• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 91
  • 25
  • 23
  • 14
  • 10
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 230
  • 102
  • 46
  • 39
  • 34
  • 33
  • 32
  • 30
  • 30
  • 29
  • 27
  • 27
  • 26
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Etudes des propriétés de transport de mono et de multicouches de graphène épitaxiées sur sic / Study of transport properties of single and multilayers of epitaxial graphene on SiC

Jabakhanji, Bilal 28 September 2012 (has links)
Nous présentons dans ce travail la caractérisation, essentiellement en transport, de couches de graphène épitaxiés élaborées par sublimation contrôlée de carbure de silicium (SiC). Des mesures de transport électroniques sont effectuées à basse température (T~1,6 K) et à fort champ magnétique. Dans une première partie, Il est indispensable de se focaliser sur la méthode spécifique (‘graphite cap') utilisée pour la fabrication de tous les échantillons étudiés dans ce travail au CNM, Barcelone. La méthode de ‘graphite cap' permet d'obtenir des couches de graphène en formes de rubans suffisamment isolés entre eux pour la fabrication de dispositifs électroniques. La croissance de graphène donne des résultats très différents suivant les conditions de croissance et les spécificités du substrat de carbure de silicium employé : les échantillons obtenus sur face carbone, et les échantillons sur face silicium.Sur face carbone, deux polytypes de SiC ont été utilisés pour l'élaboration de graphène : (i) sur le polytype ‘6H-SiC (on axis)', des rubans de graphène de l'ordre de 600 µm de longueur et de 6 µm de largeur sont obtenus. La largeur de graphène reste faible car le graphène suit la formation des marches sur le SiC résultant de la reconstruction de la surface pendant la croissance (‘step bunching'). Des monocouches ont été identifiées par spectroscopie Raman. Les résultats de transport sur ces monocouches montrent que la concentration de porteurs, de type trous, varie entre 5x1012cm-2 et 5x1013cm-2. L'effet Hall quantique n'est pas observé à cause du dopage élevé. Mais des oscillations de Shubnikov de Haas ont été bien résolues et étudiées pour extraire leurs phases. La phase des oscillations est égale à zéro, ce qui est une signature de la présence d'une monocouche de graphène.(ii) sur le polytype ‘4H-SiC (8° off axis)', les rubans obtenus sont plus larges et peuvent atteindre une longueur de 600 µm et une largeur de 50 µm. L'utilisation d'un substrat SiC avec une désorientation intentionnelle lors du clivage de la surface initiale permet la coalescence des rubans de graphène. Les résultats de transport sur les monocouches montrent que les porteurs sont toujours de type trous, mais beaucoup moins dopé sur plusieurs monocouches (de l'ordre 8x1011cm-2). L'effet Hall quantique est reporté sur un échantillon dont la mobilité atteint 11 000 cm²/V.s. Une étude à bas champ magnétique est encore réalisée et donnent des informations intéressantes sur l'(anti)localisation faible. Tous les phénomènes quantiques observés sont des signatures sur les propriétés intrinsèques des monocouches de graphène. Pour mieux appréhender le graphène épitaxié, il est important de faire varier la concentration de porteurs. Pour cela, une autre approche est proposée. Nous avons fabriqué une face arrière d'un échantillon semi-isolant par implantation d'ions d'azotes dans le SiC avant la croissance de graphène. Les résultats de transport obtenus sur les monocouches de graphène ont montré l'efficacité de cette grille pour contrôler le type de porteurs. L'effet Hall quantique a été observé pour les deux types de porteurs avec des plateaux de Hall remarquables en largeur (23 T).Sur la face Si, des multicouches de graphène couvrent uniformément toute la surface du substrat. Les multicouches de graphène sont plus épaisses sur les bords de marches que sur les terrasses, identifiées par spectroscopie Raman. Les porteurs sont maintenant de type électrons grâce à la couche de tampon qui existe sur la face Si. Les résultats de transport en champ magnétique et à basse température détectent l'existence d'une anisotropie électrique dues principalement aux marches du substrat SiC. / In this work, we present the characterization, mainly in transport, of epitaxial graphene layers produced by controlled sublimation of silicon carbide substrate (SiC). Electronic transport measurements are performed at low temperature (T ~ 1.6 K) and high magnetic field. In the first part, we explain the specific method ('graphite cap') used for growth of the samples studied in this work at CNM, Barcelona. The method of 'graphite cap' provides graphene ribbons homogeneous and isolated for the fabrication of electronic devices.Graphene on SiC gives very different results depending on the conditions of growth (temperature, pressure…) and the face of SiC substrate used: carbon face (C-face) or silicon face (Si-face).On the carbon face, two SiC polytypes have been used for the graphene growth:(i) On axis 6H-SiC: graphene ribbons are obtained on the whole surface. The length of ribbon approaches 600 µm and the width do not exceed 6 µm. The graphene follows the formation of steps on the SiC resulting from surface reconstruction during growth (‘step bunching'), which affects the graphene width. Monolayers were identified by Raman spectroscopy. For all measured samples, we found that the graphene is p-typed doped with a Hall concentration between 5x1012 and 5x1013cm-2. The quantum Hall effect is not observed because of the high doping level. But the Shubnikov de Haas oscillations (SdH) have been well resolved and studied. The phase of the oscillations is equal to zero, which is a signature from the presence of graphene monolayer.(ii) 8° off axis 4H-SiC: graphene ribbons obtained are larger and can reach a length of 600 µm and a width of 50 µm. The use of a SiC substrate with intentional disorientation upon cleavage of the initial surface allows the coalescence of the graphene ribbons. For all measured devices on this sample, we found that the graphene is p-typed doped (as determined from the sign of the Hall effect) with a Hall concentration between 8x1011 and 1013 cm-2. Mobilities varied between 1000 and 11000 cm²/Vs from device to device at 4K. Magnetoresistance revealed both Shubnikov-de Haas (SdH) oscillations, and interference phenomena (weak localization and antilocalization). For some low doped devices, Quantum Hall effect was observed. All quantum phenomena observed are signatures on the intrinsic properties of graphene monolayers.The main drawback of the epitaxial growth technique is the difficulty to control of the carrier density. Here, we investigate a bottom gate of a graphene device, epitaxially grown on the C-face of SiC substrate. The gate was realized by Nitrogen atoms implantation in the SiC crystal. The transport measurements have shown the effectiveness of the gate to control the type of carriers. The quantum Hall effect was observed for both types of carriers with remarkable Hall plateaus width (23 T).On the silicon face, we discuss results obtained from few layer graphene (FLG) grown epitaxially on the (0001) surface of a 6H-SiC substrate. Carriers are now like electrons through the buffer layer that exists on the Si face. The resulting FLG uniformly covers the substrate on which large step bunched terraces are also visible. The FLG is thicker at the step edges, as evidenced by micro-Raman analysis. Indeed, a noticeable anisotropy of the resistance has been detected by magnetotransport measurements at low temperature and high magnetic field. We will argue that this anisotropy originates from different mobilities, in the terraces and at the step edges.
142

