81 |
Entropia e ações de Grupos de Lie / Entropy and Lie groups actionsFerraiol, Thiago Fanelli, 1984- 21 February 2008 (has links)
Orientador: Luiz Antonio Barrera San Martin / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-10T08:58:03Z (GMT). No. of bitstreams: 1
Ferraiol_ThiagoFanelli_M.pdf: 1209828 bytes, checksum: 5848b00f7a22bffd43d384f4102b061d (MD5)
Previous issue date: 2008 / Resumo: Nesta dissertacao apresentamos os conceitos fundamentais de entropia em sistemas dinamicos e algumas relacoes entre entropia metrica e topologica. O objetivo principal e calcular a entropia de algumas transformacoes em espacos homogeneos induzidas por acoes de Grupos de Lie. Para analizar, mostramos que a entropia de translações em variedades fag e sempre zero / Abstract: On this dissertation we present the fundamentals concepts of entropy in dynamical systems and some relations among metric and topological entropy. The main goal is calculate the entropy of some transformations on homogeneous spaces induced by Lie groups actions. About to analize, we show that the entropy of translations on flag manifolds is always zero / Mestrado / Mestre em Matemática
|
82 |
Comportamento assintótico do primeiro retorno de uma sequência gerada por variáveis aleatórias independentes e identicamente distribuídas / Convergence in distribution of the overlapping function : the IID caseLambert, Rodrigo 16 August 2018 (has links)
Orientador: Miguel Natálio Abadi / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-16T15:39:00Z (GMT). No. of bitstreams: 1
Lambert_Rodrigo_M.pdf: 3549677 bytes, checksum: 663438e1feb8f7092723382b6846bc9c (MD5)
Previous issue date: 2010 / Resumo: Seja x um alfabeto finito ou enumerável, e considere o espaço de todas as sequências finitas compostas por concatenação de símbolos desse alfabeto. A essas sequências daremos o nome de palavras. Denotaremos por xn conjunto de todas as palavras de tamanho n. No presente trabalho, consideramos uma função que leva cada palavra de tamanho n em um número inteiro entre 0 e n - 1. Essa função é definida pelo maior tamanho possível de uma sobreposição da palavra com uma cópia dela mesma transladada, e é chamada de função de sobreposição. A ela daremos o nome de Sn. A relevância da função de sobreposição foi colocada em evidência, entre outros casos, na análise estatística da Recorrência de Poincaré, e possui relação explícita com a entropia do processo. Nesse trabalho, provamos a convergência da distribuição da função de sobreposição, quando a sequência _e escolhida de acordo com relação a n variáveis aleatórias independentes e identicamente distribuídas no alfabeto x. Também apresentamos um limitante para a velocidade dessa convergência. Como consequência, mostramos também a convergência da esperança e da variância da função de sobreposição. / Abstract: We consider the set of finite sequencies of length n over a finite or contable alphabet x. We consider the function defined over xn which gives the size of the maximum overlap of a given sequence with a (shifted) copy of itself. That function will be denoted by overlapping function. We prove the convergence of the distribution of this function when the sequence is chosen according to a product measure, with identically distributed marginals. We give a point-wise upper bound for the velocity of this convergence. As a byproduct, we show the convergence of te mean and the variance of the overlapping function. / Mestrado / Probabilidade / Mestre em Estatística
|
83 |
Expoentes de Lyapunov e de Morse em fibrados flag / Lyapunov and Morse exponents in flag bundlesAlves, Luciana Aparecida 11 March 2010 (has links)
Orientador: Luiz Antonio Barrera San Martin / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-16T23:30:55Z (GMT). No. of bitstreams: 1
Alves_LucianaAparecida_D.pdf: 1178366 bytes, checksum: 5ebc7f21a1a3cb0e5f3a743c8cc377a7 (MD5)
