• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 90
  • 25
  • 23
  • 14
  • 10
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 229
  • 102
  • 46
  • 39
  • 33
  • 33
  • 32
  • 30
  • 30
  • 28
  • 27
  • 27
  • 25
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Development of III-nitride bipolar devices: avalanche photodiodes, laser diodes, and double-heterojunction bipolar transistors

Zhang, Yun 28 July 2011 (has links)
This dissertation describes the development of III-nitride (III-N) bipolar devices for optoelectronic and electronic applications. Research mainly involves device design, fabrication process development, and device characterization for Geiger-mode gallium nitride (GaN) deep-UV (DUV) p-i-n avalanche photodiodes (APDs), indium gallium nitride (InGaN)/GaN-based violet/blue laser diodes (LDs), and GaN/InGaN-based npn radio-frequency (RF) double-heterojunction bipolar transistors (DHBTs). All the epitaxial materials of these devices were grown in the Advanced Materials and Devices Group (AMDG) led by Prof. Russell D. Dupuis at the Georgia Institute of Technology using the metalorganic chemical vapor deposition (MOCVD) technique. Geiger-mode GaN p-i-n APDs have important applications in DUV and UV single-photon detections. In the fabrication of GaN p-i-n APDs, the major technical challenge is the sidewall leakage current. To address this issue, two surface leakage reduction schemes have been developed: a wet-etching surface treatment technique to recover the dry-etching-induced surface damage, and a ledged structure to form a surface depletion layer to partially passivate the sidewall. The first Geiger-mode DUV GaN p-i-n APD on a free-standing (FS) c-plane GaN substrate has been demonstrated. InGaN/GaN-based violet/blue/green LDs are the coherent light sources for high-density optical storage systems and the next-generation full-color LD display systems. The design of InGaN/GaN LDs has several challenges, such as the quantum-confined stark effect (QCSE), the efficiency droop issue, and the optical confinement design optimization. In this dissertation, a step-graded electron-blocking layer (EBL) is studied to address the efficiency droop issue. Enhanced internal quantum efficiency (ɳi) has been observed on 420-nm InGaN/GaN-based LDs. Moreover, an InGaN waveguide design is implemented, and the continuous-wave (CW)-mode operation on 460-nm InGaN/GaN-based LDs is achieved at room temperature (RT). III-N HBTs are promising devices for the next-generation RF and power electronics because of their advantages of high breakdown voltages, high power handling capability, and high-temperature and harsh-environment operation stability. One of the major technical challenges to fabricate high-performance RF III-N HBTs is to suppress the base surface recombination current on the extrinsic base region. The wet-etching surface treatment has also been employed to lower the surface recombination current. As a result, a record small-signal current gain (hfe) > 100 is achieved on GaN/InGaN-based npn DHBTs on sapphire substrates. A cut-off frequency (fT) > 5.3 GHz and a maximum oscillation frequency (fmax) > 1.3 GHz are also demonstrated for the first time. Furthermore, A FS c-plane GaN substrate with low epitaxial defect density and good thermal dissipation ability is used for reduced base bulk recombination current. The hfe > 115, collector current density (JC) > 141 kA/cm², and power density > 3.05 MW/cm² are achieved at RT, which are all the highest values reported ever on III-N HBTs.
122