Synthèse par épitaxie et propriétés magnétiques des semiconducteurs ferromagnétiques dilués à base de GeMn

Le thi, Giang 13 June 2012 (has links)
Le développement des dispositifs issus de l'électronique de spin nécessite de nouveaux matériaux qui permettent d'injecter de manière efficace le courant polarisé en spin dans des semiconducteurs. Parmi de nombreux matériaux utilisés comme injecteurs de spin, les semiconducteurs ferromagnétiques dilués (DMS), obtenus en dopant des semiconducteurs avec des impuretés magnétiques tels que Mn ou Co, sont considérés comme des candidats potentiels pour l'injection de spin. Ces matériaux dopés deviennent ferromagnétiques tout en conservant leurs propriétés semiconductrices. Par conséquent, ils présentent une similarité d'impédance électrique par rapport aux substrats semiconducteurs, ce qui rend efficace l'injection de courant polarisé en spin dans ces derniers. Dans ce contexte, l'objectif principal de cette thèse consiste à étudier la cinétique de croissance des semiconducteurs ferromagnétiques dilués GeMn. Nous cherchons à déterminer les paramètres clés de la croissance des couches de GeMn, à savoir la température du substrat, et la concentration en Mn. Pour la fabrication de dispositifs électroniques fonctionnels, le challenge crucial est d'obtenir des DMS ayant une température de Curie (TC) bien supérieure à la température ambiante. Nous nous sommes donc concentrés sur la cinétique de formation de la phase nanocolonnaire GeMn possédant une TC au-delà de 400 K. / The development of active spintronic devices requires new materials, which enable to efficiently inject spin-polarized currents into non-magnetic semiconductors. Among numerous materials that can be used as spin injectors, diluted magnetic semiconductors (DMS), obtained by doping standard semiconductors with magnetic impurities, such as Mn or Co, have emerged as potential candidates for spin injection. The materials become ferromagnetic while conserving their semiconducting properties. They exhibit therefore natural impedance match to host semiconductors and are expected to efficiently inject spin-polarized currents into semiconductors. In this context, the main objectives of this thesis work consist in studying the growth kinetics of GeMn-based diluted magnetic semiconductors. We aim at determining the main growth parameters, such as the substrate temperature and the Mn concentration, that govern the growth process of GeMn layers. Since for device applications it is crucial to obtain DMS exhibiting a Curie temperature (TC) well above room temperature, we have focused our attention to the kinetic formation of the GeMn nanocolumn phase, which exhibits a Curie temperature higher than 400 K.
143