Previous issue date: 2010 / Resumo: Nesta tese, estuda-se o crescimento exponencial de cociclos contínuos, a valores vetoriais, sobre o fibrado flag maximal. Tais cociclos estão intimamente ligados com os expoentes de Lyapunov clássicos e, assim, o teorema ergódigo multiplicativo de Oseledets é provado em um contexto de teoria de Lie semi-simples. Com isto, estabelece-se uma conexão entre a decomposição de Oseledets e a decomposição de Morse em fibrados flag. Alem disso, para uma classe de transformações de calibre no fibrado, compara-se a decomposição de Morse obtida em cada fibra com a mais fina, obtida anteriormente por Braga e San Martin / Abstract: In this thesis, we study the exponential growth of continuous cocycles wich take vector values on the maximal ag bundle. Such cocycles are intimately connected with the classic Lyapunov exponents, and thus the Oseledets's multiplicative ergodic theorem is proved in the context of semi-simple Lie theory. With this, it is established a connection between the Oseledets decomposition and Morse decomposition in ag bundles. In addition, considering a class of gauge transformations in the bundle, we compare the Morse decomposition obtained in each fiber with the finest Morse decomposition, obtained by Braga and San Martin / Doutorado / Teoria de Sistemas Dinâmicos / Doutor em Matemática
|
84 |
Expoentes de Lyapunov e o teorema ergodico multiplicativo de Oseledec / Lyapunov exponents and Oseledec's multiplicative ergodic theoremAlves, Luciana Aparecida 27 February 2007 (has links)
Orientador: Luiz Antonio Barreira San Martin / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Científica / Made available in DSpace on 2018-08-08T04:52:24Z (GMT). No. of bitstreams: 1
Alves_LucianaAparecida_M.pdf: 720915 bytes, checksum: 31e0287aff59267244e774856c7d82af (MD5)
Previous issue date: 2007 / Resumo: O principal objetivo desta dissertação é fornecer condições para garantirmos a existencia dos expoentes de Lyapunov. Inicialmente, introduzimos o conceito de expoente de Lyapunov associado a sistemas de equaçoes diferenciais lineares não autonomas e discutimos algumas propriedades que surgem com a introduçao deste conceito. Em seguida, damos duas versoes para a demonstraçao do Teorema Ergodico Multiplicativo de Oseledec para fluxos em tempo discreto associados a cociclos definidos sobre fibrados vetoriais triviais. A partir disto, estendemos este teorema para sistemas em tempo continuo, usando a extensao do Teorema Ergodico Subaditivo de Kingman. Finalmente, apresentamos uma noçao de fluxos em fibrados mais gerais do que fibrados triviais e obtemos, sob determinadas condiçoes, um caso particular do Teorema de Oseledec em cada fibra de um fibrado vetorial nao-trivial / Abstract: The main result of this work provides conditions to assure the existence of Lyapunov exponents. First of all, we introduce the concept of Lyapunov exponents associated to nonautonomous linear differential equations and we discuss some properties which appear with the introduction of this concept. We give two versions for the proof of Oseledec¿s Multiplicative Ergodic Theorem for discrete time flows associated to cocycles which are defined in trivial vector bundles. From this, we extend this theorem for continuos time systems, using an extension of Kingman¿s Subadditive Ergodic Theorem. Finally, we present a notion of flows in fiber bundles more general than the trivial vector bundles and we obtain, given some conditions, a particular case of the Oseledec¿s Theorem in each fiber of a non trivial vector bundle / Mestrado / Sistemas Dinamicos / Mestre em Matemática
|
85 |
Teoria ergódica em fluxos homogêneos e teoremas de Ratner / Ergodic theory on homogeneous flows and Ratners theoremsThiago Rodrigo Ramos 14 June 2018 (has links)
Neste trabalho, provamos um caso particular do Teorema de Ratner de classificação de medidas, que nos diz que se X =Γ\\G é um espaço homogêneo, onde G é um grupo de Lie e Γ é um lattice de G, então dado um subgrupo unipotente U de G, conseguimos classificar as medidas ergódicas com relação a ação por translação do grupo U em X. Além do Teorema de Ratner de classificação de medidas, falamos sobre o Teorema de Ratner de equidistribuição e o Teorema de Ratner do fecho da órbita, que nos dizem como são as órbitas pela ação por translação do grupo U e como é sua dinâmica em X, do ponto de vista da Teoria Ergódica. Embora estes últimos