• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 23
  • 12
  • 10
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 104
  • 18
  • 18
  • 15
  • 12
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Obésité, risque athérogène et effet thérapeutique direct de l'exercice physique : étude sur la contribution des voies signalétiques Akt/eNOS et NADPH oxydase pour expliquer les mécanismes vasculo-protecteurs de l'exercice physique chez le rat rendu obèse par une alimentation enrichie en graisse

Touati, Sabeur 24 November 2010 (has links) (PDF)
La prévalence de l'obésité est en constante augmentation dans les pays occidentaux, en raison d'une sédentarisation accompagnée d'une alimentation malsaine. L'obésité est souvent associée à une dysfonction endothéliale et à un risque athérogène élevé. Plusieurs observations cliniques ont montré que la modification du mode de vie, incluant la pratique régulière d'une activité physique et l'adoption d'un mode alimentaire sain, représente une stratégie efficace pour combattre l'obésité et ses complications cardiovasculaires. Cependant, de nombreux mécanismes précisant les effets thérapeutiques directs de l'exercice physique sur le risque athérogène lié à l'obésité sont encore largement inconnus. Le but principal de ce travail a donc été d'identifier, en utilisant un modèle de rat rendu obèse par un régime enrichi en graisse, les mécanismes athéro-protecteurs de l'exercice physique seul et/ou associé à une modification du régime alimentaire (du régime riche en graisse au régime standard). Nos résultats montrent que l'exercice physique, indépendamment de la diète utilisée, corrige la dysfonction endothéliale installée au cours de l'obésité. Cet effet bénéfique a été associé à une diminution du stress oxydatif au niveau vasculaire. En effet, nos résultats indiquent que l'exercice diminue l'activité de la NADPH oxydase au niveau aortique. De plus, nous montrons pour la première fois que l'exercice physique seul, indépendamment de la diète utilisée, est capable de moduler la translocation de la sous-unité de la NADPH oxydase p47phox (principal acteur dans l'activation de ce complexe enzymatique) vers la membrane. Nos résultats indiquent également que l'exercice physique, avec ou sans modification du régime, améliore la voie Akt/eNOS phosphorylée, suggérant une augmentation de la production du NO. Ainsi, l'exercice physique, même sans l'associer à un changement du mode alimentaire, peut être considéré comme une stratégie non-pharmacologique efficace pour le traitement du risque athérogène généré par l'obésité
52

Analysis Of Immunoreactivity Of Nos Isoforms (nnos, Enos, Inos) In Hippocampus Of Young Rats Classified As Good And Poor Learners

Kececioglu, Ekin 01 September 2012 (has links) (PDF)
Despite very extensive studies on molecular mechanisms of learning and memory formation it is little known about individual variation in the learning skills within a random animal population and about the differences in the brain biochemistry behind this variation. In the present study, we have focused on the expression and distribution of nitric oxide synthase (NOS), one of the molecules implemented in activity-dependent neuroplasticity, in the rat hippocampus, the structure critical for episodic memory in humans and animals. The aim of the present study was to investigate the differences in expression of three different NOS isoforms: neural (n), epithelial (e), and inducible (i), in four hippocampal subregions (CA1, CA3, DG, and hilus) between Wistar rats classified on the basis of their performance in partially baited 12-arm radial maze as &ldquo / good&rdquo / and &ldquo / poor&rdquo / learners. The NOS isoforms were visualized on coronal hippocampal sections using fluorescent immunohistochemistry technique and n- and eNOS images were processed using ImageJ software, while iNOS immunoreactivity (IR) was assessed by counting immunoreactive cells. In this study, overall hippocampal levels of nNOS were significantly higher than those of eNOS and iNOS. The level of n and eNOS was higher in CA1 compared to DG/hilus areas, but lower than that in CA3 region. The expression of iNOS was the highest in CA1 and the lowest in hilus region. nNOS IR was significantly higher in &ldquo / poor&rdquo / than in &ldquo / good&rdquo / learners but only in CA1 region. No significant between-group differences were found in eNOS expression. iNOS expression was higher in &ldquo / poor&rdquo / learners but it did not reach the required significance level.
53

Phosphorylation and Functional Regulation of Nitric Oxide Synthase by Cylin-Dependent Kinase 5