Atomic-scale Structural Characterizations of Functional Epitaxial Thin Films

Zhu, Yuanyuan 16 December 2013 (has links)
A precise understanding of the fundamental correlation between synthesis, microstructure and physical properties is of vital importance towards rational design of improved functional epitaxial thin films. With the presence of heterogeneous interface and associated inhomogeneous lattice strain, film microstructure becomes sensitive to subtle interfacial perturbations and hence may exhibit intriguing physical properties. Control of the epitaxial film functionality requires accurate knowledge of the actual film chemistry, interfacial defects and associated strain field. This dissertation reports in-depth microstructural characterization of the intrinsic chemical inhomogeneity in selected epitaxial thin films including superconducting Fe1+yTe1-xSex/SrTiO3(STO) heterogeneous systems, the flux-pinning defects at both of conversional YBa2Cu3O7-δ (YBCO)/substrate lateral interfaces and vertical interfaces of YBCO&BaSnO3(BSO) nanocomposite films, and the misfit dislocation core configurations of STO/MgO and MgO/STO heterostructures pair, using the state-of-the-art aberration-corrected scanning transmission electron microscopy (CS-corrected STEM) in combination with geometric phase analysis (GPA). For the first time, the local atomic arrangement of Te and Se as well as interstitial Fe(2) has been clearly revealed in superconducting Fe1+yTe1-xSex/STO epitaxial films. We found that the film growth atmosphere can greatly affect the film stoichiometry, the homogeneity of Se/Te ordering and thus the overall film superconductivity. YBCO/substrate interface mismatch and YBCO&BSO vertical interface contact have been explored through substrate selection and doping-concentration variation. We observed a diverse nature of intrinsic defects in different YBCO/substrate heterosystems; thermal stable defects capable of maintaining individual strain field have been found effective in flux-pinning. Along the vertical heterointerface of YBCO/BSO, misfit dislocations were found throughout the film thickness. It adds another dimension to the flux-pinning landscape design. Four basic misfit dislocation core configurations of a STO/MgO heterosystem have been identified, and found strongly dependent on the actual interface disordering such as substrate atomic-height steps and interdiffussion. To precisely quantify the heterointerface lattice strain, we first conducted systematic investigations on the accuracy of STEM-based GPA. Follow our protocol, 1 pm accuracy has been proven in the STEM fast-scan direction with a spatial resolution less than 1 nm. The effectiveness and reliability of this optimized GPA strain profile were demonstrated in both applications of a relaxed STO/MgO and a partially strained LaAlO3/STO heterointerfaces, respectively.
123

Modeling, Analysis, and Simulation of Discrete-Continuum Models of Step-Flow Epitaxy: Bunching Instabilities and Continuum Limits

Kirby, Nicholas O. 01 January 2011 (has links)
Vicinal surfaces consist of terraces separated by atomic steps. In the step-flow regime, deposited atoms (adatoms) diffuse on terraces, eventually reaching steps where they attach to the crystal, thereby causing the steps to move. There are two main objectives of this work. First, we analyze rigorously the differences in qualitative behavior between vicinal surfaces consisting of infinitely many steps and nanowires whose top surface consists of a small number of steps bounded by a reflecting wall. Second, we derive the continuum model that describes the macroscopic behavior of vicinal surfaces from detailed microscopic models of step dynamics. We use the standard theory of Burton-Cabrera-Frank (BCF) to show that in the presence of an Ehrlich-Schwoebel barrier, i.e., a preferential attachment of adatoms from the lower terraces, N-periodic step motions are stable with respect to step collisions. Nonetheless, for N > 2 step collisions may occur. Moreover, we consider a single perturbed terrace, in which we distinguish three cases: no attachment from the upper terraces (perfect ES barrier), no attachment from the lower terraces (perfect inverse ES barrier), and symmetric attachment. For a perfect ES barrier, steps never collide regardless of the initial perturbation. In contrast, for a perfect inverse ES barrier, collisions occur for any nonzero perturbation. Finally, for symmetric attachment, step collisions occur for sufficiently large outward perturbations. To model nanowire growth, we consider rectilinear steps and concentric steps bounded by reflecting walls. In contrast to a vicinal surface with infinitely many steps, we prove analytically that the Ehrlich-Schwoebel barrier is destabilizing with respect to step collisions. We further consider nanowire growth with desorption, and prove that the initial conditions that lead to step collisions are characterized by a unique step motion trajectory. We take as our starting point a thermodynamically consistent (TC) generalization of the BCF model to derive PDE that govern the evolution of the vicinal surface at the macroscale. Whereas the BCF model yields a fourth-order parabolic equation for the surface height, the TC model yields a system of coupled equations for the surface height and the surface chemical potential.
124

Mono-layer C-face epitaxial graphene for high frequency electronics

Guo, Zelei 27 August 2014 (has links)
As the thinnest material ever with high carrier mobility and saturation velocity, graphene is considered as a candidate for future high speed electronics. After pioneering research on graphene-based electronics at Georgia Tech, epitaxial graphene on SiC, along with other synthesized graphene, has been extensively investigated for possible applications in high frequency analog circuits. With a combined effort from academic and industrial research institutions, the best cut-off frequency of graphene radio-frequency (RF) transistors is already comparable to the best result of III-V material-based devices. However, the power gain performance of graphene transistors remained low, and the absence of a band gap inhibits the possibility of graphene in digital electronics. Aiming at solving these problems, this thesis will demonstrate the effort toward better high frequency power gain performance based on mono-layer epitaxial graphene on C-face SiC. Besides, a graphene/Si integration scheme will be proposed that utilizes the high speed potential of graphene electronics and logic functionality and maturity of Si-CMOS platform at the same time.
125