Synthèse de multicouches Ge/GeMn en vue d'applications en spintronique et capteurs bio-chimiques / Synthesis of Ge/GeMn multilayers for applications in spintronics and bio-chemical sensors

Dau, Minh Tuan 23 November 2011 (has links)
L’objectif de cette thèse était de synthétiser des multicouches à base de couches ferromagnétiques GeMn qui sont empilées et séparées par des couches de Ge en utilisant la technique d'épitaxie par jets moléculaires.Outre de nombreuses applications en spintronique issues de cette structure de matériaux, la réalisation de capteurs biochimiques dédiés à la détection moléculaire est l’idée directrice de ce travail. Un tel dispositif présenterait les atouts que ses matériaux constituants apportent : haute sensibilité, sélectivité et compatibilité parfaite avec la technologie de Si-Ge. Dans la première partie de ce manuscrit sont présentés les résultats obtenus de la croissance d’hétérostructures Mn5Ge3, Mn5Ge3Cx sur Ge(111) puis la reprise d’épitaxie de la barrière de Ge sur Mn5Ge3, la première étape avant la croissance de la deuxième couche ferromagnétique. Nous avons également analysé les propriétés structurales et magnétiques de ces couches minces ainsi que les dificultés dues à la croissance de la couche de Ge, notamment la diffusion et la ségrégation. Deux approches utilisant le carbone ont été proposées pour réduire la ségrégation : barrière de diffusion en carbone et remplissage des sites interstitiels du réseau Mn5Ge3 par du carbone. Le second axe alternatif pour la synthèse est consacré à la croissance de la structure colonnaire empilée Ge1-xMnx. Les conditions pour obtenir la structure colonnaire ont été déterminées. Les propriétés structurales et mesures magnétiques ont montré que cette phase était particulièrement intéressant dans la famille des semiconducteurs ferromagnétiques dilués à base de Ge-Mn pour les applications en spintronique et croissance de multicouches. La reprise d’épitaxie de plusieurs couches ferromagnétiques séparées par Ge a été effectuée et l’étude du couplage magnétique a été également menée. Enfin, nous présentons les premiers résultats sur le greffage de porphyrines et de protéines sur diverses surfaces hydrophiles et hydrophobes (Si, Ge), permettant d’accéder aux études de la faisabilité des capteurs Ge/GeMn. L’ensemble de ce travail indique que les multicouches de Ge/GeMn apparaissent comme des candidats à fort potentiel pour la spintronique, notamment pour capteurs bio-chimiques dans les semi-conducteurs du groupe IV. / The objective of this thesis is to synthetize the multilayers based on the sandwiched structure of GeMn ferromagnetic layers by mean of Molecular Beam Epitaxy on Ge substrate. Applications in spintronic field from this study are potential such as structures of spin valves, nanoscale sensors devoted to the detection of biochemical molecules. We actually focus on the biochemical sensors based on GMR (or TMR) phenomenon in stacking layered structure. These devices offer many advantages that the constituent materials may provide : high sensibility, selectivity, and especially, compatibility with Si-Ge technology. The first part of this manuscript presents the results obtained of heterostructure growth of Mn5Ge3, Mn5Ge3Cx on Ge(111), then Ge overgrowth on Mn5Ge3, the first step to study multilayers growth. Also, we have discussed about the structural and magnetic properties of these thin films as well as the problems due to the growth of multilayers, especially the diffusion and segregation. The approaches to reduce the diffusion were proposed by introducing carbon atoms as diffusion barrier or by fulfilling insterstial sites of Mn5Ge3 lattice by carbon atoms. The second axis of materials synthesis is devoted to the growth of multilayers Ge1-xMnx nanocolumn structure. The growth condition of Ge1-xMnx nanocolumns has been determined. We have studied structural and magnetic properties of this phase which are of particular interest to spintronic applications and multilayers growth. The Ge/Ge1-xMnx nanocolumns multilayers have been done and the interlayer exchange coupling between ferromagnetic layers has been studied. Finally, we have presented the preliminary results of porphyrin molecules and protein grafting on hydrophilic and hydrophobic surfaces (Si and Ge). This allows accessing to study the feasibility of Ge/GeMn-based sensors. This work indicates that the Ge/GeMn mutilayers appear to be a potential candidate for spintronics and biochemical sensors in the group IV semi-conductors.
144