resultados não sejam provados nesta dissertação, exibimos uma importante aplicação do Teorema de Ratner do fecho da órbita em teoria dos números, provando a Conjectura de Oppeinheim, também conhecida como Teorema de Margullis. / In this work, we prove a particular case of the Ratners measure classification theorem, which tell us that if X = Γ\\G is an homogeneous space, where G is a Lie group and Γ is a lattice of G, then given any unipotent group U of G, we can classify the measures that are ergodic with respect to the translation group action of U in X In addition to the Ratners measure classification theorem, we talk about the Ratners equidistribuition theorem and the Ratners orbit closure theorem, which tell us how the orbit due the action by translation by the group U are and how the dynamics in X is, in an Ergodic Theory point of view. While we didnt prove the last two Ratners theorems, we exhibit an important application of the Ratners orbit closure theorem in number theory, proving the Oppeinheim Conjecture, also know as Margullis Theorem.
|
86 |
Propriedades dinâmicas e ergódicas de shifts multidimensionais / Dynamic and ergodic properties of multidimensional shiftsColle, Cleber Fernando, 1985- 19 August 2018 (has links)
Orientador: Eduardo Garibaldi / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-19T00:20:51Z (GMT). No. of bitstreams: 1
Colle_CleberFernando_M.pdf: 1068657 bytes, checksum: 78c9700800b05194ffcf66838581b081 (MD5)
Previous issue date: 2011 / Resumo: Focaremos sobre aspectos dinâmicos e ergódicos de shifts multidimensionais, atentando especialmente para suas relações com estados fundamentais e quase-cristais em reticulados. Por exemplo, em mecânica estatística, dado um potencial invariante por translação, seus estados fundamentais são medidas de probabilidade invariantes por translação suportadas no conjunto de suas configurações fundamentais, isto é, das configurações com energia específica mínima. Estados fundamentais são naturalmente associados com o bordo de certos polítopos convexos dimensionalmente finitos. Esse bordo se torna drasticamente diferente se a dimensão do modelo em questão passa de d = 1 para d > 1, pois no caso multidimensional existe shift de tipo finito unicamente ergódico sem configurações periódicas / Abstract: We will focus on dynamic and ergodic aspects of multidimensional shifts, with particular care to their relations with ground states and quasicrystals in lattices. For example, in statistical mechanics, given a translation-invariant potential, its ground states are translation-invariant probability measures supported on the set of its ground configurations, i.e., of configurations with minimal specific energy. Ground states are naturally associated with the boundary of certain finite-dimensional convex polytopes. This boundary becomes drastically different if the dimension of the model in question changes from d = 1 to d > 1, because in the multidimensional case there exists uniquely ergodic shift of finite type with no periodic configurations / Mestrado / Matematica / Mestre em Matemática
|
87 |
Formalismos Gibbsianos para sistemas de spins unidimensionais / Gibbsian formalisms for one dimensional spin systemsGomes, João Tiago Assunção, 1986- 20 August 2018 (has links)
Orientador: Eduardo Garibaldi / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-20T22:00:53Z (GMT). No. of bitstreams: 1
Gomes_JoaoTiagoAssuncao_M.pdf: 1424859 bytes, checksum: 6679c0458ae1350513c30bdc7ea2e699 (MD5)
Previous issue date: 2012 / Resumo: Exibir os estados de Gibbs e os estados de equilíbrios para certos sistemas de spins sobre reticulados é um problema de grande interesse para mecânica estatística. Com este intuito, apresentamos para o caso unidimensional dois formalismos existentes para tais sistemas: o formalismo DLR (enfoque mecânico-estatístico) e o formalismo SRB (enfoque dinamicista). Apesar das particularidades próprias aos contextos nos quais cada um dos formalismos se aplica, investigam-se aqui as relações existentes entre estes através da energia livre de Gibbs e da pressão topológica. Discute-se também o comportamento assintótico dos estados de