Epitaxial graphene films on SiC: growth, characterization, and devices

Li, Xuebin 13 May 2008 (has links)
Graphene is a single sheet of graphite. While bulk graphite is semimetal, graphene is a zero bandgap semiconductor. Band structure calculations show graphene has a linear energy dispersion relation in the low energy region close to the Dirac points where the conduction band and the valence band touch. Carriers in graphene are described as massless Dirac fermions in contrast to massive carriers in normal metals and semiconductors that obey a parabolic energy dispersion relation. The uniqueness of graphene band structure indicates its peculiar electronic transport properties. In this thesis work, single- and multi-layer graphene films epitaxially grow on either the Si face or the C face of SiC substrates in a homemade induction vacuum chamber by thermal decomposition of SiC at high temperatures. The surface morphology and crystal structure of epitaxial graphene are studied with surface analysis tools. The transport properties of epitaxial graphene are studied by magnetotransport experiments. An epitaxial graphene film turns out to be a multilayered graphene because carriers in epitaxial graphene act as those in single layer graphene. Top gated and side gated epitaxial graphene field effect transistors (FETs) have also been successfully fabricated. These systematic studies unambiguously demonstrate the high quality of epitaxial graphene and the great potential of epitaxial graphene for electronic applications
126

Atomic scale properties of epitaxial graphene grown on sic(0001)

Rutter, Gregory Michael 17 November 2008 (has links)
Graphene, a honeycomb lattice of sp2-bonded carbon atoms, has received considerable attention in the scientific community due to its unique electronic properties. Distinct symmetries of the graphene wave functions lead to unusual quantum properties, such as a unique half-integer quantum Hall effect. As an added consequence of these symmetries, back-scattering in graphene is strongly prohibited leading to long coherence lengths of carriers. These charge carriers at low energy exhibit linear energy-momentum dispersion, much like neutrinos. Thus, carriers in graphene can be described as massless Dirac fermions. Graphene grown epitaxially on semiconducting substrates offers the possibility of large-scale production and deterministic patterning of graphene for nanoelectronics. In this work, epitaxial graphene is created on SiC(0001) by annealing in vacuum. Sequential scanning tunneling microscopy (STM) and spectroscopy (STS) are performed in ultrahigh vacuum at a temperature of 4.2 K and 300 K. These atomic-scale studies address the growth, interfacial properties, stacking order, and quasiparticle coherence in epitaxial graphene. STM topographic images show the atomic structure of successive graphene layers on the SiC substrate, as well as the character of defects and adatoms within and below the graphene plane. STS differential conductance (dI/dV) maps provide spatially and energy resolved snapshots of the local density of states. Such maps clearly show that scattering from atomic defects in graphene gives rise to energy-dependent standing wave patterns. We derive the carrier energy dispersion of epitaxial graphene from these data sets by quantifying the dominant wave vectors of the standing waves for each tunneling bias.
127

Modélisation physique de la réalisation des jonctions FDSOI pour le noeud 20nm et au-delà / Physical modeling of junction processing in FDSOI devices for 20 nm node and below