Modélisation tridimensionnelle Automate Cellulaire - Éléments Finis (CAFE) pour la simulation du développement des structures de grains dans les procédés de soudage GTAW / GMAW / Three dimensional Cellular Automaton – Finite Element (CAFE) modeling for the grain structures development in Gas Tungsten / Metal Arc Welding processes

Chen, Shijia 04 July 2014 (has links)
Le développement des structures de grains se formant durant les procédés de soudage par fusion a un large impact sur les propriétés et la résistance mécaniques des assemblages. Des défauts, tels que la fissuration à chaud, sont aussi liés à la texturation de grains propre à l'étape de solidification. La simulation directe du développement tri-dimensionnelle (3D) des structures de grains dans ces procédés, à l'échelle industrielle, est rarement proposée. Dans ce travail, une modélisation couplée 3D Automate Cellulaire (CA) – Eléments Finis (FE) est proposée pour prédire la formation des structures de grains dans les procédés de soudage multipasses GTAW (Gas Metal Arc Welding) et GMAW (Gas Metal Arc Welding). A l'échelle macroscopique, la modélisation FE permet la résolution des équations de conservation de la masse, de l'énergie et de la quantité de mouvement pour l'ensemble du domaine en s'appuyant sur un maillage adaptatif. Pour le procédé GMAW avec apport de matière, le modèle FE est enrichi et développé dans une approche level set (LS) afin de modéliser l'évolution de l'interface métal / air due au développement du cordon de soudure. Le domaine FE contient ainsi la pièce étudiée et l'air environnant dans lequel le cordon se développe. Les calculs FE sont couplés avec l'approche CA utilisée pour modéliser le développement de la structure de grains. Un maillage fixe (‘maillage CA') est superposé au maillage adaptatif FE (‘maillage FE'). Les champs macroscopiques propres au maillage FE sont ainsi interpolés entre le maillage adaptatif FE et le maillage fixe CA. Une nouvelle stratégie d'allocation / désallocation de la grille de cellules CA est ensuite utilisée basée sur l'allocation / désallocation des éléments du maillage CA. La grille CA est constituée d'un ensemble régulier de cellules cubiques superposées au domaine soudée. A l'échelle micro-, la grille est utilisée afin de simuler les étapes de fusion et solidification, à la frontière entre le domaine pâteux et le bain liquide, durant le processus de soudage. Les évolutions de températures des cellules sont définies par interpolation du maillage CA. Un couplage du modèle avec les chemins de solidification et les évolutions enthalpiques tabulés est aussi implémenté, permettant de suivre la thermique et les évolutions de fractions de phase propre à l'évolution du procédé. Avec de réduire les temps de calcul et la quantité de mémoire informatique nécessaire à ces simulations, une optimisation des maillages FE/CA et des tailles de cellules CA est proposée pour les deux approches FE et CA. La modélisation 3D proposée est appliquée à la simulation de la formation des structures de solidification formées durant le soudage GTAW et GMAW multipasses de pièces d'acier inoxydables de nuances UR 2202. Dans le procédé GTAW, l'influence de l'évolution des structures de grains selon les paramètres procédés est étudiée. L'orientation normale des grains avec l'augmentation de la vitesse de soudage est montrée. Dans le procédé GMAW, la modélisation permet de simuler la refusion et la croissance des grains des couches successives. De manière générale, les structures de grains prédites montrent qualitativement les évolutions attendues présentées dans la littérature. / Grain structure formation during fusion welding processes has a significant impact on the mechanical strength of the joint. Defects such as hot cracking are also linked to the crystallographic texture formed during the solidification step. Direct simulation of three-dimensional (3D) grain structure at industrial scale for welding processes is rarely modeled. In this work, a 3D coupled Cellular Automaton (CA) – Finite Element (FE) model is proposed to predict the grain structure formation during multiple passes Gas Tungsten Arc Welding (GTAW) and Gas Metal Arc Welding (GMAW). At the macroscopic scale, the FE model solves the mass, energy and momentum conservation equations for the whole system based on an adaptive mesh. For GMAW with metal addition, the FE model is enriched and established in a level set (LS) approach in order to model the evolution of the metal/air interface due to the weld bead development. The FE domain then contains the workpiece and the surrounding air where the weld bead forms. FE computations are coupled with the CA approach used to model the grain structure evolution. A fixed mesh, referred to as CA mesh, is superimposed to the adaptive FE mesh. FE fields are interpolated between the adaptive FE mesh and the fixed CA mesh. A new dynamic allocation/deallocation strategy of a CA grid of cells is then used based on the dynamic activation/deactivation of the elements of the CA mesh. The CA grid is made of a regular lattice of cubic cells superimposed onto the welded domain. At the micro scale, this grid is used in order to simulate the melting and solidification steps at the boundaries between the mushy domain and the liquid pool during the welding process. The temperature evolutions of the cells are computed by interpolation from the CA mesh. Coupling with tabulated transformation paths and phase enthalpy is also implemented, which permits to track the phase amount and latent heat release during the process. In order to master the resolution time and memory cost of the simulations, a management of the FE/CA mesh dimensions and CA cell size is considered for both FE and CA models. The 3D CAFE model is applied to simulate the formation of solidification structures during multiple passes GTAW and GMAW processes on a duplex stainless steel UR 2202. In GTAW, the evolution of the grain structures with respect to the welding process parameters is considered. The normal orientation of the grains with the increase of the heat source velocity is shown. In GMAW, the model is shown to compute the remelting and growth of successively deposited layers. Overall, the predicted structures qualitatively reveal the expected evolutions presented in the literature.
145