Gibbs/equilíbrio quando levados ao congelamento do sistema. Tal fenômeno nos conduz ao estudo dos estados maximizantes via teoria de otimização ergódica. Ao fim, comparam-se algumas ideias da álgebra max/min-plus e o conceito de subação, as quais serão fundamentais para análise do comportamento assintótico da pressão topológica / Abstract: To exhibit Gibbs states and equilibrium states for certain kind of lattice spin systems is a problem with great interest for statistical mechanics. To that end, we introduce two existing formalisms for one-dimensional systems: DLR formalism (statistical-mechanical approach) and SRB formalism (dynamical-systems approach). In spite of their distinct applications, we analyse the relation between them through the notions of Gibbs free energy and topological pressure. We discuss also the asymptotic behaviour of Gibbs/equilibrium states when the system is frozen. This phenomenon leads us to the study of maximizing states in the context of ergodic optimization. Finally, we compare some ideas of max/min-plus algebra and the notion of sub-action, which will be essential to investigate the asymptotic behaviour of the topological pressure / Mestrado / Matematica / Mestre em Matemática
|
88 |
Philosophical aspects of chaos : definitions in mathematics, unpredictability, and the observational equivalence of deterministic and indeterministic descriptionsWerndl, Charlotte January 2010 (has links)
This dissertation is about some of the most important philosophical aspects of chaos research, a famous recent mathematical area of research about deterministic yet unpredictable and irregular, or even random behaviour. It consists of three parts. First, as a basis for the dissertation, I examine notions of unpredictability in ergodic theory, and I ask what they tell us about the justification and formulation of mathematical definitions. The main account of the actual practice of justifying mathematical definitions is Lakatos's account on proof-generated definitions. By investigating notions of unpredictability in ergodic theory, I present two previously unidentified but common ways of justifying definitions. Furthermore, I criticise Lakatos's account as being limited: it does not acknowledge the interrelationships between the different kinds of justification, and it ignores the fact that various kinds of justification - not only proof-generation - are important. Second, unpredictability is a central theme in chaos research, and it is widely claimed that chaotic systems exhibit a kind of unpredictability which is specific to chaos. However, I argue that the existing answers to the question "What is the unpredictability specific to chaos?" are wrong. I then go on to propose a novel answer, viz. the unpredictability specific to chaos is that for predicting any event all sufficiently past events are approximately probabilistically irrelevant. Third, given that chaotic systems are strongly unpredictable, one is led to ask: are deterministic and indeterministic descriptions observationally equivalent, i.e., do they give the same predictions? I treat this question for measure-theoretic deterministic systems and stochastic processes, both of which are ubiquitous in science. I discuss and formalise the notion of observational equivalence. By proving results in ergodic theory, I first show that for many measure-preserving deterministic descriptions there is an observationally equivalent indeterministic description, and that for all indeterministic descriptions there is an observationally equivalent deterministic description. I go on to show that strongly chaotic systems are even observationally equivalent to some of the most random stochastic processes encountered in science. For instance, strongly chaotic systems give the same predictions at every observation level as Markov processes or semi-Markov processes. All this illustrates that even kinds of deterministic and indeterministic descriptions which, intuitively, seem to give very different predictions are observationally equivalent. Finally, I criticise the claims in the previous philosophical literature on observational equivalence.