Sklénard, Benoît 10 April 2014 (has links)
La réduction des dimensions des dispositifs CMOS (Complementary Metal Oxide Semiconductor) implique de nombreux défis dans la formation de jonctions. La recroissance par épitaxie en phase solide (SPER) à des températures inférieures à 600 °C est une technique attrayante dans la mesure où elle permet de réaliser des jonctions abruptes avec une forte concentration de dopants actifs et qui sont nécessaires pour les nœuds avancés tels que le 20 nm et au-delà. Dans ce manuscrit, on présente un modèle atomistique basé sur la méthode Monte-Carlo cinétique sur réseau (LKMC) afin de simuler la cinétique de SPER dans le silicium. Le modèle s'appuie sur la description phénoménologique des mécanismes microscopiques de recristallisation proposé par Drosd et Washburn dans [J. Appl. Phys. 53, 397 (1982)] en distinguant des événements {100}, {110} et {111} selon le plan local de recroissance et a été implémenté dans le simulateur MMonCa [Appl. Phys. Lett. 98, 233109 (2011)]. Il s'agit de la même base que le modèle de Martín-Bragado et Moroz [Appl. Phys. Lett. 95, 123123 (2009)] qui a été implémenté dans le simulateur commercial Synopsys SProcess KMC. Néanmoins, dans notre travail, la formation de macles lors des évènements {111} a été introduite ce qui a nécessité des changements importants dans l'implémentation. Le modèle a été calibré sur des résultats expérimentaux et permet de prédire l'anisotropie et la dépendance en température. En particulier, il a été utilisé afin d'expliquer la formation de zones défectueuses dans les dispositifs FDSOI à l'issue de la SPER à une température réduite. Le modèle LKMC a, en outre, été étendu dans le but d'inclure l'influence d'une contrainte non-hydrostatique et la recroissance accélérée du fait de la présence de dopants actifs. Les effets d'une contrainte non-hydrostatique ont été introduits en utilisant le concept de tenseur d'activation proposé par Aziz, Sabin et Lu dans [Phys. Rev. B 44, 9812 (1991)] et seulement quatre paramètres indépendants sont nécessaires. La présence de dopants ionisés cause une accélération de la vitesse de recroissance qui est attribué à un effet lié à la position du niveau de Fermi à l'interface amorphe/cristal. Un solveur 3D auto-cohérent de l'équation de Poisson avec le modèle de Thomas-Fermi a été implémenté et couplé avec le modèle LKMC afin de prendre en compte la courbure des bandes à l'interface amorphe/cristal. La correction phénoménologique de décalage du niveau de Fermi généralisé (GFLS) proposée par Williams et Elliman dans [Phys. Rev. Lett. 51, 1069 (1983)] a été utilisée pour modifier les fréquences de recristallisation des évènements microscopiques. Des simulations de la vitesse de recroissance en fonction de la température pour différentes concentrations de dopants ont montré un bon accord avec les données expérimentales. En résumé, dans ce manuscrit, un modèle unifié de SPER basé sur une approche LKMC est présentée. Il prend en compte l'influence de différents paramètres sur la cinétique de recroissance et ayant un intérêt technologique tels que la température, l'orientation cristalline, la contrainte et la présence de dopants. Le modèle est, en soi, tridimensionnel et permet donc d'explorer les phénomènes de recroissance impliquant plusieurs fronts de recristallisation et qui ont lieu lors du procédé de fabrication de dispositifs électroniques réels. / Complementary metal oxide semiconductor (CMOS) device scaling involves many technologicalchallenges in terms of junction formation. Solid phase epitaxial regrowth (SPER) at temperaturesbelow 600 ˝C is an attractive technique since it enables to form highly–activated andabrupt junctions that are required for advanced technology nodes such as 20 nm and beyond.In this manuscript, we present a comprehensive atomistic model relying on the lattice KineticMonte Carlo (LKMC) method to simulate SPER kinetics in silicon. The model is based onthe phenomenological description of the microscopic recrystallization mechanisms proposedby Drosd and Washburn in [J. Appl. Phys. 53, 397 (1982)] by distinguishing among {100},{110} and {111} events depending on the local regrowth plane and has been implemented inthe MMonCa simulator [Appl. Phys. Lett. 98, 233109 (2011)]. This is the same basis than theatomistic model of Martín–Bragado and Moroz proposed in [Appl. Phys. Lett. 95, 123123(2009)] and available in the Synopsys SProcess KMC commercial tool. Nevertheless, in ourwork the formation of twin configurations during {111} events has been incorporated givingrise to significant changes in the implementation. The model has been calibrated on single–directional SPER experiments and allows predicting the regrowth anisotropy and temperaturedependence. In particular, it has been used to explain the formation of defective regions inFDSOI devices annealed with a low processing temperature. In this work, the LKMC modelhas also been extended in order to include the influence of non–hystrostatic stress and dopant–enhanced regrowth that are technologically relevant. Non–hydrostatic stress effects have beenincorporated using the concept of activation strain tensor introduced by Aziz, Sabin and Luin [Phys. Rev. B 44, 9812 (1991)] and only four independent parameters are required. Thepresence of ionized dopants has been shown to cause an enhancement of the regrowth velocitywhich has been attributed to a Fermi level effect. A three–dimensional Thomas–Fermi–Poisson solver has been implemented and coupled with the LKMC model allowing to takeinto account the band bending at amorphous/crystalline interface. The phenomenological generalizedFermi level shifting (GFLS) correction proposed by Williams and Elliman in [Phys.Rev. Lett. 51, 1069 (1983)] has been used to modify the microscopic recrystallization rates.Simulations of the regrowth velocity as a function of temperature for different dopant concentrationshave shown a reasonable agreement with experimental data. In summary, in thismanuscript a unified SPER model relying on the LKMC approach is presented. It takes intoaccount various technologically relevant parameters influencing the regrowth kinetics such astemperature, crystalline orientation, stress and dopants. The model is per se three-dimensionaland can therefore be used to explore multi–directional regrowth phenomena that take place inreal electronic devices.
128