Wei, Yin-Win 01 August 2007 (has links)
The activity of neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS) were regulated by kinase through phosphorylation. The cyclin-dependent kinase 5 (Cdk5) by associating with its neuron-specific activator p35 has been demonstrated to be essential for neurodegenerative neuronal death. This study focuses on the functional regulation of nNOS and eNOS by Cdk5/p35 complex in a phosphorylation dependent manner. We found that nNOS associated with Cdk5 by immunoprecipitation (IP) and in vitro phosphorylated by Cdk5 by autoradiograph. Nitrite (NO2-) production was significantly reduced in Cdk5 over-expressing N18 cells, suggested that Cdk5 down-regulated nNOS enzymatic activity. In addition, Cdk5 phosphorylated eNOS both in vitro and in vivo on Ser 113, and the Cdk5 inhibitor roscovitine suppressed the phosphorylation of eNOS. Interaction of wild-type eNOS and S113A mutant eNOS with Cdk5 was observed in co-immunoprecipitation experiments. Co-expression of S113A eNOS and Cdk5/p35 resulted in 2-fold enhancement nitrite (NO2-) generation than co-expression of eNOS and Cdk5/p35 in SH-SY5Y cells. These data indicate that Cdk5 phosphorylated nNOS and eNOS, as well as down regulated nNOS and eNOS activity. Our results supposed that Cdk5 associated with and regulated the activity of nNOS and eNOS through phosphorylation.
54

The Angiogenic Functions and Signaling of Delta-Like 1 Homologue Extracellular Domain in Endothelial Cells

Chang, Tzu-Ting 22 August 2007 (has links)
Delta-like 1 Homologue (DLK1), a transmembrane protein of 383 amino acids, belongs to a family of epidermal growth factor (EGF)-like repeat-containing proteins that include Notch/Delta/Serrate, which are involved in cell fate determination. DLK1 is also known as preadipocyte factor-1, pG2, and FA-1, which are identical or polymorphic products of a single gene. Structural analysis revealed that DLK1 consists of an extracellular domain with six EGF-like repeats, a transmembrane domain, and an intracellular domain. The extracellular EGF-like region of DLK1 (DLK1-EC) can be released to the medium by the action of tumor necrosis factor alpha converting enzyme (TACE). DLK1 participates in various differentiation processes including adipogenesis, hematopoiesis, and adrenal gland differentiation. Besides, DLK1 overexpression was observed in patients with biliary atresia and in glioblastoma. Recently, the extracellular domain of thrombomodulin, which also contains six EGF¡Vlike structures, has been delineated to stimulate angiogenesis in vitro and in vivo. This prompted us to investigate whether DLK1-EC played a role in angiogenesis. To test such hypothesis, recombinant DLK1-EC was expressed and purified in E. coli. Adding DLK1-EC recombinant protein inhibited the adipogenesis of adipocytes-derived stem cells in a dose-dependent manner. Despite marginal effect on matrix-metalloproteinase secretion, exogenous DLK1-EC significantly stimulated the proliferation, motility and tube-forming capability of cultured endothelial cells. Above all, implantation of DLK1-EC-containing hydron pellets induced cornea neovascularization in a dose-dependent manner. Western blot analysis revealed that exogenous DLK1-EC induced angiogenesis through Notch1 activating downstream gene Hes1 and subsequently signaling such as Akt/eNOS, p38 MAPK, and ERK pathway to perform its function. Indeed, blockade of Notch1 signaling using £^-secretase inhibitor leads to decreased angiogenesis and inhibits DLK1 EC-induced endothelial cell tubular formation in vitro and in vivo. These findings indicate that DLK1-EC induced Notch1 activation mediated by £^-secretase and tansactivation Akt/eNOS pathway and that Notch1 is critical for DLK1 EC-induced angiogenesis. These results may bring further insights into the physiological and pathological functions of DLK1
55

Uncoupling of Endothelial Nitric Oxide Synthase after Subarachnoid Hemorrhage

Attia, Mohammed 20 December 2011 (has links)
Subarachnoid hemorrhage (SAH) comprises 7% of all stroke cases, and is associated with a disproportionately high morbidity and mortality with few therapeutic options available. The goal of this project was to understand the mechanism of neurological deterioration after experimental SAH, with a focus on cerebral vasospasm and brain injury after SAH. We tested the hypothesis that endothelial nitric oxide synthase (eNOS) is upregulated and uncoupled after SA, resulting in exacerbated neurological injury in a mouse model of SAH. The project entailed the investigation of eNOS-dimer uncoupling, its association with oxidative and nitrosative stress in the brain parenchyma and finally its association with secondary complications after SAH. In our studies we demonstrated the crucial role eNOS plays in anti-microthromboembolism, anti-apoptosis and maintenance of physiological superoxide (O2-)/NO balance. This study suggests that SAH up-regulates and disrupts eNOS, producing peroxynitrite (OONO-) and other radicals that further exacerbate the oxidative insult and neurological injury.
56

Role of the SDF-1/CXCR4/eNOS Signaling Pathway in Chronic Kidney Disease

Chen, Li-Hao (Henry) 21 November 2012 (has links)
Loss of the renal microvasculature is a common feature of almost all forms of chronic kidney disease (CKD). Here we explored the role of the angiogenic chemokine stromal cell-derived factor-1-alpha (SDF-1) and its cognate receptor CXCR4 in experimental and human CKD. CXCR4 was present on endothelial cells and podocytes, while SDF-1 was detectable on podocytes, arteriolar smooth muscle cells, interstitial fibroblasts and occasional endothelial cells. CXCR4 mRNA was elevated in the kidneys of rats with CKD and chronic antagonism of CXCR4 accelerated renal decline and capillary loss. Acute SDF-1 infusion activated glomerular endothelial nitric oxide synthase (eNOS) in vivo, while functional response to SDF-1 was impaired in glomerular endothelial cells derived from eNOS-/- mice. Finally, CXCR4 mRNA was also found to be increased in biopsies of patients with secondary focal segmental glomerulosclerosis. These observations indicate that local eNOS-dependent SDF-1/CXCR4 signaling exerts a compensatory reno-protective effect in the setting of CKD.
57