|
89 |
Constantes de Siegel-Veech et volumes de strates d'espaces de modules de différentielles quadratiques / Siegel-Veech constants and volumes of strata of moduli spaces of quadratic differentialsGoujard, Élise 07 October 2014 (has links)
Nous étudions les constantes de Siegel–Veech pour les surfaces plates et leurs liens avec les volumes de strates d'espaces de modules de différentielles quadratiques. Les constantes de Siegel–Veech donnent l'asymptotique du nombre de géodésiques périodiques dans les surfaces plates. Pour certaines surfaces plates, de telles géodésiques correspondent aux trajectoires périodiques dans les billiards rationnels correspondants. Les constantes de Siegel–Veech sont fortement reliées à la dynamique du flot géodésique dans les espaces de modules correspondants, par la formule d'Eskin–Kontsevich–Zorich exprimant la somme des exposants de Lyapunov du fibré de Hodge le long du flot de Teichmüller en fonction de la constante de Siegel–Veech pour la strate considérée et d'un terme combinatoire explicite. Cette dynamique est liée à la dynamique du flot linéaire dans la surface plate de départ par un procédé de renormalisation. En utilisant certaines propriétés de cette dynamique nous montrons un critère qui détermine quand une courbe complexe plongée dans l'espace de module des surfaces de Riemann munie d'un sous-fibré en droites du fibré de Hodge est une courbe de Teichmüller. Nous étudions certains rapports de constantes de Siegel–Veech et en déduisons des informations géométriques sur les régions périodiques dans les surfaces plates. Les liens entre les constantes de Siegel–Veech et les volumes d'espaces de modules ont été étudiés complètement dans le cas abélien par Eskin, Masur et Zorich, et dans le cas quadratique en genre zéro par Athreya, Eskin et Zorich. Nous généralisons ces résultats au cas quadratique en genre supérieur, en utilisant la description des configurations de liens selles produite par Masur et Zorich. Nous calculons de façon explicite certains volumes de strates de petite dimension. / We study Siegel–Veech constants for flat surfaces and their links with the volumes of some strata of moduli spaces of quadratic differentials. Siegel–Veech constants give the asymptotics of the number of periodic geodesics in flat surfaces. For certain flat surfaces such geodesics correspond to periodic trajectories in related rational billiards. Siegel–Veech constants are strongly linked to the dynamics of the geodesic flow in related moduli spaces by the formula of Eskin–Kontsevich–Zorich, giving the sum of the Lyapunov exponents for the Hodge bundle along the Teichmüller geodesic flow in terms of the Siegel–Veech constant for the corresponding stratum and an explicit combinatorial expression. This dynamics is related to the dynamics of the linear flow in the original flat surface by a renormalization process. Using some properties of this dynamics we prove a criterion to detect whether a complex curve, embedded in the moduli space of Riemann surfaces and endowed with a line subbundle of the Hodge bundle, is a Teichmüller curve. We study ratios of Siegel–Veech constants and deduce geometric informations about the periodic regions in flat surfaces. The links between Siegel–Veech constants and volumes of moduli spaces were completely studied by Eskin, Masur and Zorich in the Abelian case, and by Athreya, Eskin and Zorich in the quadratic case in genus zero. We generalize their results to the quadratic case in higher genus, using the description of configurations of saddle-connections performed by Masur and Zorich. We provide explicit computations of volumes of some strata of low dimension.
|
90 |
Thermodynamical FormalismChousionis, Vasileios 08 1900 (has links)
Thermodynamical formalism is a relatively recent area of pure mathematics owing a lot to some classical notions of thermodynamics. On this thesis we state and prove some of the main results in the area of thermodynamical formalism. The first chapter is an introduction to ergodic theory. Some of the main theorems are proved and there is also a quite thorough study of the topology that arises in Borel probability measure spaces. In the second chapter we introduce the notions of topological pressure and measure theoretic entropy and we state and prove two very important theorems, Shannon-McMillan-Breiman theorem and the Variational Principle. Distance expanding maps and their connection with the calculation of topological pressure cover the third chapter. The fourth chapter introduces Gibbs states and the very important Perron-Frobenius Operator. The fifth chapter establishes the connection between pressure and geometry. Topological pressure is used in the calculation of Hausdorff dimensions. Finally the sixth chapter introduces the notion of conformal measures.
|
Page generated in 0.043 seconds