Solitons magnétiques topologiques dans des couches minces epitaxiées à symétrie réduite / Toplogical magnetic solitons in thin epitaxial films with reduced symmetry

Camosi, Lorenzo 30 May 2018 (has links)
Dans cette thèse, j'ai étudié la relation entre la symétrie cristalline, la symétrie des interactions magnétiques et des soliton topologiques dans des couches minces magnétiques épitaxiées. Le cas particulier de couches avec une symétrie C2v a été considéré. Ces couches ont un intérêt particulier par leurs propriétés anisotropes qui permettent une stabilisation de solitons magnétiques avec différentes symétries et nombres topologiques. J'ai utilisé des approches théoriques et expérimentaux pour étudier ce phénomène :Approche micromagnétique :La relation entre les formulations atomistes et micromagnétiques des interactions magnétiques a été étudiée en fonction de la symétrie cristalline. Ceci a permis d'expliquer la présence des interactions anisotropes et d'étudier leur effet sur la configuration des solitons magnétiques 1D et 2D.La discussion commence par le plus simple soliton 1D, la paroi des domaines, et pas par pas des nouvelles interactions et symétries sont ajoutées afin de caractériser les conditions de stabilité et les propriétés des solitons 2D, les skyrmion et anti-skyrmions.Notre méthode a permis d'étudier les solitons topologiques 2D sur une large gamme de paramètres, et de construire un diagramme de phase en fonction de l'interaction Dzyaloshinskii-Moriya (DMI) et du champ magnétique appliqué. Trois types de solitons topologiques 2D ont été identifiées (skyrmions, bulles skyrmioniques et skyrmions supercritiques) en fonction de leur taille et leur réponse à un champ magnétique externe.On a aussi montré qu'une inversion du signe de la DMI selon deux directions perpendiculaires permet la stabilisation d'anti-skyrmions. Un modèle micromagnétique a été développé pour étudier la différence de configuration et d'énergie entre skyrmions et anti-skyrmions. On montre que l'interaction dipolaire rompt la symétrie circulaire de l'anti-skyrmion et le rend plus stable que le skyrmion.Approche expérimentale :J'ai préparé différentes couches magnétiques épitaxiées de symétrie C2v. Pour chaque système, je décris les paramètres de croissance et la symétrie cristalline, suivi par les résultats des caractérisations magnétiques et finalement les résultats de microscopie magnétique.J'ai étudié la symétrie et l'intensité de la DMI dans une tricouche Au/Co/W à aimantation perpendiculaire. La DMI dans ce système induit une chiralité horaire de la modulation de spin avec une forte anisotropie de l'intensité de la DMI, venant de la symétrie C2v. Des skyrmions dans ce système devraient avoir une forme elliptique. Nous avons stabilisé des skyrmions dans des films continus et dans des nanostructures. Leur configuration magnétique a été étudiée par XMCD-PEEM et MFM, mais sans observer des propriétés anisotropes.Pour augmenter l'effet des interactions anisotropes sur la configuration des skyrmions, j'ai développé le système W/Co/Au-Pt(solution solide). Des études par microscopie ont montré la stabilisation des bandes magnétiques parallèles à l'axe facile dans le plan dans ce système. Des études par microscopie Kerr ont montré que l'origine de cette configuration en bandes parallèles est une forte anisotropie de la dynamique du mouvement des parois.Des mesures MFM en champ magnétique statique ont été effectuées afin de confiner des bulles skyrmioniques elliptiques, mais la sensibilité de ces mesures à des couches ultrafines a été insuffisante pour caractériser leurs propriétés anisotropes.Des mesures XMCD-PEEM ont permis d'observer la structure interne de parois selon l'axe planaire difficile du système. Ces mesures mettent en évidence un composant Néel de la paroi.Finalement, j'ai préparé et étudié un système W/Fe/Co/Au avec le but de stabiliser des anti-skyrmions. Cependant, le système n'a pas montré l'aimantation hors-du-plan qui est nécessaire pour stabiliser ces solitons. Ce signifie que l'anisotropie planaire de l'interface W/Fe domine l'anisotropie perpendiculaire