Direct growth and characterization of graphene layers on insulating substrates

Schumann, Timo 13 October 2014 (has links)
In dieser Arbeit wird das direkte Wachstum von Graphen auf isolierenden Substraten untersucht. Die hergestellten Schichten werden mittels verschiedener Methoden untersucht, unter anderem Rasterkraftmikroskopie, Ramanspektroskopie und Synchrotron-Röontgendiffraktometrie. Zwei verschiedene Synthetisierungsmethoden kommen hierbei zur Anwendung. Zuerst wird das Wachstum von epitaktischem Graphen mittels thermischer Zersetzung von hexagonalen Siliciumcarbid-Oberflächen vorgestellt. Ein Fokus der Untersuchungen liegt hierbei auf den Stufen, welche auf der Substratoberfläche vorhanden sind. Wir zeigen, dass die initiale Oberflächenkonfiguration keinen unmittelbaren Einfluss auf den Wachstumsprozess und die entstehenden Graphenschichten besitzt. Die Stufen beeinflussen jedoch die elektrischen Transporteigenschaften im Quanten-Hall-Regime. Dieses Phänomen wird genauer untersucht und durch ein schematisches Modell erklärt. Die Struktur der epitaktischen Graphenschichten wird analysiert, inklusive präzieser Messungen der Gitterkonstanten. Anschließend werden Untersuchungen über das Wachstum von EG auf Kohlenstoff-terminierten SiC-Oberflächen vorgestellt und diskutiert. Als zweite Herstellungsmethode wird Molekularstrahlepitaxie verwendet. Wir demonstrieren Wachstum von Graphen auf zwei verschiedenen Substraten. Die Abhängigkeit der Morphologie und der strukturellen Qualität der Proben von den Wachstumsbedingungen wird untersucht. Wir zeigen, dass die Graphenschichten aus nanokristallinen Domänen bestehen, deren laterale Abmessungen 30 nm überschreiten. Die strukturelle Qualität der Graphenschichten nimmt mit zunehmender Substrattemperatur zu. Schließlich wird gezeigt, dass die Graphendomänen eine epitaktische Beziehung zu ihrem jeweiligen Substrat besitzen und dass eine beobachtete Reduzierung der Gitterparameter durch die Existenz von Punktdefekten zu erklären ist. / This thesis presents an investigation of graphene growth directly on insulating substrates. The graphene films are characterized using different techniques, including atomic force microscopy, Raman spectroscopy, and grazing-incidence X-ray diffraction. These allowed insight into the morphological, structural, and electrical properties of the graphene layers. Two different preparation methods were employed. The growth of epitaxial graphene on SiC(0001) by surface Si depletion is presented first. An important parameter in this type of growth is the surface steps present on the SiC substrate. We show that the initial SiC surface step configuration has little influence on the growth process, and the resulting graphene layers. The surface steps do impact the magneto-transport properties of graphene on SiC, which is investigated closely and can be explained by a schematic model. The structure of the epitaxial graphene layers is also analyzed, including precise measurements of the lattice constants. Additionally, the growth of graphene on the C-face of SiC is investigated. Graphene films were also synthesized directly on insulating substrates using molecular beam epitaxy. With the accurate deposition rates and sub-monolayer thickness control, MBE allows for fundamental studies of the growth process. We demonstrate graphene growth on two different substrates. The dependence of the morphology and structural quality of the graphene samples on the growth parameters is evaluated and discussed. We find that graphene films grown by MBE consist of nanocrystalline graphene domains with lateral dimensions exceeding 30 nm. The structural quality of the graphene layers improves with increasing substrate temperature during growth. Finally, we show that the nanocrystalline domains of the graphene films possess an epitaxial relation to either substrate, and attribute an observed contraction of the graphene lattice constant to the presence of point-defects within the film.
146

