can cover a wide range of applications with relatively reasonable costs.  In spite of this, many challenges may interfere with the diffusion and the success of such systems. In the report we discuss the various factors affecting  the implementation of off-grid wind power systems and demonstrate some of the challenges project developers may be facing during the planning stage. Some of these include the acceptance of stakeholders (local inhabitants in particular) and the securing of the financing of the projects.  Another noted challenge lying outside the control of project developers was found to be the absence of encouraging policies and incentives. As a conclusion the thesis provides a set of self-interpreted recommendations along with a flow chart. The concluded summary indicates some key factors that project developers should be aware of and careful when dealing with, these which include: The choice of the site, verification of projects’ economics along with the securing of a convenient finance. The recommendations also point out the great advantage in having local developers as these tend to be more capable in building relations with the local citizens and politicians.
485

Solcellers effektivitet vid integrerat eller applicerat montage / Solar cells efficiency of integrated or applicated montage

Larsson, August January 2019 (has links)
Sweden has a climate target to get a total renewable electricity production by 2040, in order to succeed with the goal, the proportion of solar energy needs to increase. Increased environmental awareness and increased profitability of solar cells have led to an increase. A new way of attaching solar cells to buildings is by integrating them into building materials. A solution that optimizes material, makes the installation easier and creates better design. Today, there is concern that the temperature of the solar cells may become very high as their cooling decreases. The consequences of an increased temperature in the solar cells is that the efficiency of the electricity production decreases. The purpose of this study is therefore to increase understanding of the influence of modular temperature on electricity production. The aim of the study was to find out how much electricity production [kWh/m2, year] varies in solar cells depending on whether they are applied to buildings or if they are integrated into building materials for solar cells placed in Nordic climate. In order to do this, a calculation model was built in Simulink Matlab to calculate how the modular temperature varied during the varying weather conditions that occur during a year in Gothenburg. Air flow in the gap is created by self-convection. Some periods blew the wind into the gap in the ceiling and then the wind was also assumed to contribute with an air flow. In order to describe the self-conception, a theoretical relationship was established, to describe how the wind influenced the airflow of the roof, a connection from an experimental study was used. With the help of the calculated calculation model, it was possible to determine how much electricity production varied during integrated or applied assembly in Gothenburg. The result found was an increase of 4% for ceiling-mounted and 2% respectively for wall-mounted solar cells with applied mounting compared to integrated installation. The model was also tested for a warmer and a colder climate, Rome and Luleå. The conclusion was that building-applied solar cells can increase electricity production by up to 4% for solar cells on roofs and up to 2% for solar cells placed on the wall in Nordic climate compared to fully integrated solar cells, an air gap is therefore more effective for solar cells placed on roofs than on the wall. It was found that in warmer climates, as in Rome, the corresponding increase in electricity production was about double that for both roof and wall, an air gap is therefore more efficient in a warmer climate.
486

Let there be rain : An approach to an increased water access in Cameroon

Ljungek, Frida January 2018 (has links)
This bachelor thesis examines the pre-conditions for implementing a rain water harvesting system with additional purification on a school in a rural area of Cameroon. The villagers in this area are in general poor and lack basic access to water. The amount of rain in relation to the water need is thoroughly studied and two different UV purification are examined as potential systems for future use. The results showed that rain water harvesting is a suitable solution for the school if complemented by the further use of a natural spring nearby. The UV-systems are currently nearly non-existent on the Cameroonian market.
487

Development of a Predictive Control Model for a Heat Pump System Based on Artificial Neural Networks (ANN) approach