de l'interface Co/Au. / In this thesis I studied the relationship between the crystal symmetry, the symmetry of the magnetic interactions and topological solitons in epitaxial magnetic thin films. The case of thin films with C2v symmetry has been considered. These systems are particularly interesting for the anisotropic properties that allow stabilising magnetic solitons with different symmetries and topology. I used theoretical and experimental approaches to investigate this phenomenon:Micromagnetic approach:The relationship between the atomistic and the micromagnetic formulations of magnetic interactions was studied as a function of the crystal symmetry.This allowed to explain the presence of anisotropicinteractions and study their effect on the configurations of 1D and 2D magnetic solitons. The discussion starts from the simplest 1D soliton, the domain wall, and step-by-step new interactions and symmetries are added in order to characterize the stability conditions and the properties of 2D solitons, skyrmions and anti-skyrmions. Our method allowed to study 2D topological solitons over a wide range of parameters and build a phase diagram as a function of the Dzyaloshinskii-Moriya interaction (DMI) strength and magnetic field intensity. This allowed us to distinguish three kinds of 2D topological solitons (skyrmions, skyrmionic bubbles and supercritical skyrmions) as a function of their size and response to an external magnetic field. We show that an inversion of DMI strength along perpendicular directions allows the stabilisation of anti-skyrmions. A micromagnetic model is developed to study the configuration and energy differences between skyrmions and anti-skyrmions. This shows that the dipolar interaction breaks the circular symmetry of the antiskyrmion and makes it more stable than the skyrmion.Experimental approach:Epitaxial magnetic systems with C2v symmetry have been grown. For each system I describe the growth parameters and crystal symmetry, followed by the results of the magnetic characterisation and finally the results from the magnetic microscopy measurements.I have investigated the DMI symmetry and strength in an out-of-plane magnetised epitaxial Au/Co/W trilayer. The DMI in this system promotes a clockwise chirality of the spin modulation with a strong anisotropy in the DMI strength. This anisotropy arises from the C2v symmetry of the Co/W stack.Skyrmions in this system should have an elliptical shape. We stabilised skyrmions in continuous films and in nanopatterned structures. Their magnetic configurations have been displayed with different microscopic techniques, XMCD-PEEM and MFM, without identifying anisotropic properties.We designed the W/Co/Au-Pt (solid solution) system to increase the effect of the anisotropic interactions on the skyrmion configuration. Microscopy studies in naturally demagnetised areas show that stripe domains parallel to the in-plane easy axis are stable in this system. The configuration with a larger periodicity has been found even for thinner Co layer after demagnetisation with a magnetic field. Kerr microscopy studies of the DW dynamics allowed to evidence the origin of this magnetic configuration, which arises from a strong anisotropy in the DW motion.MFM measurements with the application of a static magnetic field have been performed in order to confine elliptical skyrmionic bubbles but the reduced sensitivity of this technique to thin magnetic systems did not allow to display and characterise them. XMCD-PEEM measurements allowed to display the internal structure of the DWs along the in-plane hard axis of the system. They show the presence of a Néel DW component. Finally I have grown and studied a W/Fe/Co/Au system where anti-skyrmions may in principle be stabilised. However, the system did not show the out-of-plane magnetisation which is fundamental for the stabilisation of skyrmions. This means that the W/Fe in-plane anisotropy dominates the Co/Au out-of-plane anisotropy.
129

Photoluminescence Enhancement of Ge Quantum Dots by Exploiting the Localized Surface Plasmon of Epitaxial Ag Islands