Micromagnetic study of self-organized magnetic nanostructures

Engel-Herbert, Roman Harald 23 February 2007 (has links)
In der vorliegenden Arbeit wurden die mikromagnetische Struktur sowie das Ummagnetisierungsverhalten epitaktisch gewachsener MnAs Filme auf dem Substrat GaAs untersucht. Im Mittelpunkt steht die mikromagnetischen Struktur von anisotrop erspannten MnAs Filmen auf GaAs(001). Die Verspannung führt zur selbstorganisierten Anordnung ferromagnetischer Streifen. Ihre Domänenstruktur wurde mittels MFM (magnetischer Kraftmikroskopie) bestimmt und mit den Resultaten der XMCDPEEM (X-ray magnetic circular dichroism photoemission electron microscopy) verglichen. Um eine vollständige Charakterisierung der mikromagnetischen Eigenschaften der Streifenstruktur zu erreichen, wurden die MFM Experimente in einem äusseren Magnetfeld durchgeführt. Die Beantwortung der zentralen Frage nach der Domänenstruktur ist mit der Entwicklung eines mikromagnetischen Simulators für dreidimensionale magnetische Strukturen auf mesoskopischer Skala gelungen. Die Stabilität der dreidimensionalen mikromagnetischen Struktur hängt von den Eigenschaften der selbstorganisierten Streifenstruktur ab, d.h. sowohl von der Filmdicke als auch vom Verhältnis ihrer Breite zur Filmdicke - und damit der Temperatur. Durch die Erkenntnis, dass eine magnetische Struktur in der Tiefe des Streifens vorhanden ist, können die verbleibenden Unterschiede in den XMCDPEEM- und MFM-Resultaten erklärt werden. Durch die Simulationsergebnisse in Kombination mit den Experimenten wird eine widerspruchsfreie Deutung der mikromagnetischen Struktur sowie deren Ummagnetisierungsverhalten ermöglicht. Zudem wird die mikromagnetische Struktur von MnAs auf GaAs(111) simuliert und damit das Verständnis der mikromagnetischen Strukturen auf alle vorhandenen Substratorientierungen vervollständigt. / In the present thesis the micromagnetic structure, as well as the magnetization reversal, of epitaxial MnAs films on GaAs substrates are studied. The investigation is focused on the micromagnetic structure of anisotropically strained MnAs films on GaAs(001). The strain originates a selforganized array of ferromagnetic stripes. The magnetic domains were investigated using MFM (magnetic force microscopy) and the results were compared with XMCDPEEM (X-ray magnetic circular dichroism photoemission electron microscopy). To completely characterize the micromagnetic properties of the stripe structure, MFM experiments were performed in the presence of an external field. To unambiguously determine the domain structure a three-dimensional micromagnetic simulator was developed capable to calculate magnetic structures with mesoscopic dimensions. The stability of the three-dimensional micromagnetic structure depends on the properties of the selforganized stripe structure, i.e., on the film thickness as well as on the ratio of the stipe width to thickness - and thus the temperature. Taking into account the magnetization distribution in-depth, the remaining differences between the XMCDPEEM and the MFM results can be explained by the disturbing effect of the MFM tip. The results of the micromagnetic simulations, in combination with the experimental results, allow for a determination of the micromagnetic structure in an applied field throughout the phase coexistence regime. Moreover, the micromagnetic structure of MnAs films on GaAs(111) is simulated and thus the understanding of the micromagnetic properties have been extended on all substrate orientations.
147

Amorphous, Nanocrystalline, Single Crystalline: Morphology of Magnetic Thin Films and Multilayers

Liebig, Andreas January 2007 (has links)
Properties of magnetic thin film devices cannot be understood without detailed knowledge of their structure. For this purpose, a variety of thin film and multilayer systems have been studied. Both reciprocal space (low energy electron diffraction, reflection high energy electron diffraction, X-ray diffraction and reflectometry) and direct space (transmission electron microscopy) as well as Rutherford backscattering spectrometry have been applied. To gain understanding of an oxidation procedure for the growth of magnetite layers, thermal stability of iron layers on molybdenum seed layers has been investigated. Following the mosaicity and the out-of-plane coherence length over different ratios between the constituting layers allowed a deeper understanding of the limits of metallic superlattices. This, together with an approach to use hydrogen in the process gas during magnetron sputter epitaxy, opens routes for the growth of metallic superlattices of superior quality. A non-isostructural multilayer/superlattice system, Fe/MgO, has been investigated. In turn, this gave more understanding how superlattice diffraction patterns are suppressed by strain fields. As an alternative route to single-crystalline superlattices, amorphous multilayers present interesting opportunities. In this context, crystallization effects of iron/zirconium layers on alumiunium oxide were studied. Understanding these effects enables significant improvement in the quality of amorphous multilayers, and allows avoiding these, growing truly amorphous layers. Both the substantial improvement in quality of metallic superlattices, approaching true single-crystallinity, as well as the improvements in the growth of amorphous multilayers give rise to opportunities in the field of magnetic coupling and superconducting spin valves.
148