Uncoupling of Endothelial Nitric Oxide Synthase after Subarachnoid Hemorrhage

Attia, Mohammed 20 December 2011 (has links)
Subarachnoid hemorrhage (SAH) comprises 7% of all stroke cases, and is associated with a disproportionately high morbidity and mortality with few therapeutic options available. The goal of this project was to understand the mechanism of neurological deterioration after experimental SAH, with a focus on cerebral vasospasm and brain injury after SAH. We tested the hypothesis that endothelial nitric oxide synthase (eNOS) is upregulated and uncoupled after SA, resulting in exacerbated neurological injury in a mouse model of SAH. The project entailed the investigation of eNOS-dimer uncoupling, its association with oxidative and nitrosative stress in the brain parenchyma and finally its association with secondary complications after SAH. In our studies we demonstrated the crucial role eNOS plays in anti-microthromboembolism, anti-apoptosis and maintenance of physiological superoxide (O2-)/NO balance. This study suggests that SAH up-regulates and disrupts eNOS, producing peroxynitrite (OONO-) and other radicals that further exacerbate the oxidative insult and neurological injury.
58

Role of the SDF-1/CXCR4/eNOS Signaling Pathway in Chronic Kidney Disease

Chen, Li-Hao (Henry) 21 November 2012 (has links)
Loss of the renal microvasculature is a common feature of almost all forms of chronic kidney disease (CKD). Here we explored the role of the angiogenic chemokine stromal cell-derived factor-1-alpha (SDF-1) and its cognate receptor CXCR4 in experimental and human CKD. CXCR4 was present on endothelial cells and podocytes, while SDF-1 was detectable on podocytes, arteriolar smooth muscle cells, interstitial fibroblasts and occasional endothelial cells. CXCR4 mRNA was elevated in the kidneys of rats with CKD and chronic antagonism of CXCR4 accelerated renal decline and capillary loss. Acute SDF-1 infusion activated glomerular endothelial nitric oxide synthase (eNOS) in vivo, while functional response to SDF-1 was impaired in glomerular endothelial cells derived from eNOS-/- mice. Finally, CXCR4 mRNA was also found to be increased in biopsies of patients with secondary focal segmental glomerulosclerosis. These observations indicate that local eNOS-dependent SDF-1/CXCR4 signaling exerts a compensatory reno-protective effect in the setting of CKD.
59

Einfluss des eNOS-G-894-T-Polymorphismus auf die 5-Jahres-Mortalität und-Morbidität kardiochirurgischer Patienten / The eNOS 894 G/T gene polymorphism and its role on 5-year-mortality and- morbidity after on-pump cardiac surgery.

Lipke, Christina 14 April 2015 (has links)
No description available.
60

The role and regulation of argininosuccinate synthase in endothelial function

Goodwin, Bonnie L 01 June 2005 (has links)
While cellular levels of arginine greatly exceed the apparent Km for endothelial nitric oxide synthase (eNOS), nitric oxide (NO) production is limited by availability of arginine. Results from this work have provided a unique understanding of endothelial NO production, showing that arginine regeneration, that is the recycling of citrulline back to arginine by argininosuccinate synthase (AS) and argininosuccinate lyase (AL), defines the essential source of arginine for NO production. Using RNA interference analysis, selective reduction of AS expression was shown to directly correspond with a diminished capacity of endothelial cells to produce NO, despite saturating levels of arginine in the medium. In addition, the viability of AS siRNA-treated endothelial cells was compromised due to apoptotic cell death.AS expression was also investigated in response to two major vascular effectors. Tumor necrosis factor (TNF)-alpha; which is known to impair endothelial NO production, was shown to provoke a dose-dependent reduction of AS expression that corresponded to a decrease in NO production. Furthermore, TNF-alpha was shown to suppress AS expression through a NFkappaB mediated pathway, which involves three essential Sp1 elements in the proximal AS gene promoter. On the other hand, peroxisome proliferator-activated receptor gamma (PPARgamma) agonists, troglitazone and ciglitazone, which are known to elicit a vascular protective response against TNF-alpha effects, were shown to coordinately induce NO production and AS expression via a PPARgamma response element in the distal AS gene promoter. Importantly, these PPARgamma agonists were shown to restore AS expression and NO production following down-regulation by TNF-alpha, consistent with their vascular protective properties.

Page generated in 0.1967 seconds