January 2015 (has links)
abstract: This dissertation presents research findings regarding the exploitation of localized surface plasmon (LSP) of epitaxial Ag islands as a means to enhance the photoluminescence (PL) of Germanium (Ge) quantum dots (QDs). The first step of this project was to investigate the growth of Ag islands on Si(100). Two distinct families of Ag islands have been observed. “Big islands” are clearly faceted and have basal dimensions in the few hundred nm to μm range with a variety of basal shapes. “Small islands” are not clearly faceted and have basal diameters in the 10s of nm range. Big islands form via a nucleation and growth mechanism, and small islands form via precipitation of Ag contained in a planar layer between the big islands that is thicker than the Stranski-Krastanov layer existing at room-temperature. The pseudodielectric functions of epitaxial Ag islands on Si(100) substrates were investigated with spectroscopic ellipsometry. Comparing the experimental pseudodielectric functions obtained for Si with and without Ag islands clearly identifies a plasmon mode with its dipole moment perpendicular to the surface. This observation is confirmed using a simulation based on the thin island film (TIF) theory. Another mode parallel to the surface may be identified by comparing the experimental pseudodielectric functions with the simulated ones from TIF theory. Additional results suggest that the LSP energy of Ag islands can be tuned from the ultra-violet to the infrared range by an amorphous Si (α-Si) cap layer. Heterostructures were grown that incorporated Ge QDs, an epitaxial Si cap layer and Ag islands grown atop the Si cap layer. Optimum growth conditions for distinct Ge dot ensembles and Si cap layers were obtained. The density of Ag islands grown on the Si cap layer depends on its thickness. Factors contributing to this effect may include the average strain and Ge concentration on the surface of the Si cap layer. The effects of the Ag LSP on the PL of Ge coherent domes were investigated for both α-Si capped and bare Ag islands. For samples with low-doped substrates, the LSPs reduce the Ge dot-related PL when the Si cap layer is below some critical thickness and have no effect on the PL when the Si cap layer is above the critical thickness. For samples grown on highly-doped wafers, the LSP of bare Ag islands enhanced the PL of Ge QDs by ~ 40%. / Dissertation/Thesis / Doctoral Dissertation Physics 2015
130

Croissance de nanofils de ZnO et d'hétérostructures coeur-coquilles ZnO/ZnMgO par MOVPE / MOVPE growth of ZnO nanowires and ZnO/ZnMgO core-shell heterostructures.

Thierry, Robin 14 December 2011 (has links)
Ce travail porte sur la croissance par MOVPE et l’étude de structures à base de nanofilsde ZnO, semi-conducteur à large bande interdite directe (3,37 eV) qui possède un fort po-tentiel pour les applications optoélectroniques. Des observations systématiques par MEBet TEM de nanofils de ZnO crûs sur saphir, sous différentes conditions, renseignent surla formation de ces nanostructures et notamment sur l’importance de la polarité du ma-tériau. Les observations structurales par TEM révèlent l’absence de défaut étendu dansles nanofils. Dans un second temps, la croissance de structures à puits quantiques coeur-coquilles ZnO/ZnMgO est étudiée. L’imagerie de cathodoluminescence révèle l’émis-sion de puits quantiques axiaux (avec effet stark confiné) et radiaux. L’optimisation dela composition en Mg des barrières ZnMgO permet d’éviter la relaxation plastique dansles nanofils et montre une amélioration très significative de la tenue en température del’émission de photoluminescence des puits quantiques radiaux. Le rendement quantiqueinterne des meilleures structures est estimé à 54%. Enfin, la localisation de la croissancesur substrats structurés est démontrée. La morphologie ainsi que le taux de remplissagedes nanofils sont comparés en fonction de la polarité de la couche de germination utilisé,de la taille et de l’espacement des ouvertures pratiquées dans le masque. L’ensemble deces briques technologiques ouvre la voie à la réalisation de LEDs à base de nanofils ZnO. / This work deals with the MOVPE growth and the study of ZnO based structures,which is a direct and large gap semiconductor (3.37 eV) with a high potential for op-toelectronics applications. Systematic SEM and TEM observations of ZnO nanowires onsapphire grown under various conditions help us to understand growth mechanism, andmore particularly the role of the polarity in formation of nanowires. Structural TEM ob-servations reveal the lack of dislocations or stacking fault in nanowires. In a second hand,the growth of ZnO/ZnMgO core-shell structure with quantum wells is studied. Cathodolu-minescence mapping exhibit both radial and axial quantum wells emission with quantumconfinement and quantum confined stark effect, respectively. Mg composition is optimi-zed to avoid plastic relaxation in nanowires structure, which allow us to obtain internalquantum efficiency as high as 54%. Finally, the selective area growth is demonstrated onpatterned substrates. Morphology and efficiency of ZnO nanowires growth is compare asa function of seed layer polarity and size of holes in the mask. These technological stepsopen the way to ZnO nanowires based LEDs devices.

Page generated in 0.0453 seconds