Growth and characterization of III-nitride materials for high efficiency optoelectronic devices by metalorganic chemical vapor deposition

Choi, Suk 18 December 2012 (has links)
Efficiency droop is a critical issue for the Group III-nitride based light-emitting diodes (LEDs) to be competitive in the general lighting application. Carrier spill-over have been suggested as an origin of the efficiency droop, and an InAlN electron-blocking layer (EBL) is suggested as a replacement of the conventional AlGaN EBL for improved performance of LED. Optimum growth condition of InAlN layer was developed, and high quality InAlN layer was grown by using metalorganic chemical vapor deposition (MOCVD). A LED structure employing an InAlN EBL was grown and its efficiency droop performance was compared with a LED with an AlGaN EBL. Characterization results suggested that the InAlN EBL delivers more effective electron blocking over AlGaN EBL. Hole-injection performance of the InAlN EBL was examined by growing and testing a series of LEDs with different InAlN EBL thickness. Analysis results by using extended quantum efficiency model shows that further improvement in the performance of LED requires better hole-injection performance of the InAlN EBL. Advanced EBL structures such as strain-engineered InAlN EBL and compositionally-graded InAlN EBLs for the delivery of higher hole-injection efficiency were also grown and tested.
149

Simulation and Electrical Evaluation of 4H-SiC Junction Field Effect Transistors and Junction Barrier Schottky Diodes with Buried Grids