Zare, Kourosh Abbas January 2019 (has links)
No description available.
488

Rayleigh Flow of Two-Phase Nitrous Oxide as a Hybrid Rocket Nozzle Coolant

Nelson, Lauren May 01 September 2009 (has links)
The Mechanical Engineering Department at California Polytechnic State University in San Luis Obispo currently maintains a lab-scale hybrid rocket motor for which nitrous oxide is utilized as the oxidizer in the combustion system. Because of its availability, the same two-phase (gas and liquid) nitrous oxide that is used in the combustion system is also routed around the throat of the hybrid rocket’s converging-diverging nozzle as a coolant. While this coolant system has proven effective empirically in previous tests, the physics behind the flow of the two-phase mixture is largely unexplained. This thesis provides a method for predicting some of its behavior by modeling it using the classic gas dynamics scenarios of Rayleigh and Fanno flows which refer to one-dimensional, compressible, inviscid flow in a constant area duct with heat addition and friction. The two-phase model produced utilizes a separated phase with interface exchange model for predicting whether or not dryout occurs. The Shah correlation is used to predict heat transfer coefficients in the nucleate boiling regime. The homogeneous flow model is utilized to predict pressure drop. It is proposed that a Dittus-Boelter based correlation much like that of Groeneveld be developed for modeling heat transfer coefficients upon the collection of sufficient data. Data was collected from a series of tests on the hybrid rocket nozzle to validate this model. The tests were first run for the simplified case of an ideal gas (helium) coolant to verify the experimental setup and promote confidence in subsequent two-phase experimental results. The results of these tests showed good agreement with a combined Rayleigh-Fanno model with a few exceptions including: (1) reduced experimental gas pressure and temperature in the annulus entrance and exit regions compared to the model and (2) reduced experimentally measured copper temperatures uniformly through the annulus. These discrepancies are likely explained by the geometry of the flowpath and location of the copper thermocouples respectively. Next, a series of two-phase cooled experiments were run. Similar trends were seen to the helium experiment with regards to entrance and exit regions. The two-phase Rayleigh homogeneous flow model underpredicted pressure drop presumably due to the inviscid assumption. Ambiguity was observed in the fluid temperature measurements but the trend seemed to suggest that mild thermal non-equilibrium existed. In both cases, the dryout model predicted that mist flow (a post-CHF regime) occurred over most of the annulus. Several modifications should be implemented in future endeavors. These include: (1) collecting more data to produce a heat transfer coefficient correlation specific to the nitrous oxide system of interest, (2) accounting for thermal non-equilibrium, (3) accounting for entrance and exit effects, and (4) developing a two-phase Fanno model.
489

Neutron Irradiation of Concrete at TSL : a Comparison of Nuclide Specific Measurmentswith FLUKA Simulations.

Åström, Christer January 2017 (has links)
This thesis studies the possibility of using the Monte Carlo simulation program FLUKA to determine the neutron induced radioactivity of concrete walls at the The Svedberg Laboratory (TSL) in Uppsala. If a simulation of the activation would produce reliable results, it would be a useful complement to measurements for the decommissioning and clearance of the buildings of the facility. An experiment was performed in which a concrete core was taken from one of the non-activated walls in the facility. The core was cut into samples and irradiated with a neutron beam. The samples were then measured in a gamma-ray spectroscopy setup, by which the produced radioactive nuclides were identified and their activities determined. The same setup was then simulated in FLUKA. A comparison of the simulations and the measurements shows that the average activity for all nuclides obtained with FLUKA is similar to the measured one, however with large differences for some nuclides. The average ratio of the simulated and measured activities or all nuclides is 1.07 with a standard deviation of 0.55. The obtained results may be useful for future radiological clearance work at TSL.
490

Potential of Geothermal Energy in India

Sharma, Prajesh January 2019 (has links)
In this research paper, review of world geothermal energy production and their capacity is shown. Here, a research is conducted to know the potential and possibility of geothermal energy in India. All the geothermal province with their geographical locations are shown and a brief calculation is conducted in order to show the potential of the particular province. As India is having the low temperature geothermal fields, binary geothermal plants are used for this analysis and results are calculated by using R134a as a working fluid at different temperatures. The results are sufficient to prove the potential of geothermal energy in India.  Importance of Ground Source Heat Pump (GSHP) and power savings by its contribution over traditional heating and cooling methods is shown statistically. 9 different states of India are divided by their climatic condition, severe winter and moderate winter to calculate the heat demand in those states. Also, for the cold demands these states are considered to be same as per the climatic situation in summer. Then, comparison is done between GSHP and the traditional heating and cooling systems. The result shows the drastic power saving by using GSHP for space heating as well as cooling, over electric heater and air conditioner respectively.

Page generated in 0.0626 seconds