Lim, Jang-Kwon January 2015 (has links)
Silicon carbide (SiC) has higher breakdown field strength than silicon (Si), which enables thinner and more highly doped drift layers compared to Si. Consequently, the power losses can be reduced compared to Si-based power conversion systems. Moreover, SiC allows the power conversion systems to operate at high temperatures up to 250 oC. With such expectations, SiC is considered as the material of choice for modern power semiconductor devices for high efficiencies, high temperatures, and high power densities. Besides the material benefits, the typeof the power device also plays an important role in determining the system performance. Compared to the SiC metal-oxide semiconductor field-effect transistor (MOSFET) and bipolar junction transistor (BJT), the SiC junction field-effect transistor (JFET) is a very promising power switch, being a voltage-controlled device without oxide reliability issues. Its channel iscontrolled by a p-n junction. However, the present JFETs are not optimized yet with regard to on-state resistance, controllability of threshold voltage, and Miller capacitance. In this thesis, the state-of-the-art SiC JFETs are introduced with buried-grid (BG) technology.The buried grid is formed in the channel through epitaxial growth and etching processes. Through simulation studies, the new concepts of normally-on and -off BG JFETs with 1200 V blocking capability are investigated in terms of static and dynamic characteristics. Additionally, two case studies are performed in order to evaluate total losses on the system level. These investigations can be provided to a power circuit designer for fully exploiting the benefit of power devices. Additionally, they can serve as accurate device models and guidelines considering the switching performance. The BG concept utilized for JFETs has been also used for further development of SiC junctionbarrier Schottky (JBS) diodes. Especially, this design concept gives a great impact on high temperature operation due to efficient shielding of the Schottky interface from high electric fields. By means of simulations, the device structures with implanted and epitaxial p-grid formations, respectively, are compared regarding threshold voltage, blocking voltage, and maximum electric field at the Schottky interface. The results show that the device with an epitaxial grid can be more efficient at high temperatures than that with an implanted grid. To realize this concept, the device with implanted grid was optimized using simulations, fabricated and verified through experiments. The BG JBS diode clearly shows that the leakage current is four orders of magnitude lower than that of a pure Schottky diode at an operation temperature of 175 oC and 2 to 3 orders of magnitude lower than that of commercial JBS diodes. Finally, commercialized vertical trench JFETs are evaluated both in simulations andexperiments, while it is important to determine the limits of the existing JFETs and study their performance in parallel operation. Especially, the influence of uncertain parameters of the devices and the circuit configuration on the switching performance are determined through simulations and experiments. / Kiselkarbid (SiC) har en högre genombrottsfältstyrka än kisel, vilket möjliggör tunnare och mer högdopade driftområden jämfört med kisel. Följaktligen kan förlusterna reduceras jämfört med kiselbaserade omvandlarsystem. Dessutom tillåter SiC drift vid temperatures upp till 250 oC. Dessa utsikter gör att SiC anses vara halvledarmaterialet för moderna effekthalvledarkomponenter för hög verkningsgrad, hög temperature och hög kompakthet. Förutom materialegenskaperna är också komponenttypen avgörande för att bestämma systemets prestanda. Jämfört med SiC MOSFETen och bipolärtransistorn i SiC är SiC JFETen en mycket lovande component, eftersom den är spänningsstyrd och saknar tillförlitlighetsproblem med oxidskikt. Dess kanal styrs an en PNövergång. Emellertid är dagens JFETar inte optimerade med hänseende till on-state resistans, styrbarhet av tröskelspänning och Miller-kapacitans. I denna avhandling introduceras state-of-the-art SiC JFETar med buried-grid (BG) teknologi. Denna åstadkommes genom epitaxi och etsningsprocesser. Medelst simulering undersöks nya concept för normally-on och normally-off BG JFETar med blockspänningen 1200 V. Såvä statiska som dynamiska egenskper undersöks. Dessutom görs två fallstudier vad avser totalförluster på systemnivå. Dessa undersökningar kan vara värdefulla för en konstruktör för att till fullo utnyttja fördelarna av komponenterna. Dessutom kan resultaten från undersökningarna användas som komponentmodeller och anvisningar vad gäller switch-egenskaper. BG konceptet som använts för JFETar har också använts för vidareutveckling av så kallade JBS-dioder. Speciellt ger denna konstruktion stora fördelar vid höga temperature genom en effektiv skärmning av Schottkyövergången mot höga elektriska fält. Genom simuleringar har komponentstrukturer med implanterade och epitaxiella grids jämförst med hänseende till tröskelspänning, genombrottspänning och maximalt elektriskt fält vid Schottky-övergången. Resultaten visar att den epitaxiella varianten kan vara mer effektiv än den implanterade vid höga temperaturer. För att realisera detta concept optimerades en komponent med implanterat grid med hjälp av simuleringar. Denna component tillverkades sedan och verifierades genom experiment. BG JBS-dioden visar tydligt att läckströmmen är fyra storleksordningar lägre än för en ren Schottky-diod vid 175 oC, och två till tre storleksordningar lägre än för kommersiella JBS-dioder. Slutligen utvärderas kommersiella vertical trench-JFETar bade genom simuleringar och experiment, eftersom det är viktigt att bestämma gränserna för existerande JFETar och studera parallelkoppling. Speciellt studeras inverkan av obestämda parametrar och kretsens konfigurering på switchegenskaperna. Arbetet utförs bade genom simuleringar och experiment. / <p>QC 20150915</p>
150

Herstellung und Charakterisierung von Feldeffekttransistoren mit epitaktischem Graphen

Wehrfritz, Peter 17 July 2015 (has links) (PDF)
Als Graphen bezeichnet man eine einzelne freistehende Lage des Schichtkristalls Graphit. Im Gegensatz zur mechanischen Isolation von Graphit bietet die Züchtung auf Siliziumkarbid eine Methode zur großflächigen Herstellung von Graphen. Aufgrund der besonderen physikalischen Eigenschaften werden für Graphen viele verschieden Einsatzmöglichkeiten in diversen Bereichen prognostiziert. Mit seiner hohen Ladungsträgerbeweglichkeit ist Graphen besonders als Kanalmaterial für Feldeffekttransistoren (FET) interessant. Allerdings muss hierfür unter anderem ein geeignetes FET-Isolatormaterial gefunden werden. In dieser Arbeit wird eine detaillierte, theoretische Beschreibung der Graphen-FETs vorgestellt, die es erlaubt die steuerspannungsabhängige Hall-Konstante zu berechnen. Mit der dadurch möglichen Analyse können wichtige Kenngrößen, wie z. B. die Grenzflächenzustandsdichte des Materialsystems bestimmt werden. Außerdem wurden zwei Methoden zur Isolatorabscheidung auf Graphen untersucht. Siliziumnitrid, welches mittels plasmaangeregter Gasphasenabscheidung aufgetragen wurde, zeichnet sich durch seine n-dotierende Eigenschaft aus. Damit ist es vor allem für quasi-freistehendes Graphen auf Siliziumkarbid interessant. Bei der zweiten Methode handelt es sich um einen atomaren Schichtabscheidungsprozess, der ohne eine Saatschicht auskommt. An beiden Graphen- Isolator-Kombinationen wurde die neue Charakterisierung mittels der Hall-Datenanalyse angewandt.

Page generated in 0.2762 seconds